Abstraction in Cryptography

Ueli Maurer

ETH Zurich

CRYPTO 2009, August 19, 2009

Abstraction in Cryptography

"I can only understand simple things." JAMES MASSEY

Ueli Maurer

ETH Zurich

CRYPTO 2009, August 19, 2009

Abstraction: eliminate irrelevant details from consideration

Examples: group, field, vector space, relation, graph,

Goals of abstraction:

- simpler definitions
- generality of results
- simpler proofs
- elegance
- didactic suitability

Abstraction: eliminate irrelevant details from consideration

Examples: group, field, vector space, relation, graph,

Goals of abstraction:

- simpler definitions
- generality of results
- simpler proofs
- elegance
- didactic suitability
- understanding

Abstraction: eliminate irrelevant details from consideration

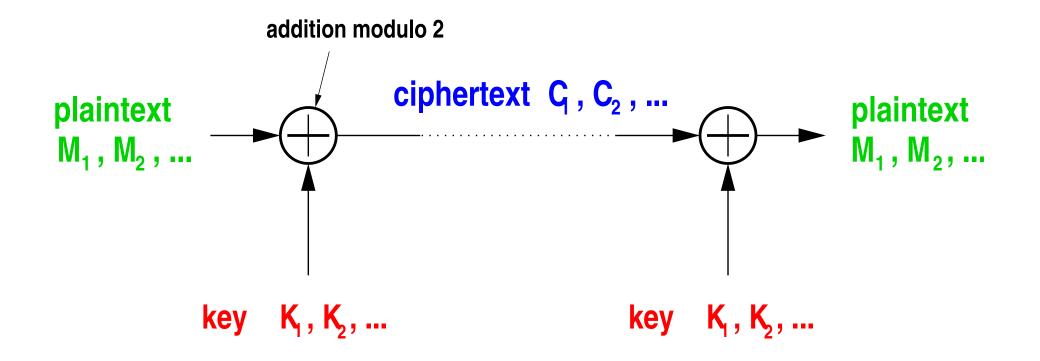
Examples: group, field, vector space, relation, graph,

Goals of abstraction:

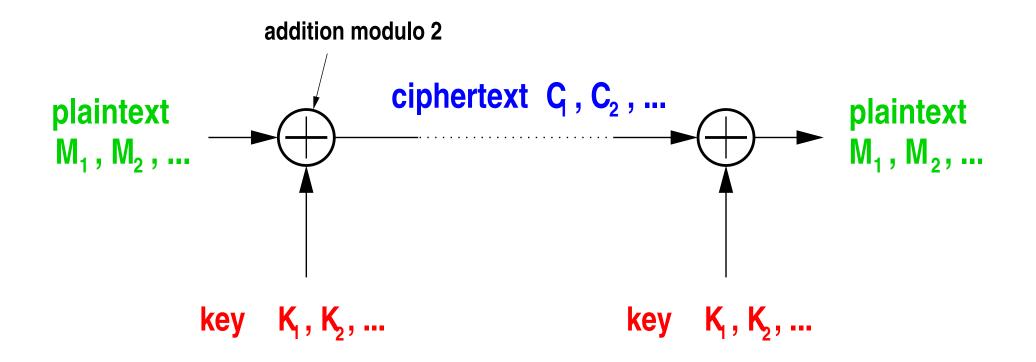
Goals of this talk:

- Introduce layers of abstraction in cryptography.
- Examples of abstract definitions and proofs.
- Announce a new security framework "abstract cryptography" (with Renato Renner).

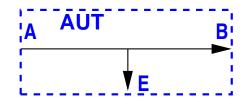
Motivating example: One-time pad

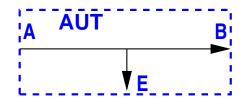


Motivating example: One-time pad

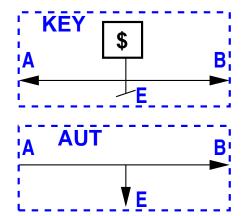


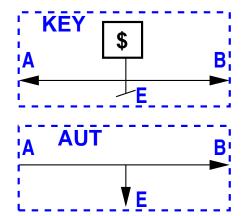
Perfect secrecy (Shannon): C and M statist. independent.

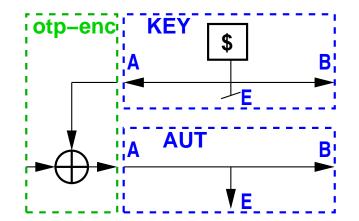


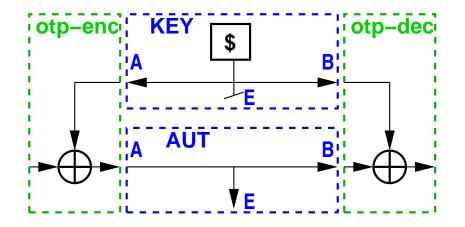


AUT

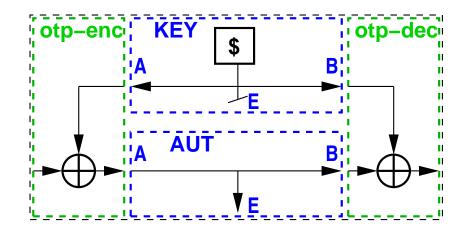




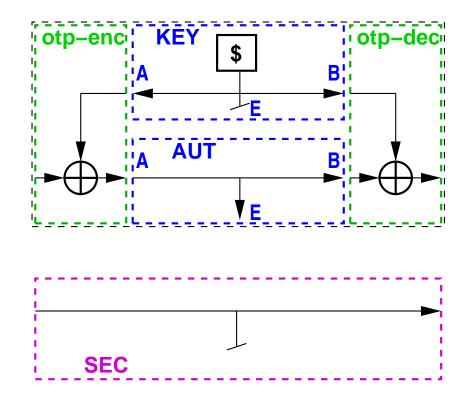




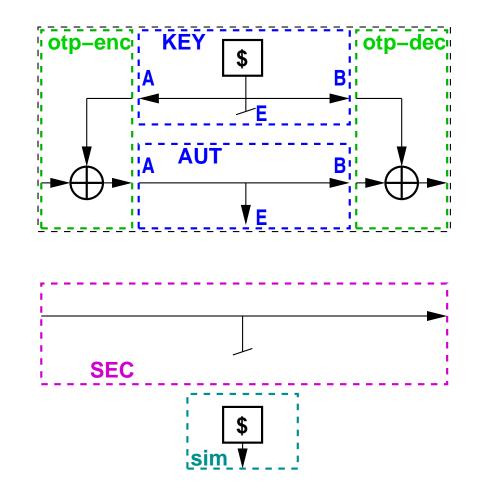
otp-dec^B otp-enc^A (KEY||AUT)

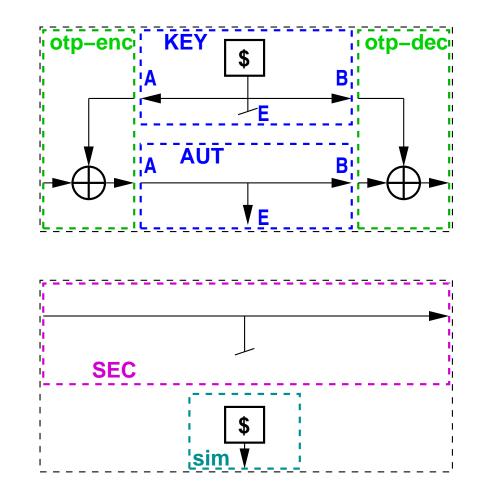


otp-dec^B otp-enc^A (KEY||AUT)

