Abstraction in Cryptography

Uell Maurer

ETH Zurich

CRYPTO 2009, August 19, 2009

Abstraction in Cryptography

“I can only understand simple things.”
JAMES MASSEY

Uell Maurer

ETH Zurich

CRYPTO 2009, August 19, 2009

Abstraction

Abstraction: eliminate irrelevant details from consideration
Examples: group, field, vector space, relation, graph,

Goals of abstraction:

simpler definitions
generality of results
simpler proofs
elegance

didactic suitability

Abstraction

Abstraction: eliminate irrelevant details from consideration
Examples: group, field, vector space, relation, graph,

Goals of abstraction:

simpler definitions
generality of results
simpler proofs
elegance

didactic suitability
understanding

Abstraction

Abstraction: eliminate irrelevant details from consideration

Examples: group, field, vector space, relation, graph,

Goals of abstraction:

Goals of this talk:
e Introduce layers of abstraction in cryptography.
e Examples of abstract definitions and proofs.

e Announce a new security framework
*abstract cryptography” (with Renato Renner).

Motivating example: One-time pad

addition modulo 2

olaintext ciphertext G, C,,

plaintext
M1,M2,". »@ . M1,M2,..l

key K,K,.. key K,K,..

Motivating example: One-time pad

addition modulo 2

ciphertext G, C,, ...

plaintext plaintext
M1,M2,." »Q . M1,M2,..l

key K,K,.. key K,K,..

Perfect secrecy (Shannon). C and M statist. independent.

One-time pad In terms of systems

One-time pad In terms of systems

AUT

One-time pad In terms of systems

; $
‘A B
- i
L. —E______!
A AUT 5
|t
'e

KEY||AUT

One-time pad In terms of systems

; $
‘A B
- i
L. —E______!
A AUT 5
|t
'e

KEY||AUT

One-time pad In terms of systems

otp-enc A (KEY[|JAUT)

One-time pad In terms of systems

otp-dec B otp-enc A (KEY||AUT)

One-time pad In terms of systems

otp-dec B otp-enc A (KEY||AUT)

One-time pad In terms of systems

otp-dec B otp-enc A (KEY ||AUT) SEC

One-time pad In terms of systems

otp-dec B otp-enc A (KEY ||AUT) simE SEC

One-time pad In terms of systems

otp-dec B otp-enc A (KEY||AUT) — sim E SEC

One-time pad In terms of systems

otp-dec B otp-enc A (KEY||AUT) — sim E SEC

One-time pad In terms of systems

otp-dec B otp-enc A (KEY||AUT) — sim E SEC

. . otp
written as a reduction: (KEY||AUT) > SEC

Symmetric encryption

enc :: KEY 3 dec
A B
I|< >|
i . ~E______M i
ap AUT gl
»{E [=t D]
Il'_-_-_-_-_-_-i:-_-_-_-_-_-_-_-_iE-_-_-_-_-_-_‘_I'_-_-_-_-_-_-_II
| -
N ::
_____ SEC Nl
$
Sim Yy _

decB enc® (KEY||AUT) 2 simE SEC

: . Sym
written as a reduction: (KEY||AUT) > SEC

Constructive cryptography

Reduction concept:

protocol 7
real system R > Ideal system S

Resource S is constructed from (reduced to) R by protocol 7T

Constructive cryptography

Reduction concept:

protocol 7
real system R > Ideal system S

Resource S is constructed from (reduced to) R by protocol 7T

Example: Alice-Bob-Eve setting m = (771, 7o)

Constructive cryptography

Reduction concept:

protocol 7
real system R > iIdeal system S

Resource S is constructed from (reduced to) R by protocol 7T

Example: Alice-Bob-Eve setting m = (771, 7o)

R — S o Jo: m{mPR =~ oS

Constructive cryptography

Reduction concept:

protocol 7
real system R > iIdeal system S

Resource S is constructed from (reduced to) R by protocol 7T

Example: Alice-Bob-Eve setting m = (771, 7o)

R — S & Jo: {75 R =~ oF S
and

{8 1FR ~ IF S

Constructive cryptography

Reduction concept:

protocol 7
real system R > iIdeal system S

r{ Composability of a reduction:
5 5

R 2535 A S 257 =R 7T

Example: Alice-Bob-Eve setting m = (771, 7o)

