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Abstraction: eliminate irrelevant details from consideration

Examples: group, field, vector space, relation, graph, ....

Goals of abstraction:

• simpler definitions
• generality of results
• simpler proofs
• elegance
• didactic suitability
• understanding

Goals of this talk:

• Introduce layers of abstraction in cryptography.

• Examples of abstract definitions and proofs.

• Announce a new security framework
“abstract cryptography” (with Renato Renner).
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Perfect secrecy (Shannon): C and M statist. independent.
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Constructive cryptography

Reduction concept:

real system R
protocol π−→ ideal system S

Resource S is constructed from (reduced to) R by protocol π

Example: Alice-Bob-Eve setting π = (π1, π2)

R π−→ S :⇔ ∃σ : π1
A π2

B R ≈ σE S

and

π1
A π2

B ⊥E R ≈ ⊥E S

Composability of a reduction:

R
α−→ S ∧ S

β−→ T ⇒ R
α◦β−→ T
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1. Reductions def. of (universal) composability

2. Abstract resources isomorphism

3. Abstract systems distinguisher, hybrid argument,
secure reduction, compos. proof

4. Discrete systems games, equivalence,
indistinguishability proofs

5. System implem. complexity, efficiency notion

6. Physical models timing, power, side-channels
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D CBC AES ≈ D RO

To show: ∆E(CBCAES, RO) ≈ 0

∆E(CBCAES, RO) ≤ ∆E(CBCAES, CBCRF)+∆E(CBCRF, RO)

∆E(CBCAES, CBCRF) = ∆ECBC(AES, RF) ≤ ∆E(AES, RF)

∆(CBCRF, RO) ≤ 1
2`22−n [BKR94,...] [4]

Note: Many security proofs can be phrased

at this level of abstraction and become quite

simple or even trivial.
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We need notions for

• the complexity of system implementation
• what is efficient (for the good guys)
• what is infeasible (for the bad guys)
• what is negligible

E = set of efficiently impl. systems.

F = set of feasibly impl. systems (E ⊆ F )

N = set of negligible functions

E ◦ E ⊆ E , E||E ⊆ E

F ◦ F ⊆ F , F||F ⊆ F

F · N ⊆ N

Note: The usual poly-time notions (i.e., nO(1))

are of course composable, but so are many other

notions, e.g. nO(log logn) or nO(
√

log log logn).
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X  , X  , ...1 2
S

21Y , Y  , ...

Description of S: figure, pseudo-code, text, ...

What kind of mathematical object is the behavior of S?

(where Xi = (X1, . . . , Xi))

This abstraction is called a random system [Mau02].

Characterized by: pS
Y i|Xi for i = 1,2, . . .

Equivalence of systems: S ≡ T if same behavior
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Characterized by: pS
Y iAi|Xi for i = 1,2, . . .

Conditional equivalence: S|A ≡ T :⇔ pS
Y i|XiAi

= pT
Y i|Xi

Lemma [M02]: S|A ≡ T ⇒ ∆(S, T) ≤ optimal prob. of
provoking the MBO non-adaptively in S (same # of queries).

R|A ≡ P ⇒ ∆k(R, P) ≤
(
k
k

)
2−n

Similarly simple proof of CBC-MAC security:

(CBCRF)|A ≡ RO ⇒ ∆(CBCRF, RO) ≤ 1
2`22−n
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Goals:

• capture the constructive security paradigm at high(est)
abstraction level

• define strongest possible reduction between resources

• see other frameworks as special cases
– universal composability (UC) by Canetti
– reactive simulatability by Pfitzmann/Waidner/Backes
– indifferentiability [MRH04]

• capture scenarios that could previously not be modeled.
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R
2

3

4

1 γ

β

α R
2

3

4

1 γ

β

α

γ3β2α1R = α1γ3β2R

Resource set Φ for interface set I = {1,2,3,4}, oper. ||

Converter set Σ, with operation ◦

Algebraic laws:

• αiR ∈Φ for all R ∈Φ, α ∈Σ, i ∈ I
• αiβjR ≡ βjαiR for all i 6= j
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R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be realized from a communication channel.

Corollary [CF01]: Commitment cannot be realized (from a
communication channel).

Corollary: A delayed communication channel cannot be
realized (from a communication channel).

 ⇒ π1π2 ≈ Sσ2σ1S ≈ S

Note: Isomorphism is the precisest possible relation

between resources, but as such is completely rigid.
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Abstraction by Sets of Resources

Abstraction of a concept corresponds to a set!

Consider setsR and S of resources.

Of special interest: Resources specified by (for each party)
• a guaranteed action space
• a possible action space

Definition: S is an abstraction of R via π:

R vπ S :⇐⇒ ∀R∈R ∃S∈S : R ∼=π S

Theorem: R vπ S is a universally composable reduction.
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Reductions [1]

The reduction

R
α−→ S

is called sequentially composable if

1. R
α−→ S ∧ S

β−→ T ⇒ R
α◦β−→ T

It is called universally composable if in addition:

2. R
id−→ R

3. R
α−→ S ⇒ R||T

α|id−→ S||T
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Example: Encryption

$
KEY

sim_A

|.|
SEC

dec

D
A B

E
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A

E
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$
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Theorem: An unleakable (uncoercible) secure
communication channel cannot be realized from an
authenticated channel and a secret key.
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Features of Abstract Cryptography

• strongest notion of reduction (isomorphism)

• existing frameworks can be captured as special cases
– universal composability (UC) by Canetti
– reactive simulatability by Pfitzmann/Waidner/Backes
– indifferentiability [MRH04]

• communication model, complexity/efficiency notions, ....
treated at lower abstraction levels (not hard-wired)

• reductions among resources, all resources captured

• sets of resources: guaranteed/possible action spaces

• no central adversary → local simulators (see [AsV08])

• general notion of interfaces: consistency domains

Let’s try to identify the right level of ab-

straction of what we do in cryptography.