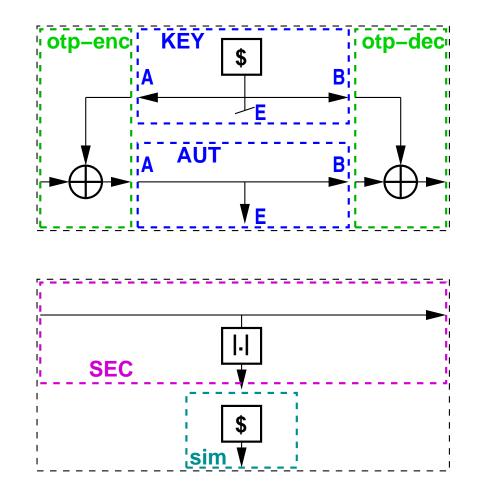


otp-dec^B otp-enc^A (KEY||AUT)

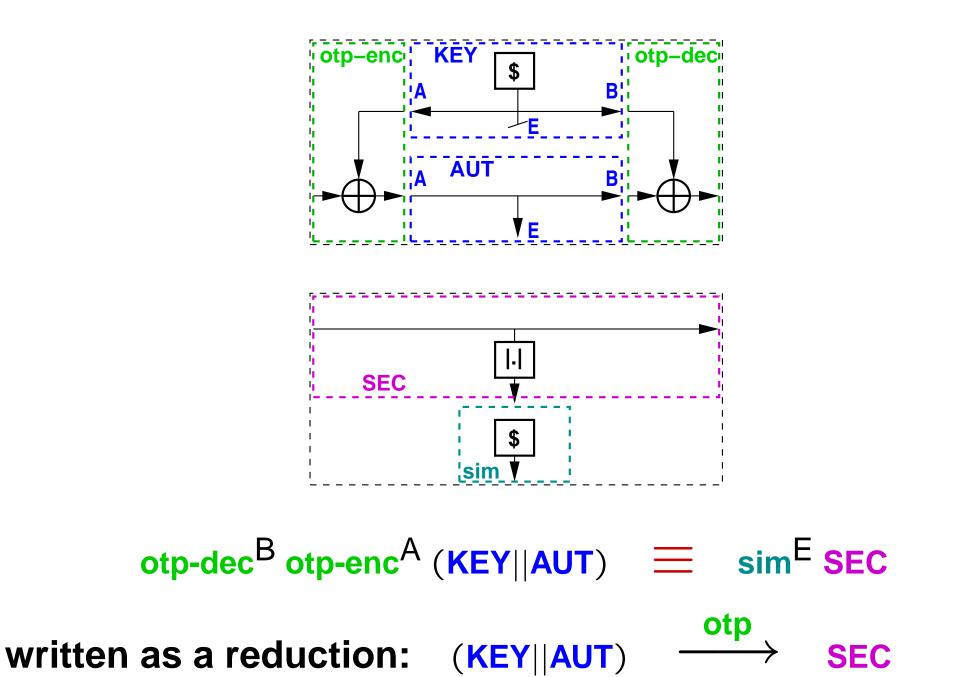




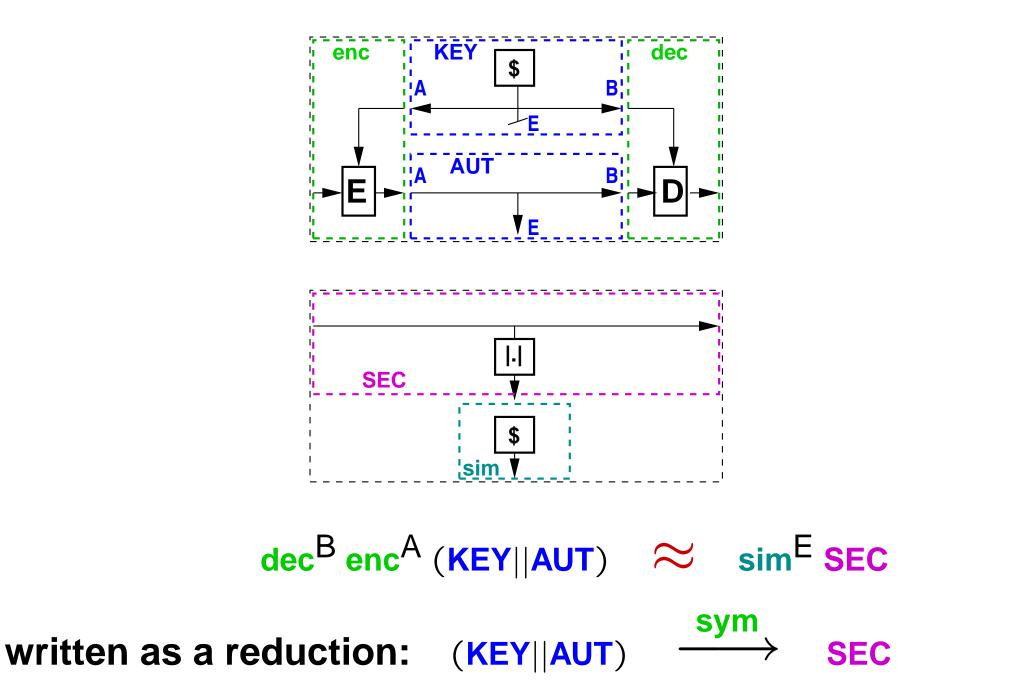
 $\mathbf{otp}\mathbf{-dec}^{\mathsf{B}} \, \mathbf{otp}\mathbf{-enc}^{\mathsf{A}} \, (\mathbf{KEY} || \mathbf{AUT}) \quad \equiv \quad \mathbf{sim}^{\mathsf{E}} \, \mathbf{SEC}$

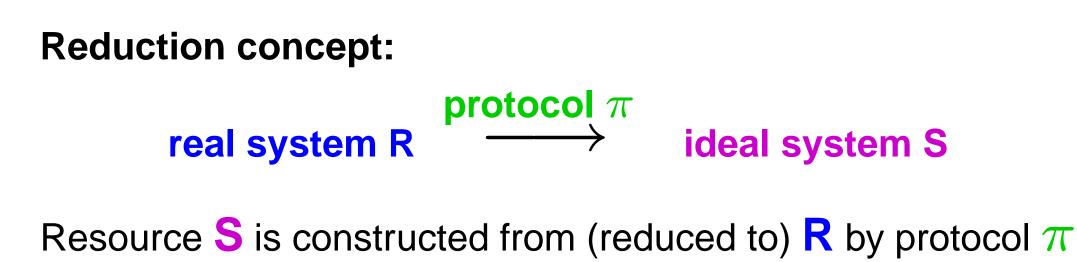


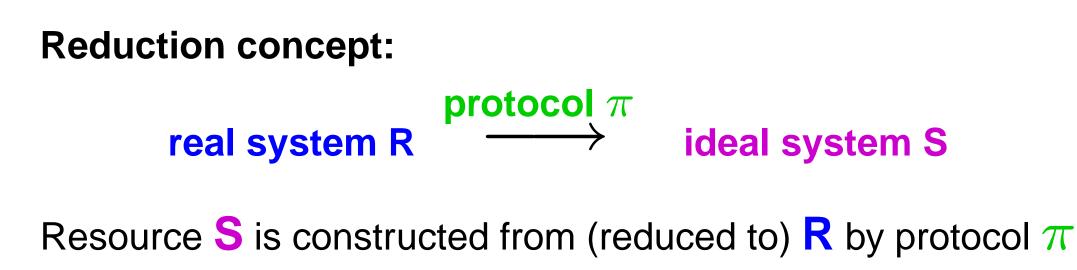
 $\mathbf{otp}\mathbf{-dec}^{\mathsf{B}} \, \mathbf{otp}\mathbf{-enc}^{\mathsf{A}} \, (\mathbf{KEY} || \mathbf{AUT}) \quad \equiv \quad \mathbf{sim}^{\mathsf{E}} \, \mathbf{SEC}$