R — S & Jo: {75 R =~ oF S
and

{8 1FR ~ IF S

Levels of abstraction in cryptography

4

possible name

concepts treated at this level

def. of (universal) composability
Isomorphism

distinguisher, hybrid argument,
secure reduction, compos. proof

games, equivalence,
iIndistinguishability proofs

complexity, efficiency notion

timing, power, side-channels

Levels of abstraction in cryptography

possible name

concepts treated at this level

Reductions

Abstract resources

def. of (universal) composability

Isomorphism

w [N e 4

Abstract systems

distinguisher, hybrid argument,
secure reduction, compos. proof

Discrete systems

System implem.

Physical models

games, equivalence,
iIndistinguishability proofs

complexity, efficiency notion

timing, power, side-channels

Example: CBC-MAC

3 (4)]

block
former

T

output
selector

Example: CBC-MAC

3 (4)]

block
former

output
selector

T

—P

random
oracle

A . 4

computationally
indistinguishable

Example: CBC-MAC

3 (4)]

block
former

T

output
selector

Example: CBC-MAC

block
former

output
selector

T

CBC

AES

Example: CBC-MAC

block
former

output
selector

T

Notation:

CBC

== AES

CBC (AES)

Example: CBC-MAC

block
former

output
selector

T

Notation:

CBC [==| AES

CBCoAES

Example: CBC-MAC

block
former

output
selector

T

Notation:

CBC [==

AES

CBC AES

Example: CBC-MAC

block output

™ former "tAE‘S_‘[’ selector| ™| - CBC |==| AES

D |«

CBC AES

Yo/l

Example: CBC-MAC

block output

1
™ former "tAE‘S_‘[’ selector| ™| OL— D t«=|CBC |=={ AES

D |«

D GBC AES

Yo/l

Security proof for CBC-MAC [3]

<=1 CBC == AES == RO

CBC AES

2
3

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

D GBC AES

2

D RO

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DBCAS ~ DRO

To show: AD(CBCAES,RO) ~ 0

Security proof for CBC-MAC

0/1 0/1
- -

D = CBC |- AES

DCBCAS =~ DRO

To show: AD(CBCAES,RO) ~ 0

Note: AD(S,T) = |DS,DT| (stat. distance of binary r.v.)

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DBCAS ~ DRO

To show: AD(CBCAES,RO) ~ 0

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DBCAS ~ DRO

To show: Ag(CBCAES,RO) ~ 0

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DMBCAS ~ DRO

To show: Ag(CBCAES,RO) ~ 0

A5 (S, T) 1= maxg,_ e AP (S, T)

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DBCAS ~ DRO

To show: Ag(CBCAES,RO) ~ 0

Security proof for CBC-MAC

0/1 0/1
- -

D = CBC |- AES

RO

DCBCAS =~ DRO

To show: Ag(CBCAES,RO) ~ 0

Lemma: AP and A are pseudo-metrics:
e /N(S,5)=0
o A°(R,T) < A (R,S)+A5(S,T)

Security proof for CBC-MAC

0/1 0/1
- -

D = CBC |- AES

DCBC ASS ~ DRO
To show: Ag(CBCAES,RO) ~ 0

NS (BCAES, RO) < AS (CBCAES, CBCRF) + AS (CRCRE, RO)

Lemma: AP and A are pseudo-metrics:
e /(S 5)=0
o A°(R,T) < A (R,S)+A5(S,T)

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DCBCASS ~ DRO
To show: Ag(CBCAES,RO) ~ 0

NS (BCAES, RO) < AS (CBCAES, CBCRF) + AS (CRCRE, RO)

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DCBC ASS ~ DRO
To show: Ag(CBCAES,RO) ~ 0

NS (BCAES, RO) < AS (CBCAES, CBCRF) + AS (CRCRE, RO)

Absorption lemma AD(CS,CT) = ADC(S,T)
Proof: DCS = D(CS) = (DC)S

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DCBC AES ~ D RO
To show: Ag(CBCAES,RO) ~ 0
NS (BCAES, RO) < AS (CBCAES, CBCRF) + AS (CRCRE, RO)

A (omcass. o) = ASOC (ass . Be)

