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Abstraction: eliminate irrelevant details from consideration

Examples: group, field, vector space, relation, graph, ....

Goals of abstraction:

Goals of this talk:
e Introduce layers of abstraction in cryptography.
e Examples of abstract definitions and proofs.

e Announce a new security framework
*abstract cryptography” (with Renato Renner).
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Motivating example: One-time pad

addition modulo 2

ciphertext G, C,, ...

plaintext plaintext
M1,M2,." ........................ »Q . M1,M2,..l

key K,K,.. key K,K,..

Perfect secrecy (Shannon). C and M statist. independent.
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One-time pad In terms of systems

_________________________________

otp-dec B otp-enc A (KEY||AUT) — sim E SEC

. . otp
written as a reduction: (KEY||AUT) > SEC




Symmetric encryption

________________________________

enc :: KEY 3 dec
A B
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»{E [ =t D]
Il'_-_-_-_-_-_-i:-_-_-_-_-_-_-_-_iE-_-_-_-_-_-_‘_I'_-_-_-_-_-_-_II
| -
N ::
_____ SEC Nl
$
Sim Yy _

decB enc® (KEY||AUT) 2 simE SEC

: . Sym
written as a reduction: (KEY||AUT) > SEC
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Constructive cryptography

Reduction concept:

protocol 7
real system R > iIdeal system S

r{ Composability of a reduction:
5 5

R 2535 A S 257 =R 7T

Example: Alice-Bob-Eve setting m = (771, 7o)

R — S & Jo: {75 R =~ oF S
and

{8 1FR ~ IF S
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possible name

concepts treated at this level

Reductions

Abstract resources

def. of (universal) composability

Isomorphism

w [N e 4

Abstract systems

distinguisher, hybrid argument,
secure reduction, compos. proof

Discrete systems

System implem.

Physical models

games, equivalence,
iIndistinguishability proofs

complexity, efficiency notion

timing, power, side-channels
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Security proof for CBC-MAC [3,4]

pa D = CBC |- AES ol D == RO

Note: Many security proofs can be phrased

at this level of abstraction and become quite

T¢ . .
simple or even trivial.

N (CBCAES RO) < AP (ORCASS [ (BCR ) F ZF (CRCR, RO)

A (moaes, aorr) = AT (aes ) < AC (AES, RF)

A(CBCRF,RO) < 3£227"  [BKR94,..] [4]
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the complexity of system implementation

nat Is efficient (for the good guys)
nat Is infeasible (for the bad guys)

nat Is negligible

£ = set of efficiently impl. systems.| £0& C &, E||ECE

F = set of feasibly impl. systems | FoF CF, F||FCF

N = set of negligible functions F-NCN




Efficient, infeasible, negligible

We
Note: The usual poly-time notions (i.e., nO(l))

are of course composable, but so are many other
notions, e.g. n@(0glogn) o ,O(vIogloglogn)

£ = set of efficiently impl. systems.| £0& C &, E||ECE
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N = set of negligible functions F-NCN
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X1, Xo, ... Y1, Yo, ...

—»S—»

Description of S: figure, pseudo-code, text, ...
What kind of mathematical object is the behavior of S?

Characterized by: plszi fort =1,2,...

(Where X' = (X1,...,X;))
This abstraction is called a random system [Mau02].

Equivalence of systems: S = T if same behavior
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X1, Xo, ...

Characterized by: pis/z- A,

monotone binary output (MBO)

I, l ..............

D |=—

X

EEREE o

i ™ game won

r
_ AL Ag,

Y1, Yo, ...

fore =1,2,...

Conditional equivalence: S| A=T & pls/i

—nl
|XiAi - pylez

Lemma [M02]: S|A=T = A(S,T) < optimal prob. of
provoking the MBO non-adaptively in S (same # of queries).
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PRP-PRF switching lemma:

\\ | //collision detector

‘ —
] A]_, A2,

Xl,XZ, e, TP R Y]_, Y2,

X1, %5, ..—= P =Yy, V2, ..

Characterized hv: | RIA=P = AL(R,P) < (132_”

C

Ler

Similarly simple proof of CBC-MAC security:

(CBCRF)|A=RO = A(CBCRF,RO) < i¢%27"

ProvoKing the MBO non-adapuvely IN S (Same #£ of queries).
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Abstract Cryptography (with Renato Renner)

Goals:

e capture the constructive security paradigm at high(est)
abstraction level

e define strongest possible reduction between resources

e see other frameworks as special cases
— universal composabillity (UC) by Canetti
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04]

e capture scenarios that could previously not be modeled.
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| 2l5)5[3] T 1]/
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Complete local relations ~
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ORI @R

'73,32041R — a17352R
Resource set P for interface set Z = {1, 2, 3,4}, oper. ||

Converter set 2_, with operation o

Algebraic laws:
o a'Re®d foralRe P, ac>, iecl
e o'fIR=pIa'R foralli £ j
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R ETS <= 30VPCI: TpR= Jﬁs
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(7'('1 o S
R2T g e |71 N 902 }:>7T17T2 ~ Soo01S X S
7T2%0‘1$
%0'180'2

Special cace R = channel (neutral element e 7. R — 7.)
| Note: Isomorphism is the precisest possible relation X

bq between resources, but as such is completely rigid.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

Corollary: A delayed communication channel cannot be
realized (from a communication channel).
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Abstraction by Sets of Resources

Abstraction of a concept corresponds to a set!

Consider sets /K and S of resources.

Of special interest: Resources specified by (for each party)
e a guaranteed action space
e a possible action space

Definition: & is an abstraction of /X via 7

RLC"™S <= VReR ISeS: R="S

Theorem: /R L™ S is a universally composable reduction.
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The reduction

R 25 s

IS called sequentially composable if

L. R-% s As 517 2o R T

It Is called universally composable if in addition:
2. R 94 R

Te
3. R % s = RIT 2 g7
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Example: Encryption

" KEY n dec

I $ |:

‘A B

r< it
e ~E______" l

iy AUT B .

Theorem: An unleakable (uncoercible) secure
communication channel cannot be realized from an
authenticated channel and a secret key.
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Features of Abstract Cryptography

e sStrongest notion of reduction

(iIsomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett

— reactive simulatabllity by
— Indifferentiability [MRHO4]

Pfitizmann/Walidner/Backes

Let's try to identify the
straction of what we do

right level of ab-
In cryptography.
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e NO central adversary — local simulators (see [AsV08])

e (eneral notion of interfaces:

consistency domains