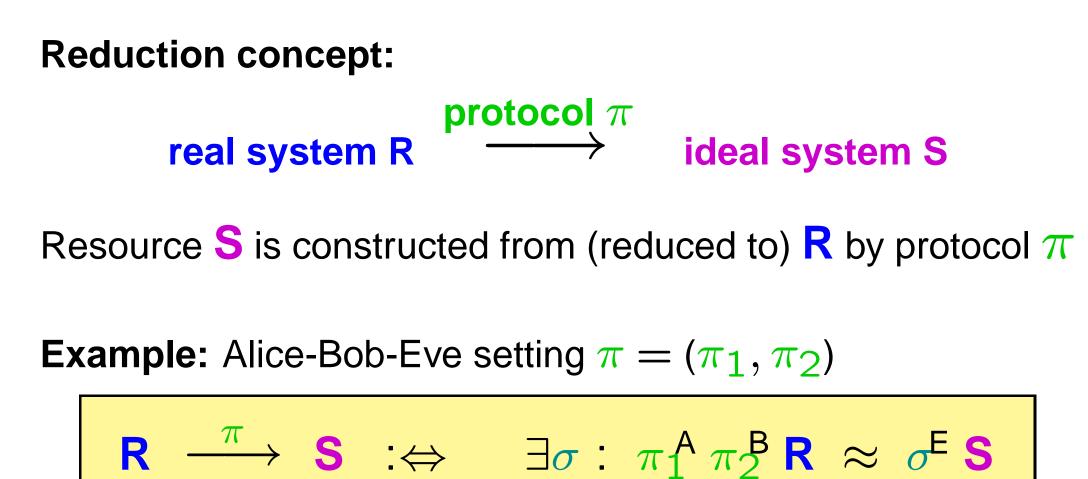
Symmetric encryption

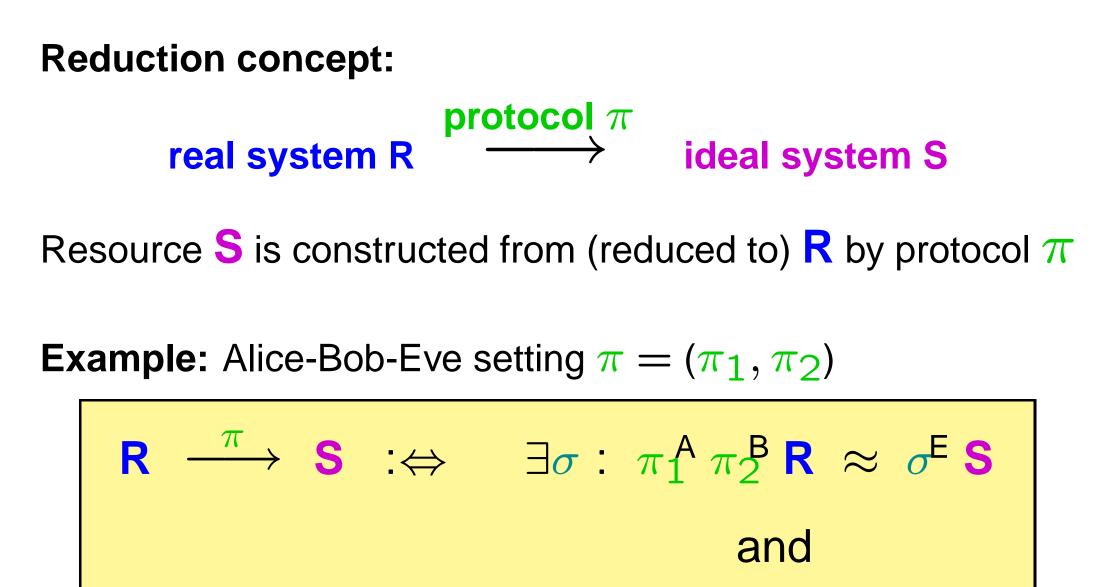




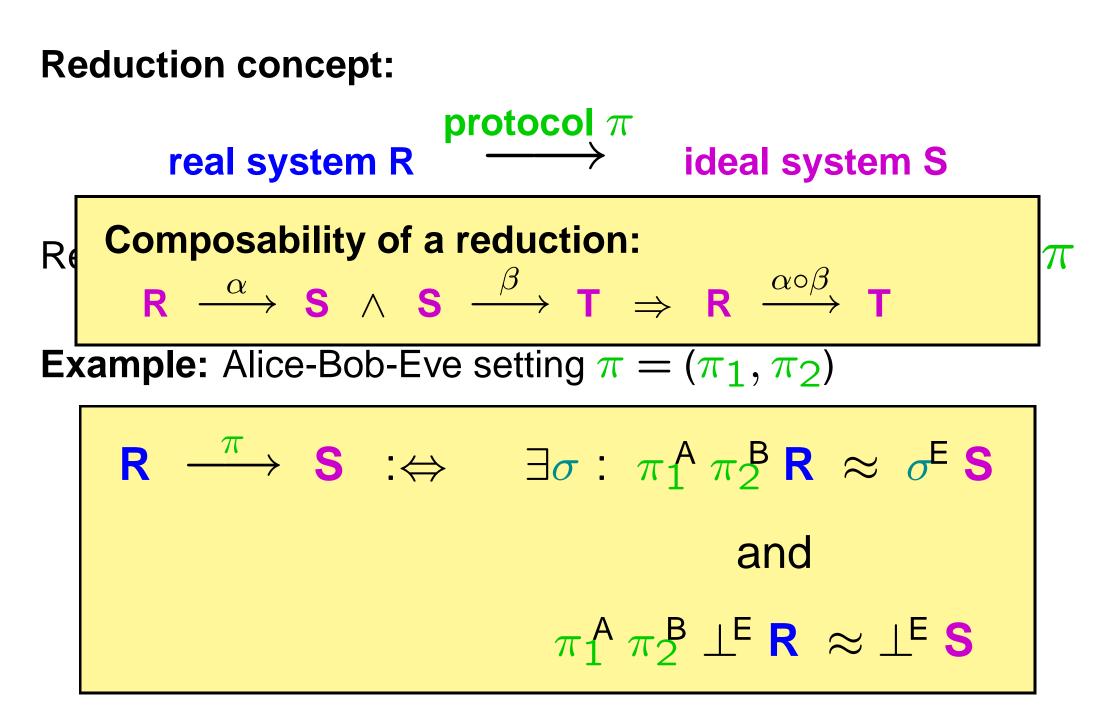


Example: Alice-Bob-Eve setting $\pi = (\pi_1, \pi_2)$





$$\pi_1^{\mathsf{A}} \pi_2^{\mathsf{B}} \perp^{\mathsf{E}} \mathsf{R} \approx \perp^{\mathsf{E}} \mathsf{S}$$

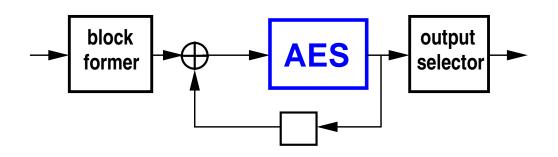


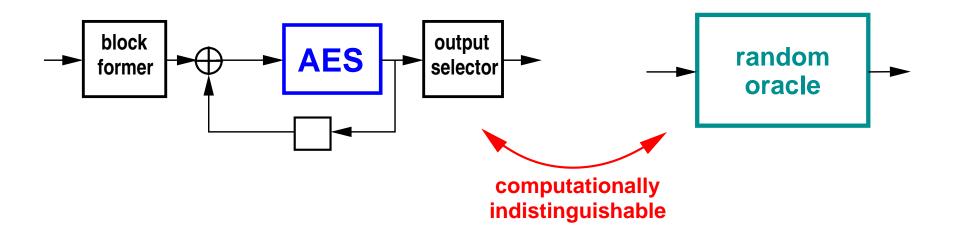
Levels of abstraction in cryptography

#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5 .	System implem.	complexity, efficiency notion
6.	Physical models	timing, power, side-channels