Absorption lemma AD(CS,CT) = ADC(S,T)
Proof: DCS = D(CS) = (DC)S

Security proof for CBC-MAC [3]

pa D = CBC |- AES ol D == RO

DCBC AES ~ D RO
To show: Ag(CBCAES,RO) ~ 0
NS (BCAES, RO) < AS (CBCAES, CBCRF) + AS (CRCRE, RO)

A (oS, acre) = ASOBC (s, o)

Non-expansion lemma:
pccD = APcs cm) < AP(s,1)

Security proof for CBC-MAC [3]

pa D = CBC |- AES ol D == RO

DMBCAS ~ DRO

To show: Ag(CBCAES,RO) ~ 0

NS (BCAES, RO) < AS (CBCAES, CBCRY| ECBC C € |, RO)

A (oS, acre) = ASOBC (s, o)

Non-expansion lemma:
pccD = APcs cm) < AP(s,1)

Security proof for CBC-MAC [3]

pa D = CBC |- AES ol D == RO

DMBCAS ~ DRO

To show: Ag(CBCAES,RO) ~ 0

NS (BCAES, RO) < AS (CBCAES, CBCRY| ECBC C € |, RO)

A (moaes, aorr) = AT (aes) < AC (AES, RF)

Non-expansion lemma:
pccD = APcs cm) < AP(s,1)

Security proof for CBC-MAC [3]

0/1 0/1
- -

D = CBC |- AES

DCBC AES ~ DRO
To show: Ag(CBCAES,RO) ~ 0
NS (BCAES, RO) < AS (CBCAES, CBCRF) + AS (CRCRE, RO)

A (moaes, aorr) = AT (aes) < AC (AES, RF)

Security proof for CBC-MAC [3,4]

0/1 0/1
- -

D = CBC |- AES

DCBC AES ~ DRO
To show: Ag(CBCAES,RO) ~ 0
NS (BCAES, RO) < AS (CBCAES, CBCRF) + AS (CRCRE, RO)

A (moaes, aorr) = AT (aes) < AC (AES, RF)

A(CBCRF,RO) < 3£227" [BKR94,..] [4]

Security proof for CBC-MAC [3,4]

pa D = CBC |- AES ol D == RO

Note: Many security proofs can be phrased

at this level of abstraction and become quite

T¢ . .
simple or even trivial.

N (CBCAES RO) < AP (ORCASS [(BCR) F ZF (CRCR, RO)

A (moaes, aorr) = AT (aes) < AC (AES, RF)

A(CBCRF,RO) < 3£227" [BKR94,..] [4]

Levels of abstraction in cryptography

4

possible name

concepts treated at this level

def. of (universal) composability
Isomorphism

distinguisher, hybrid argument,
secure reduction, compos. proof

games, equivalence,
iIndistinguishability proofs

complexity, efficiency notion

timing, power, side-channels

Levels of abstraction in cryptography

possible name

concepts treated at this level

S O T

Reductions
Abstract resources

Abstract systems

def. of (universal) composability
Isomorphism

distinguisher, hybrid argument,
secure reduction, compos. proof

4. | Discrete systems games, equivalence,
iIndistinguishability proofs

5. | System implem. complexity, efficiency notion

6. | Physical models timing, power, side-channels

Efficient, infeasible, negligible

We need notions for

the complexity of system implementation
what Is efficient (for the good guys)

what Is infeasible (for the bad guys)
what is negligible

Efficient, infeasible, negligible

We need notions for

the complexity of system implementation
what Is efficient (for the good guys)

what Is infeasible (for the bad guys)
what is negligible

E = set of efficiently impl. systems.

Efficient, infeasible, negligible

We need notions for

the complexity of system implementation
what Is efficient (for the good guys)

what Is infeasible (for the bad guys)
what is negligible

£ = set of efficiently impl. systems.| £0& C &, E||ECE

Efficient, infeasible, negligible

We need notions for

what is negligible

the complexity of system implementation
what Is efficient (for the good guys)
what Is infeasible (for the bad guys)

E = set of efficiently impl. systems.