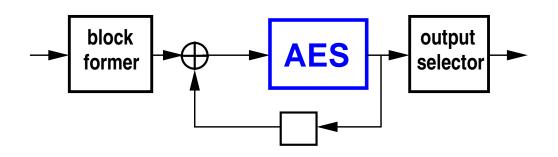
Levels of abstraction in cryptography

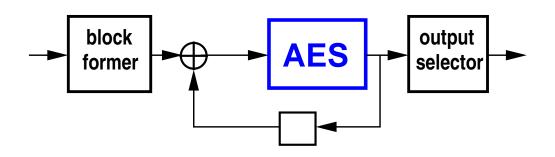
#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5.	System implem.	complexity, efficiency notion
6.	Physical models	timing, power, side-channels

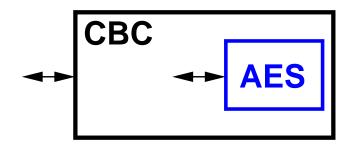


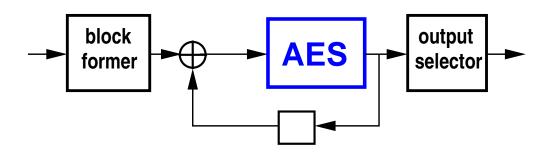


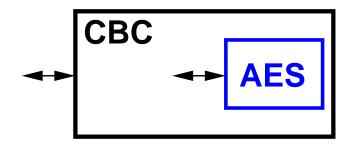
[3 (4)]



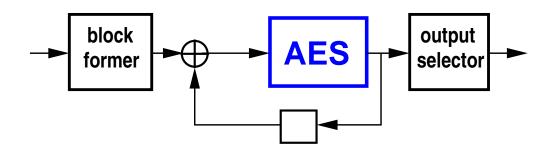






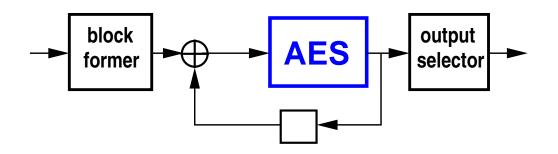


Notation: **CEC**(**AES**)



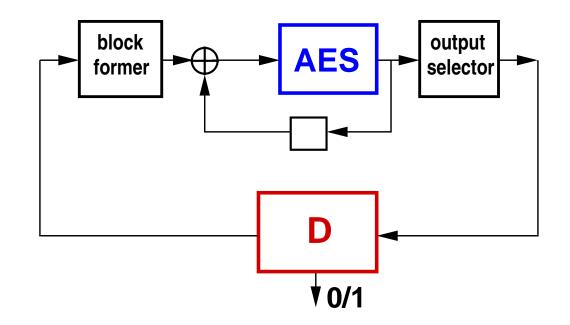


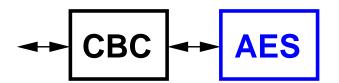
Notation: CBC • AES

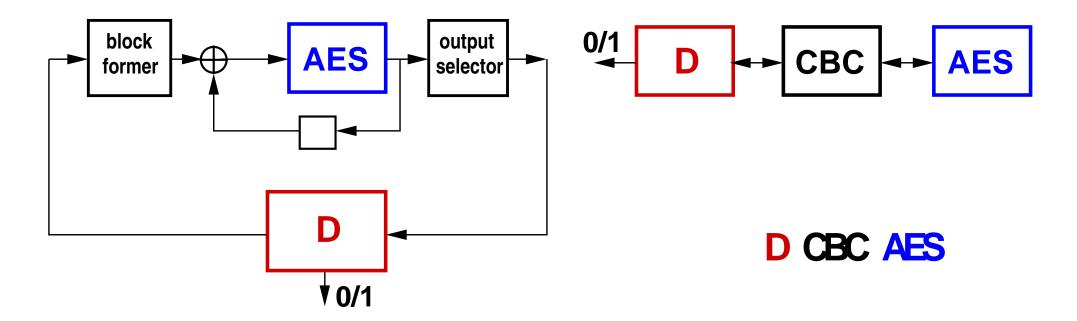




Notation: **CBC AES**







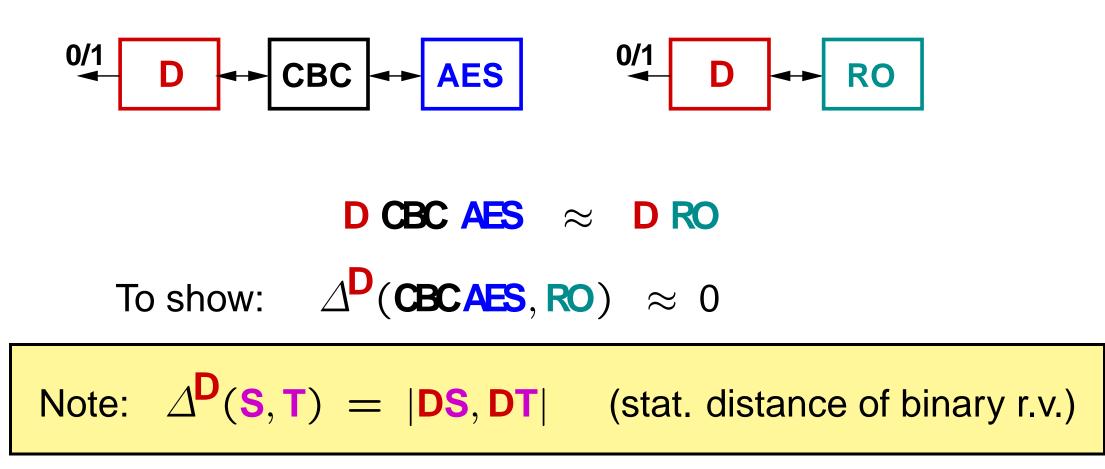
[3 (4)]

Security proof for CBC-MAC

CBC AES \approx RO

D CBC AES \approx D RO

D CBC AES \approx D RO To show: $\Delta^{D}(CBCAES, RO) \approx 0$



D CBC AES \approx D RO To show: $\Delta^{D}(CBCAES, RO) \approx 0$

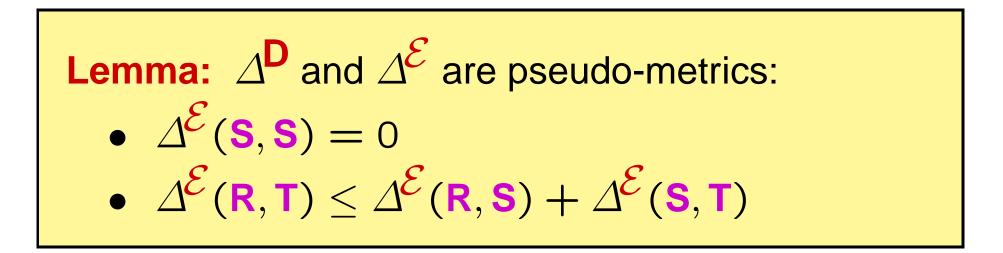
D CBC ALS \approx D RO To show: $\Delta^{\mathcal{E}}(\text{CBCALS}, \text{RO}) \approx 0$

D CBC AES \approx D RO To show: $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{RO}) \approx 0$

$$\Delta^{\mathcal{E}}(\mathbf{S},\mathbf{T}) := \max_{\mathbf{D}\in\mathcal{E}}\Delta^{\mathbf{D}}(\mathbf{S},\mathbf{T})$$

D CBC ALS \approx D RO To show: $\Delta^{\mathcal{E}}(\text{CBCALS}, \text{RO}) \approx 0$