Eof& C &,

E|IECE

F = set of feasibly impl. systems (£ C F)

Efficient, infeasible, negligible

We need notions for

what is negligible

E = set of efficiently impl. systems.

the complexity of system implementation
what Is efficient (for the good guys)
what Is infeasible (for the bad guys)

E0ECE, EllECE

JF = set of feasibly impl. systems

FoFCF, Fl|FCF

Efficient, infeasible, negligible

We need notions for

the complexity of system implementation
what Is efficient (for the good guys)

what Is infeasible (for the bad guys)
what is negligible

£ = set of efficiently impl. systems.| £0& C &, E||ECE

F = set of feasibly impl. systems | FoF CF, F||FCF

No reasontoset & = F' !

Efficient, infeasible, negligible

We need

w
w
w

notions for

the complexity of system implementation

nat Is efficient (for the good guys)
nat Is infeasible (for the bad guys)

nat Is negligible

£ = set of efficiently impl. systems.| £0& C &, E||ECE

F = set of feasibly impl. systems{ FoF CF, F||FCF

N = set of negligible functions

Efficient, infeasible, negligible

We need

w
w
w

notions for

the complexity of system implementation

nat Is efficient (for the good guys)
nat Is infeasible (for the bad guys)

nat Is negligible

£ = set of efficiently impl. systems.| £0& C &, E||ECE

F = set of feasibly impl. systems | FoF CF, F||FCF

N = set of negligible functions F-NCN

Efficient, infeasible, negligible

We
Note: The usual poly-time notions (i.e., nO(l))

are of course composable, but so are many other
notions, e.g. n@(0glogn) o ,O(vIogloglogn)

£ = set of efficiently impl. systems.| £0& C &, E||ECE

F = set of feasibly impl. systems | FoF CF, F||FCF

N = set of negligible functions F-NCN

Levels of abstraction in cryptography

4

possible name

concepts treated at this level

def. of (universal) composability
Isomorphism

distinguisher, hybrid argument,
secure reduction, compos. proof

games, equivalence,
iIndistinguishability proofs

complexity, efficiency notion

timing, power, side-channels

Levels of abstraction in cryptography

possible name

concepts treated at this level

S O T

Reductions
Abstract resources

Abstract systems

def. of (universal) composability
Isomorphism

distinguisher, hybrid argument,
secure reduction, compos. proof

4. | Discrete systems games, equivalence,
iIndistinguishability proofs

5. | System implem. complexity, efficiency notion

6. | Physical models timing, power, side-channels

Discrete systems [4]

X1, Xo, ... - Y1, Yo, ...

Discrete systems [4]

X1, Xo, ... Y1, Yo, ...

—»S ——

Description of S: figure, pseudo-code, text, ...

Discrete systems

X1, Xo, ... Y1, Yo, ...

—»S —

Description of S: figure, pseudo-code, text, ...
What kind of mathematical object is the behavior of S?

Discrete systems

X1, Xo, ... Y1, Yo, ...

—»S—»

Description of S: figure, pseudo-code, text, ...
What kind of mathematical object is the behavior of S?

Characterized by: plszi fort =1,2,...

(where X' = (X1,...,X;))
This abstraction is called a random system [Mau02].

Discrete systems

X1, Xo, ... Y1, Yo, ...

—»S—»

Description of S: figure, pseudo-code, text, ...
What kind of mathematical object is the behavior of S?

Characterized by: plszi fort =1,2,...

(Where X' = (X1,...,X;))
This abstraction is called a random system [Mau02].

Equivalence of systems: S = T if same behavior

Games [4]

X1, X0, .. = S Y, Yo, ..

Games [4]

monotone binary output (MBO)
! l

' AL A,,
X1, X9, .. == S Y, Yo, ...

Games

(4]

X1, Xo, ...

monotone binary output (MBO)
! l

EEREE o

\}'\// i ™ game won
v

A A,

—= ST Yy Yo, ...

Games

4]

X1, Xo, ...

Characterized by:

monotone binary output (MBO)
/ 1 ,

-

i ™ game won

' AL Ag,
™Y1, Y2, ...

S
Pyia, xi

fori =1,2,...

Games [4]

monotone binary output (MBO)
I,' 1 ,

EEREE o

\}'\// i ™ game won
v

A A,

X1, X0, .. ™ S Y1, Yo, ...

D |=—

Characterized by: p%A fort=1,2,...

i X

Games

monotone binary output (MBO)

P
.0 L
\\}'\/1 i ™ game won
' AL A,
X1, Xo, . ™ S Y1, Yo, ...
D |=—
: RS L
Characterized by: pY"?AZ-|X73 fort=1,2,...

Conditional equivalence: SJA=T & pls/quA_ = p;l;z-|X7;

Games

X1, Xo, ...

Characterized by: pis/z- A,

monotone binary output (MBO)

I, l

D |=—

X

EEREE o

i ™ game won

r
_ AL Ag,

Y1, Yo, ...

fore =1,2,...

Conditional equivalence: S| A=T & pls/i

—nl
|XiAi - pylez

Lemma [M02]: S|A=T = A(S,T) < optimal prob. of
provoking the MBO non-adaptively in S (same # of queries).

Games

PRP-PRF switching lemma:

X1, Xo, ... — R — Y1, Yo, ...

X1, %5, ..—= P =Yy, V2, ..

Characterized by: pis/iA_ fort=1,2,...

X

Conditional equivalence: SJA=T & pls/quA_ = p%X?;

Lemma [M02]: S|A=T = A(S,T) < optimal prob. of
provoking the MBO non-adaptively in S (same # of queries).

Games

PRP-PRF switching lemma:

\\ | //collision detector

‘ —
] A]_, A2,

X11X2’ e, TP R Y]_, Y2,

X1, %5, ..—= P =Yy, V2, ..

Characterized by: pis/z- A,

X fore =1,2,...

Conditional equivalence: SJA=T & pls/quA_ = p%X?;

Lemma [M02]: S|A=T = A(S,T) < optimal prob. of
provoking the MBO non-adaptively in S (same # of queries).

Games

PRP-PRF switching lemma:

\\ | //collision detector

‘ —
] A]_, A2,

X11X2’ e, TP R Y]_, Y2,

X1, %5, ..—= P =Yy, V2, ..

Characterized by: | RIA=P = Ai(R,P) < (’,2)2—“

Conditional equivalence: SJA=T & pls/quA_ = p%X?;

Lemma [M02]: S|A=T = A(S,T) < optimal prob. of
provoking the MBO non-adaptively in S (same # of queries).

Games

PRP-PRF switching lemma:

\\ | //collision detector

‘ —
] A]_, A2,

Xl,XZ, e, TP R Y]_, Y2,

X1, %5, ..—= P =Yy, V2, ..

Characterized hv: | RIA=P = AL(R,P) < (132_”

C

Ler

Similarly simple proof of CBC-MAC security:

(CBCRF)|A=RO = A(CBCRF,RO) < i¢%27"

ProvoKing the MBO non-adapuvely IN S (Same #£ of queries).

Levels of abstraction in cryptography

4

possible name

concepts treated at this level

def. of (universal) composability
Isomorphism

distinguisher, hybrid argument,
secure reduction, compos. proof

games, equivalence,
iIndistinguishability proofs

complexity, efficiency notion

timing, power, side-channels

Levels of abstraction in cryptography

possible name

concepts treated at this level

w N4

Reductions
Abstract resources

Abstract systems

def. of (universal) composability
Isomorphism

distinguisher, hybrid argument,
secure reduction, compos. proof

Discrete systems

System implem.

Physical models

games, equivalence,
iIndistinguishability proofs

complexity, efficiency notion

timing, power, side-channels

Abstract Cryptography (with Renato Renner) [1-3]

Abstract Cryptography (with Renato Renner) [1-3]

Goals:

e capture the constructive security paradigm at high(est)
abstraction level

Abstract Cryptography (with Renato Renner)

Goals:

e capture the constructive security paradigm at high(est)
abstraction level

e define strongest possible reduction between resources

Abstract Cryptography (with Renato Renner)

Goals:

e capture the constructive security paradigm at high(est)
abstraction level

e define strongest possible reduction between resources

e see other frameworks as special cases
— universal composabillity (UC) by Canetti
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04]

Abstract Cryptography (with Renato Renner)

Goals:

e capture the constructive security paradigm at high(est)
abstraction level

e define strongest possible reduction between resources

e see other frameworks as special cases
— universal composabillity (UC) by Canetti
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04]

e capture scenarios that could previously not be modeled.