D CEC AES \approx D RO To show: $\Delta^{\mathcal{E}}(\text{CECAES}, \text{RO}) \approx 0$



D CBC AES \approx D RO To show: $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{RO}) \approx 0$ $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{RO}) \leq \Delta^{\mathcal{E}}(\text{CBCAES}, \text{CBCRF}) + \Delta^{\mathcal{E}}(\text{CBCRF}, \text{RO})$

Lemma:
$$\Delta^{\mathbf{D}}$$
 and $\Delta^{\mathcal{E}}$ are pseudo-metrics:
• $\Delta^{\mathcal{E}}(\mathbf{S}, \mathbf{S}) = 0$
• $\Delta^{\mathcal{E}}(\mathbf{R}, \mathbf{T}) \leq \Delta^{\mathcal{E}}(\mathbf{R}, \mathbf{S}) + \Delta^{\mathcal{E}}(\mathbf{S}, \mathbf{T})$

D CBC ALS \approx D RO To show: $\Delta^{\mathcal{E}}(CBCALS, RO) \approx 0$ $\Delta^{\mathcal{E}}(CBCALS, RO) \leq \Delta^{\mathcal{E}}(CBCALS, CBCRF) + \Delta^{\mathcal{E}}(CBCRF, RO)$

D CBC ALS \approx D RO To show: $\Delta^{\mathcal{E}}(CBCALS, RO) \approx 0$ $\Delta^{\mathcal{E}}(CBCALS, RO) \leq \Delta^{\mathcal{E}}(CBCALS, CBCRF) + \Delta^{\mathcal{E}}(CBCRF, RO)$

Absorption lemma:
$$\Delta^{D}(CS, CT) = \Delta^{DC}(S, T)$$

Proof: $DCS = D(CS) = (DC)S$

D CEC AES \approx D RO To show: $\Delta^{\mathcal{E}}(\mathbf{CBCAES}, \mathbf{RO}) \approx 0$ $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{RO}) < \Delta^{\mathcal{E}}(\text{CBCAES}, \text{CBCRF}) + \Delta^{\mathcal{E}}(\text{CBCRF}, \text{RO})$ $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{CBCRF}) = \Delta^{\mathcal{E}\text{CBC}}(\text{AES}, \text{RF})$ Absorption lemma: $\Delta^{D}(CS, CT) = \Delta^{DC}(S, T)$ Proof: DCS = D(CS) = (DC)S

D CBC AES \approx D RO To show: $\Delta^{\mathcal{E}}(CBCAES, RO) \approx 0$ $\Delta^{\mathcal{E}}(CBCAES, RO) \leq \Delta^{\mathcal{E}}(CBCAES, CBCRF) + \Delta^{\mathcal{E}}(CBCRF, RO)$ $\Delta^{\mathcal{E}}(CBCAES, CBCRF) = \Delta^{\mathcal{E}CBC}(AES, RF)$ Non-expansion lemma:

 $\mathcal{D}\mathbf{C} \subseteq \mathcal{D} \Rightarrow \Delta^{\mathcal{D}}(\mathbf{CS},\mathbf{CT}) \leq \Delta^{\mathcal{D}}(\mathbf{S},\mathbf{T})$

D CBC AES \approx D RO To show: $\Delta^{\mathcal{E}}(CBCAES, RO) \approx 0$ $\Delta^{\mathcal{E}}(CBCAES, RO) \leq \Delta^{\mathcal{E}}(CBCAES, CBCRF \mathcal{E}CBC \subseteq \mathcal{E} F, RO)$ $\Delta^{\mathcal{E}}(CBCAES, CBCRF) = \Delta^{\mathcal{E}CBC}(AES, RF)$ Non-expansion lemma:

$$\mathcal{D}\mathbf{C} \subseteq \mathcal{D} \Rightarrow \Delta^{\mathcal{D}}(\mathbf{CS},\mathbf{CT}) \leq \Delta^{\mathcal{D}}(\mathbf{S},\mathbf{T})$$

D CBC AES \approx D RO To show: $\Delta^{\mathcal{E}}(\mathbf{CBCAES}, \mathbf{RO}) \approx 0$ $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{RO}) \leq \Delta^{\mathcal{E}}(\text{CBCAES}, \text{CBCRF} \quad \mathcal{E}\text{CBC} \subseteq \mathcal{E} \quad \text{F, RO})$ $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{CBCRF}) = \Delta^{\mathcal{E}\text{CBC}}(\text{AES}, \text{RF}) \leq \Delta^{\mathcal{E}}(\text{AES}, \text{RF})$ **Non-expansion lemma:** $\mathcal{D}\mathbf{C} \subseteq \mathcal{D} \Rightarrow \Delta^{\mathcal{D}}(\mathbf{CS}, \mathbf{CT}) \leq \Delta^{\mathcal{D}}(\mathbf{S}, \mathbf{T})$

D CBC AES \approx D RO To show: $\Delta^{\mathcal{E}}(CBCAES, RO) \approx 0$ $\Delta^{\mathcal{E}}(CBCAES, RO) \leq \Delta^{\mathcal{E}}(CBCAES, CBCRF) + \Delta^{\mathcal{E}}(CBCRF, RO)$ $\Delta^{\mathcal{E}}(CBCAES, CBCRF) = \Delta^{\mathcal{E}CBC}(AES, RF) \leq \Delta^{\mathcal{E}}(AES, RF)$

D CBC AES \approx D RO To show: $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{RO}) \approx 0$ $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{RO}) \leq \Delta^{\mathcal{E}}(\text{CBCAES}, \text{CBCRF}) + \Delta^{\mathcal{E}}(\text{CBCRF}, \text{RO})$ $\Delta^{\mathcal{E}}(\text{CBCAES}, \text{CBCRF}) = \Delta^{\mathcal{E}\text{CBC}}(\text{AES}, \text{RF}) \leq \Delta^{\mathcal{E}}(\text{AES}, \text{RF})$ $\Delta(\text{CBCRF}, \text{RO}) \leq \frac{1}{2}\ell^2 2^{-n} \quad [\text{BKR94,...]}$ [4]

RF)

$$\begin{array}{c} 0^{\prime 1} & \square & \rightarrow \mathbb{CBC} \leftrightarrow \mathbb{AES} & 0^{\prime 1} & \square & \rightarrow \mathbb{RO} \end{array}$$
Note: Many security proofs can be phrased
at this level of abstraction and become quite
simple or even trivial.

$$\Delta^{\mathcal{E}}(\mathsf{CBCAES},\mathsf{RO}) \leq \Delta^{\mathcal{C}}(\mathsf{CBCAES},\mathsf{CBCRF}) + \Delta^{\mathcal{C}}(\mathsf{CBCRF},\mathsf{RO})$$

$$\Delta^{\mathcal{E}}(\mathsf{CBCAES},\mathsf{CBCRF}) = \Delta^{\mathcal{E}\mathsf{CBC}}(\mathsf{AES},\mathsf{RF}) \leq \Delta^{\mathcal{E}}(\mathsf{AES},\mathsf{RF})$$

$$\Delta(\mathsf{CBCRF},\mathsf{RO}) \leq \frac{1}{2}\ell^2 2^{-n} \quad [\mathsf{BKR94,...}] \qquad [4]$$

Levels of abstraction in cryptography

#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5 .	System implem.	complexity, efficiency notion
6 .	Physical models	timing, power, side-channels

Levels of abstraction in cryptography

#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5.	System implem.	complexity, efficiency notion
6.	Physical models	timing, power, side-channels

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible
- \mathcal{E} = set of efficiently impl. systems.

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible
- \mathcal{E} = set of efficiently impl. systems.