Resources and iIsomorphisms

2]

Alice

1,2}

N =

U1] 00 [

w|~|w

payout

0| |NVw

Bob
{1,2,3}

Resources and isomorphisms [2]

. y/_—*\\

Alice 1 2 3 “‘ Bob
(1,2} 118]8|7 {1,2,3}
—®172 5|53 T

lpayout
a
1 2 3
{1,2} 15[78] | {1,2,3}
T2 3 73] T
lpayout

Resources and isomorphisms [2]

Alice Bob

1,2}

=
o100 |k

3 ‘\
AR {1,2,3}
31

1,2}

3 ‘\
8| {1,2,3}
31

=
W|Ol|-

Resources and iIsomorphisms

2]

Alice

1,2}

N =

U1] 00 [

w|~|w

payout

0| |NVw

Bob
{1,2,3}

Resources and isomorphisms [2]

Alice . 273 Bob
1.2y | 1/8|8]7]| {123
—®172 5|53 T

lpayout
a
1 2
{a,b,c} al 3| 5 {1,2}
™" b| 7|8 -
cl 3|5
payout

Resources and isomorphisms [2]

Alice . 27 . \“‘ Bob
{1,2} 1[8| 8| 7 {1,2,3}
‘r’"z 5/5[3] T 1]/
x lpayout
Y
[] L 2 |
{a,b,c} al 3| 5 {1,2}
—™" bl 7|8 -
cl| 3|5
payout

Resources and isomorphisms [2]

. r/_
Alice 1 2 3 “ Bob
{1,2} 148|871\ | {123}
‘r’"z 5503 T 11/
lpayout

Resources and isomorphisms [2]

. y/_
Alice 123} Bob
{1,2} 148|871\ | {123}
| 2l5)5[3] T 1]/
lpayout
Complete local relations ~

Abstract multi-party setting [3]

-
A
|oo

Abstract multi-party setting [3]

-
A
|oo

Abstract multi-party setting [3]

@}

Abstract multi-party setting [3]

-
A
|oo

Abstract multi-party setting [3]

34@7

-
A

Abstract multi-party setting [3]

@}

Abstract multi-party setting [3]

@}

Abstract multi-party setting [3]

OR}O-

'73,32041R

Abstract multi-party setting [3]

-
A
|o:>

OR}O-

'73,32041R R

Abstract multi-party setting [3]

-
A
|o:>

OR}O-

’73/62041R ,BZR

Abstract multi-party setting [3]

OR}O-

||—l
A

'73,32041R 7362R

Abstract multi-party setting [3]

Rl ORI

Abstract multi-party setting [3]

Rl ORI

Abstract multi-party setting [3]

Rl ORI

’73/32041R — a17352R

Resource set P for interface set Z = {1, 2, 3,4}, oper. ||

Abstract multi-party setting [3]

Rl ORI

'73,32041R — a17352R
Resource set P for interface set Z = {1, 2, 3,4}, oper. ||

Converter set 2_, with operation o

Abstract multi-party setting

ORI @R

'73,32041R — a17352R
Resource set P for interface set Z = {1, 2, 3,4}, oper. ||

Converter set 2_, with operation o

Algebraic laws:
o a'Re®d foralRe P, ac>, iecl
e o'fIR=pIa'R foralli £ j

Resource isomorphisms [3]

-
A
|oo
-
vp
|oo

Resource isomorphisms [3]

Resource isomorphisms [3]

Resource isomorphisms [3]

&
0 A

Resource isomorphisms [3]

Resource isomorphisms [3]

Resource isomorphisms [3]

Resource isomorphisms [3]

Resource isomorphisms [3]

-
A
|oo
-
vp
|oo

Resource isomorphisms [3]

?
& %

4
R3_ 83_

2 2

-
-

Resource isomorphisms [3]

A
1]
-
vp
|oo

Resource isomorphisms [3]

-
A
|oo
-
vp
|oo

Resource isomorphisms [3]

-
A
|oo
-
vp
|oo

Resource isomorphisms [3]

;IUH
lw
11
5
)
%

Resource isomorphisms [3]

@S ey

-
A
|oo
1]

Definition: R is isomorphic to S via 77, denoted R &" S, if

Resource isomorphisms [3]

4@_1

A
|oo
1]
-
vp

Definition: R is isomorphic to S via 77, denoted R &" S, if

Resource isomorphisms [3]

@S ey

-
A
|oo
1]

Definition: R is isomorphic to S via 77, denoted R &" S, if

Resource isomorphisms [3]

-ORIE-

1]
-
vp
|oo

Definition: R is isomorphic to S via 77, denoted R &" S, if

Resource isomorphisms [3]

-ORIE-

1]
-
vp
|oo

Definition: R is isomorphic to S via 77, denoted R &" S, if

R ETS <= 30VPCI: TpR= Jﬁs

Example: 2-party resources

2]

R2T S e |

"

1
1

?7‘(‘2 ~ S
R ~ 80'2
?7‘(‘2 ~ 0‘18

R ~ 0'150'2

Example: 2-party resources

2]

R2T S e |

"

1
1

Qﬂ'Q ~ S
R ~ SJQ
?’7‘(‘2 ~ 0‘18

R ~ 01502

» < abstract UC

Example: 2-party resources

2]

"

R2T S e |

\

1
1

QTFQ ~ S
R ~ SJQ
?’7‘(‘2 ~ 0‘18

R ~ 01502

Special case: R = channel (neutral element, e.g. 1R = 1)

Example: 2-party resources [2]

(7'('1 o S
~ T ~ So
R g e |l -

o 0'18
%0'180'2

Special case: R = channel (neutral element, e.g. 1R = 1)

Example: 2-party resources [2]

(7'('1 o S
R2T g x| 71 N 902 }$7T17T2%SO'20'18%S
7'('2%0‘18
%0'180'2

Special case: R = channel (neutral element, e.g. 1R = 1)

Example: 2-party resources

(7'('1 o S
R2T g e |71 N 902 }:>7T17T2 ~ Soo01S X S
7T2%0‘1$
%0'180'2

Special case: R = channel (neutral element, e.g. 1R = 1)

Theorem: A resource S such that SaS % S for all o cannot
be realized from a communication channel.

Example: 2-party resources

(7'('1 o S
R2T g e |71 N 902 }:>7T17T2 ~ Soo01S X S
7T2%O‘1$
%0'180'2

Special case: R = channel (neutral element, e.g. 1R = 1)

Theorem: A resource S such that SaS % S for all o cannot
be realized from a communication channel.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

Example: 2-party resources

R Qe

p

]
]

2

2

I,
Y
Y
Y
I
Y
Y
Y

} = Mo & So0201S & S

Special case: R = channel (neutral element, e.g. 1R = 1)

Theorem: A resource S such that SaS % S for all o cannot
be realized from a communication channel.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

C

__>

_>

Example: 2-party resources

R Qe

p

]
]

2

2

I,
Y
Y
Y
I
Y
Y
Y

} = Mo & So0201S & S

Special case: R = channel (neutral element, e.g. 1R = 1)

Theorem: A resource S such that SaS % S for all o cannot
be realized from a communication channel.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

r —
|

_>

Example: 2-party resources

2]

R Qe

p

]
1

2

2

I,
Y
Y
Y
I
Y
Y
Y

} = Mo & So0201S & S

Special case: R = channel (neutral element, e.g. 1R = 1)

Theorem: A resource S such that SaS % S for all o cannot
be realized from a communication channel.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

r —
|

_>

O

Example: 2-party resources

2]

R Qe

p

]
1

o S
~ So»

o 0‘18
~ 0'180'2

} = Mo & So0201S & S

Special case: R = channel (neutral element, e.g. 1R = 1)

Theorem: A resource S such that SaS % S for all o cannot
be realized from a communication channel.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

Example: 2-party resources

(7'('1 o S
R2T g e |71 N 902 }:>7T17T2 ~ Soo01S X S
7'('2%0‘18
%0'180'2

Special case: R = channel (neutral element, e.g. 1R = 1)

Theorem: A resource S such that SaS % S for all o cannot
be realized from a communication channel.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

Corollary: A delayed communication channel cannot be
realized (from a communication channel).

Example: 2-party resources

(7'('1 o S
R2T g e |71 N 902 }:>7T17T2 ~ Soo01S X S
7T2%0‘1$
%0'180'2

Special cace R = channel (neutral element e 7. R — 7.)
| Note: Isomorphism is the precisest possible relation X

bq between resources, but as such is completely rigid.

Corollary [CFO1]: Commitment cannot be realized (from a
communication channel).

Corollary: A delayed communication channel cannot be
realized (from a communication channel).

Abstraction by Sets of Resources

Abstraction of a concept corresponds to a set!

Abstraction by Sets of Resources

Abstraction of a concept corresponds to a set!