 $\mathcal{E} \circ \mathcal{E} \subseteq \mathcal{E}, \quad \mathcal{E} || \mathcal{E} \subseteq \mathcal{E}$

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible
- \mathcal{E} = set of efficiently impl. systems.

$$\mathcal{E}\circ\mathcal{E}\subseteq\mathcal{E},\quad \mathcal{E}||\mathcal{E}\subseteq\mathcal{E}|$$

 \mathcal{F} = set of feasibly impl. systems ($\mathcal{E} \subseteq \mathcal{F}$)

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible

 \mathcal{E} = set of efficiently impl. systems.

 $\mathcal{F} = \text{set of feasibly impl. systems} | \mathcal{F} \circ \mathcal{F} \subseteq \mathcal{F}, \quad \mathcal{F} || \mathcal{F} \subseteq \mathcal{F}$

$$\mathcal{E} \circ \mathcal{E} \subseteq \mathcal{E}, \quad \mathcal{E} || \mathcal{E} \subseteq \mathcal{E}$$

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible

 $\mathcal{E} \circ \mathcal{E} \subseteq \mathcal{E}, \quad \mathcal{E} || \mathcal{E} \subseteq \mathcal{E}$ \mathcal{E} = set of efficiently impl. systems.

 \mathcal{F} = set of feasibly impl. systems $|\mathcal{F} \circ \mathcal{F} \subseteq \mathcal{F}, \mathcal{F}||\mathcal{F} \subseteq \mathcal{F}$

No reason to set $\mathcal{E} = \mathcal{F}$!

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible

$$\mathcal{E}$$
 = set of efficiently impl. systems.

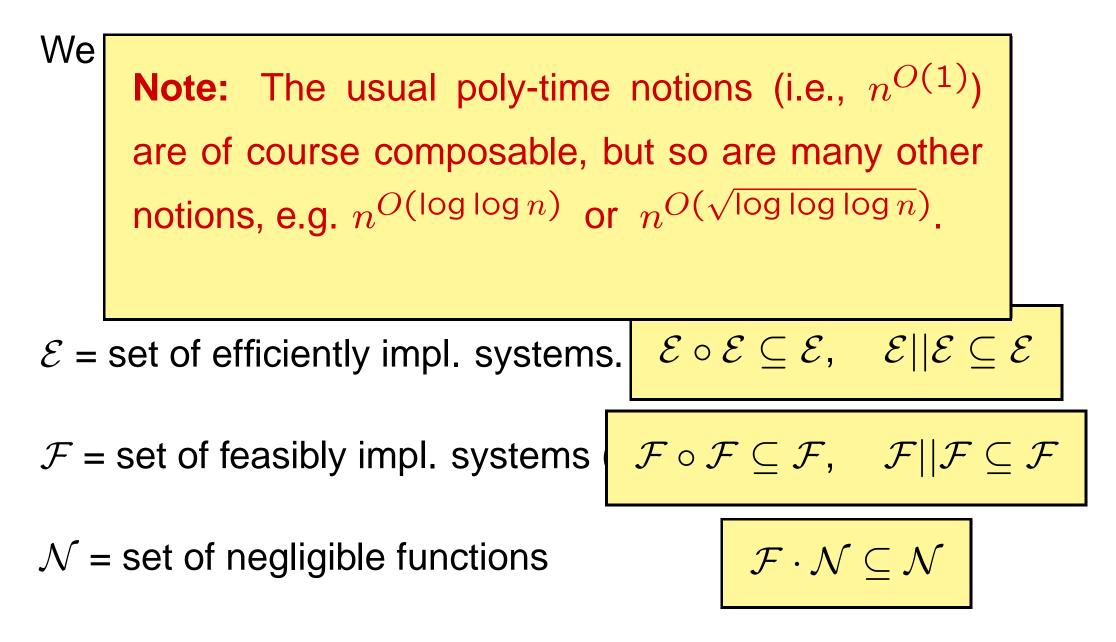
 $\mathcal{F} = \text{set of feasibly impl. systems} \quad \mathcal{F} \circ \mathcal{F} \subseteq \mathcal{F}, \quad \mathcal{F} || \mathcal{F} \subseteq \mathcal{F}$

$$f = set of negligible functions$$

$$\mathcal{E}\circ\mathcal{E}\subseteq\mathcal{E},\quad \mathcal{E}||\mathcal{E}\subseteq\mathcal{E}|$$

- the complexity of system implementation
- what is efficient (for the good guys)
- what is infeasible (for the bad guys)
- what is negligible

$$\mathcal{E} = \text{set of efficiently impl. systems.} \quad \mathcal{E} \circ \mathcal{E} \subseteq \mathcal{E}, \quad \mathcal{E} || \mathcal{E} \subseteq \mathcal{E}$$
$$\mathcal{F} = \text{set of feasibly impl. systems} \quad \mathcal{F} \circ \mathcal{F} \subseteq \mathcal{F}, \quad \mathcal{F} || \mathcal{F} \subseteq \mathcal{F}$$
$$\mathcal{N} = \text{set of negligible functions} \qquad \qquad \mathcal{F} \cdot \mathcal{N} \subseteq \mathcal{N}$$



[5,3]

Levels of abstraction in cryptography

#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5 .	System implem.	complexity, efficiency notion
6 .	Physical models	timing, power, side-channels

Levels of abstraction in cryptography

#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5.	System implem.	complexity, efficiency notion
6 .	Physical models	timing, power, side-channels

Discrete systems

$$X_1, X_2, \dots$$
 Y_1, Y_2, \dots Y_1, Y_2, \dots

Description of **S**: figure, pseudo-code, text, ...

$$X_1, X_2, \dots$$
 Y_1, Y_2, \dots Y_1, Y_2, \dots

Description of **S**: figure, pseudo-code, text, ... What kind of mathematical object is the behavior of **S**?

$$X_1, X_2, \dots$$
 Y_1, Y_2, \dots Y_1, Y_2, \dots

Description of **S**: figure, pseudo-code, text, ...

What kind of mathematical object is the behavior of S?

Characterized by:
$$p_{Y^i|X^i}^{S}$$
 for $i = 1, 2, ...$

(where
$$X^i = (X_1, ..., X_i)$$
)

This abstraction is called a random system [Mau02].

$$X_1, X_2, \dots$$
 Y_1, Y_2, \dots Y_1, Y_2, \dots

Description of **S**: figure, pseudo-code, text, ...

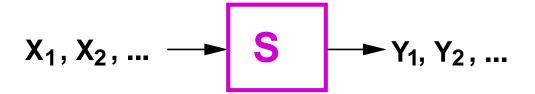
What kind of mathematical object is the behavior of **S**?

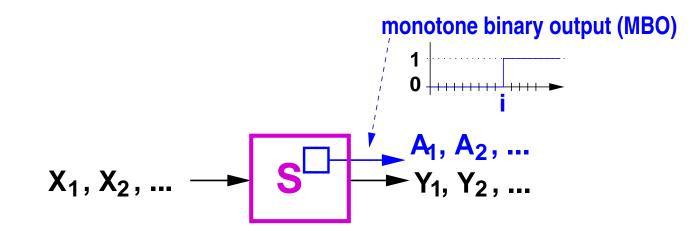
Characterized by:
$$p_{Y^i|X^i}^{S}$$
 for $i = 1, 2, ...$

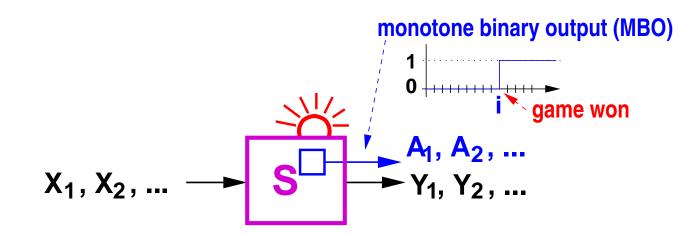
(where
$$X^i = (X_1, ..., X_i)$$
)

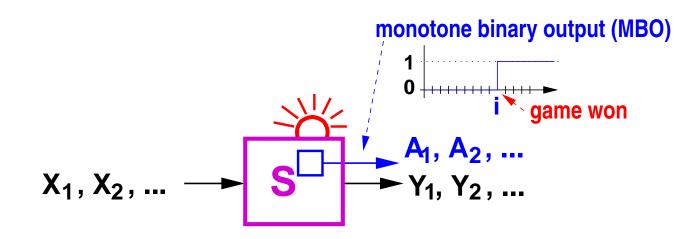
This abstraction is called a random system [Mau02].