Consider sets /K and S of resources.

Abstraction by Sets of Resources

Abstraction of a concept corresponds to a set!

Consider sets /K and S of resources.

Of special interest: Resources specified by (for each party)
e a guaranteed action space
e a possible action space

Abstraction by Sets of Resources

Abstraction of a concept corresponds to a set!

Consider sets /K and S of resources.

Of special interest: Resources specified by (for each party)
e a guaranteed action space
e a possible action space

Definition: & is an abstraction of /X via 7

RLC"™S <= VReR ISeS: R="S

Abstraction by Sets of Resources

Abstraction of a concept corresponds to a set!

Consider sets /K and S of resources.

Of special interest: Resources specified by (for each party)
e a guaranteed action space
e a possible action space

Definition: & is an abstraction of /X via 7

RLC"™S <= VReR ISeS: R="S

Theorem: /R L™ S is a universally composable reduction.

Reductions [1]

The reduction

R 25 s

IS called sequentially composable if

L. R-% s As 517 2o R T

Reductions [1]

The reduction

R 25 s

IS called sequentially composable if

L. R-% s As 517 2o R T

It Is called universally composable if in addition:
2. R 94 R

Te
3. R % s = RIT 2 g7

Example: Encryption

'_éﬁc_:"'::"lié_("_$ ________ v dec
A B
| i
l oo —E _____L l
ny AUT gl
»{E ; = D|->
I TRNIR § -SRI Lo

Example: Encryption

" KEY n dec

I $ |:

‘A B

r< it
e ~E______" l

iy AUT B .

Example: Encryption

. KEY n dec
[$ |:
‘A B
- - |
o ~E______" l
‘A AUT B:

Example: Encryption

" KEY n dec

I $ |:

‘A B

r< it
e ~E______" l

iy AUT B .

Example: Encryption

. KEY n dec
[$ |:
‘A B
- - |
o ~E______" l
‘A AUT B:

Example: Encryption

" KEY n dec

I $ |:

‘A B

r< it
e ~E______" l

iy AUT B .

Theorem: An unleakable (uncoercible) secure
communication channel cannot be realized from an
authenticated channel and a secret key.

Features of Abstract Cryptography

Features of Abstract Cryptography

e strongest notion of reduction (iIsomorphism)

Features of Abstract Cryptography

e strongest notion of reduction (isomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHOA4]

Features of Abstract Cryptography

e strongest notion of reduction (isomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04

e communication model, complexity/efficiency notions,
treated at lower abstraction levels (not hard-wired)

Features of Abstract Cryptography

e strongest notion of reduction (isomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04

e communication model, complexity/efficiency notions,
treated at lower abstraction levels (not hard-wired)

e reductions among resources, all resources captured

Features of Abstract Cryptography

e strongest notion of reduction (isomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04

e communication model, complexity/efficiency notions,
treated at lower abstraction levels (not hard-wired)

e reductions among resources, all resources captured

e sets of resources: guaranteed/possible action spaces

Features of Abstract Cryptography

e strongest notion of reduction (isomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04

e communication model, complexity/efficiency notions,
treated at lower abstraction levels (not hard-wired)

e reductions among resources, all resources captured
e sets of resources: guaranteed/possible action spaces

e NO central adversary — local simulators (see [AsV08])

Features of Abstract Cryptography

e strongest notion of reduction (isomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett
— reactive simulatabllity by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04

e communication model, complexity/efficiency notions,
treated at lower abstraction levels (not hard-wired)

e reductions among resources, all resources captured
e sets of resources: guaranteed/possible action spaces
e NO central adversary — local simulators (see [AsV08])

e general notion of interfaces: consistency domains

Features of Abstract Cryptography

e sStrongest notion of reduction

(iIsomorphism)

e existing frameworks can be captured as special cases
— universal composability (UC) by Canett

— reactive simulatabllity by
— Indifferentiability [MRHO4]

Pfitizmann/Walidner/Backes

Let's try to identify the
straction of what we do

right level of ab-
In cryptography.

. YUl VUl TuuJJUul vouJ.,. HUMIMIILUU

Al PUQQIUI\; AWVLIVUI I QPMUUO

e NO central adversary — local simulators (see [AsV08])

e (eneral notion of interfaces:

consistency domains