Equivalence of systems: $S \equiv T$ if same behavior

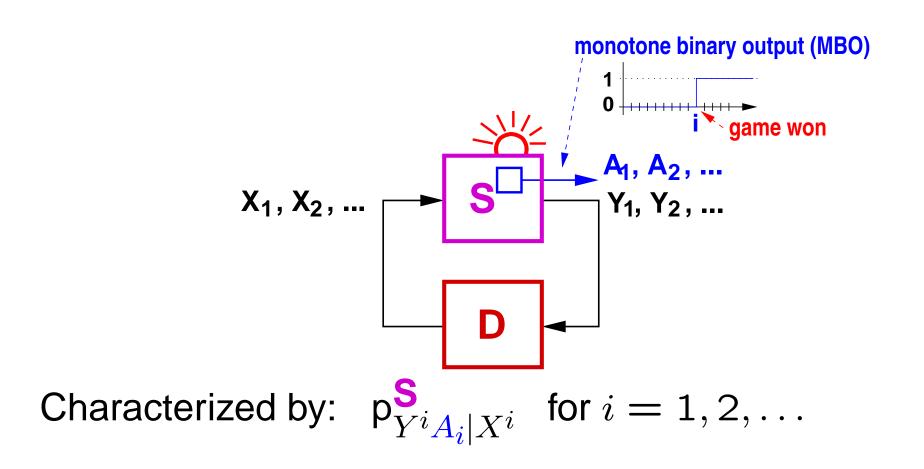


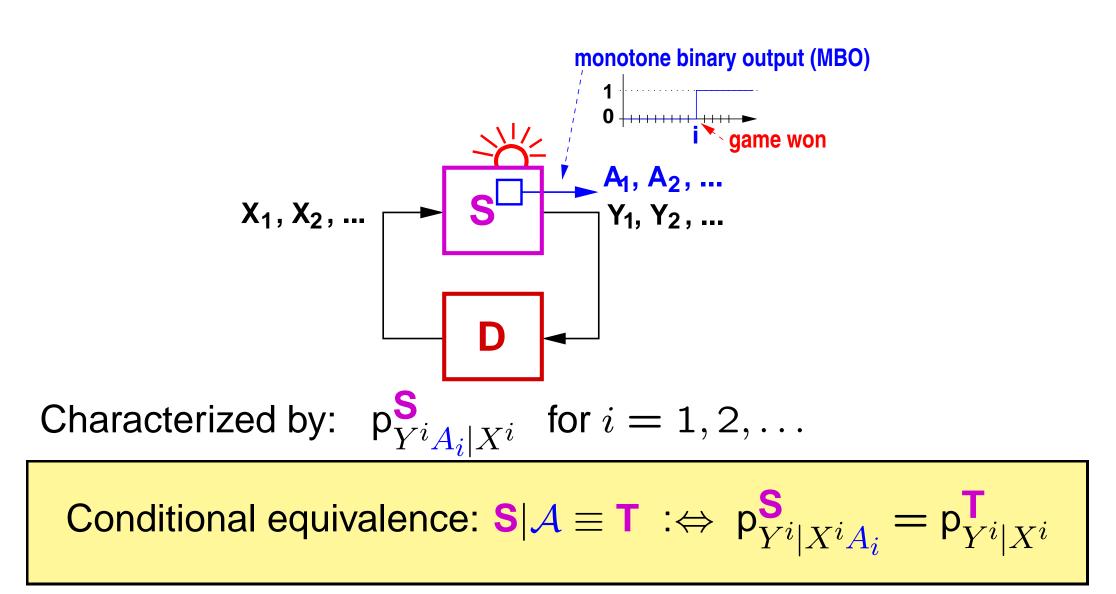


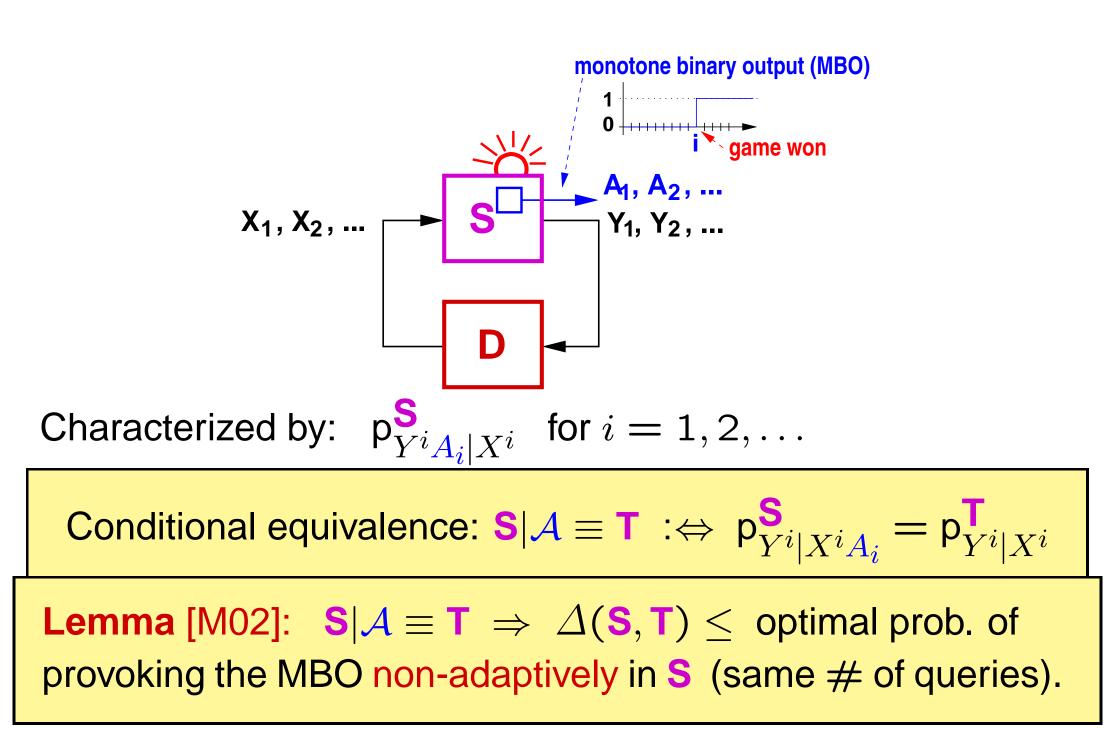




Characterized by:
$$p_{Y^iA_i|X^i}^{S}$$
 for $i = 1, 2, ...$







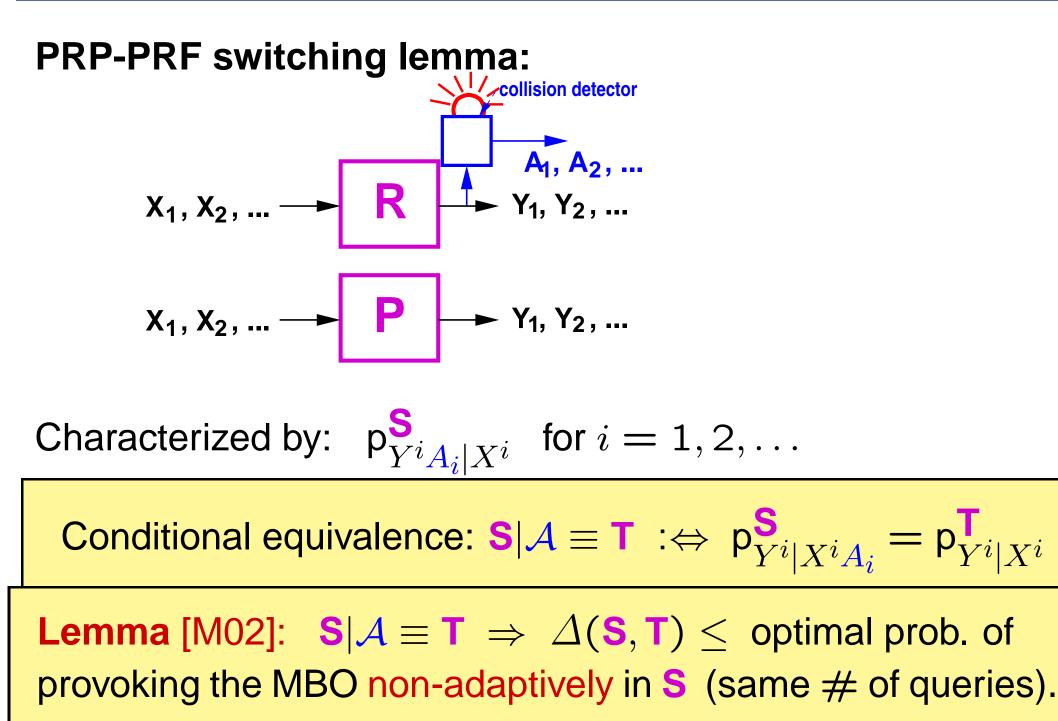
PRP-PRF switching lemma:

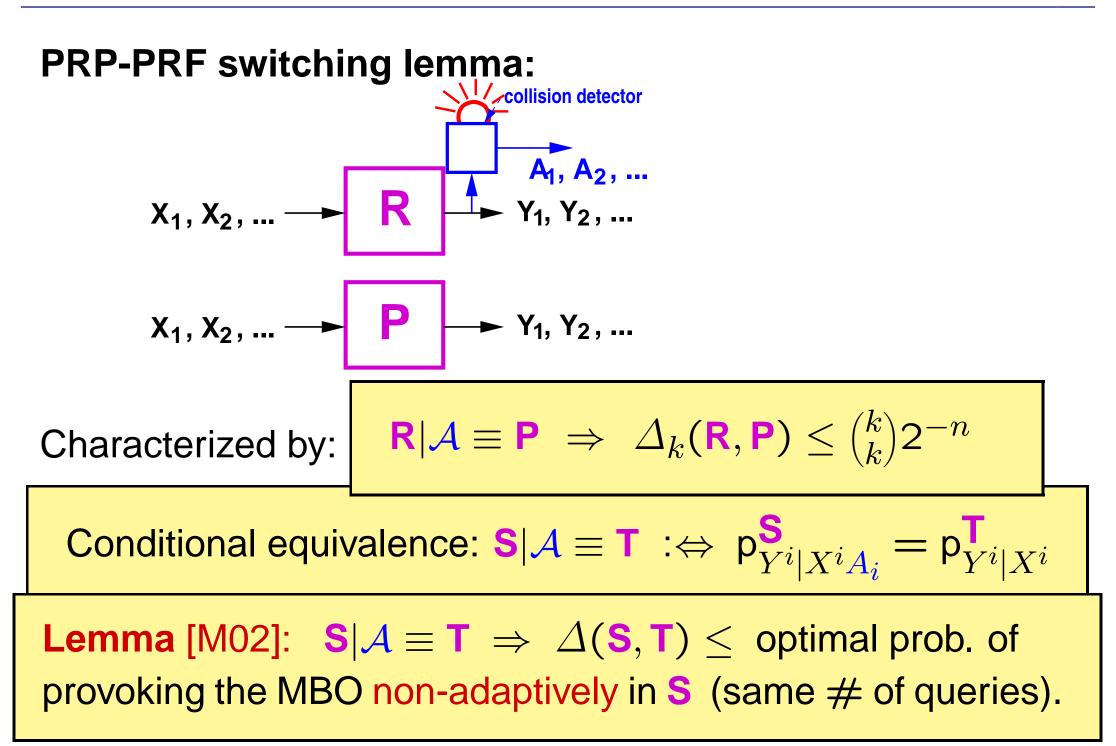
$$X_1, X_2, \dots \longrightarrow \mathbb{R} \longrightarrow Y_1, Y_2, \dots$$
$$X_1, X_2, \dots \longrightarrow \mathbb{P} \longrightarrow Y_1, Y_2, \dots$$

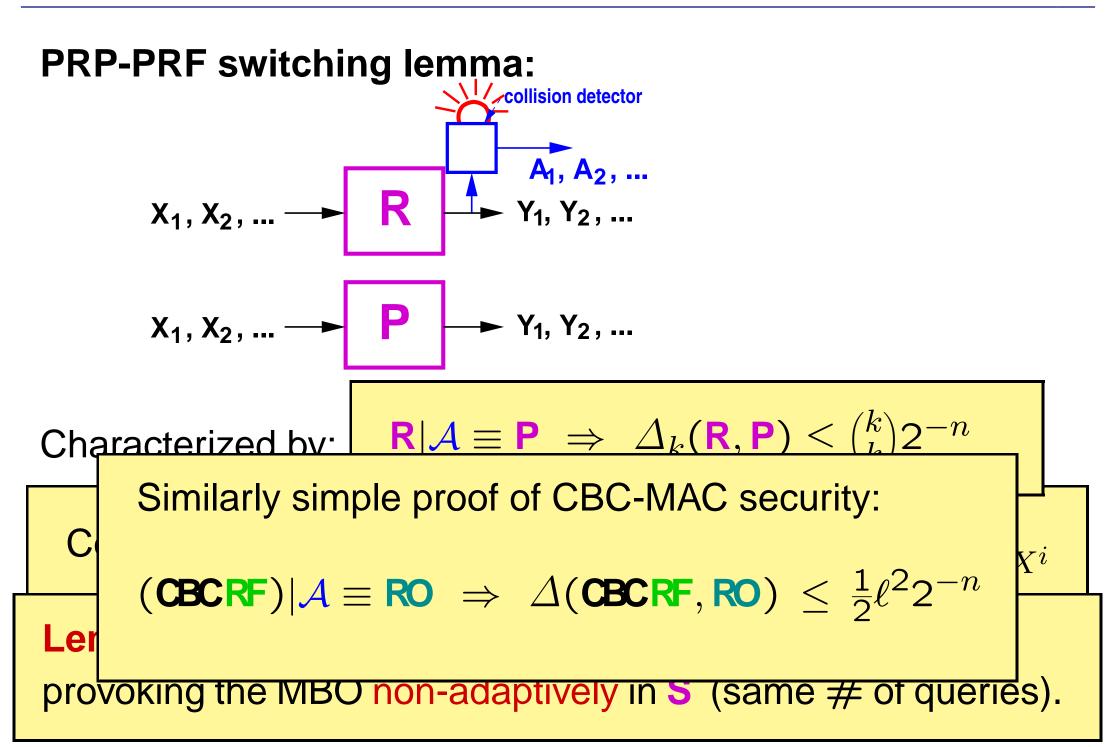
Characterized by: $p_{Y^iA_i|X^i}^{S}$ for i = 1, 2, ...

Conditional equivalence: $S|A \equiv T : \Leftrightarrow p_{Y^i|X^iA_i}^S = p_{Y^i|X^i}^T$

Lemma [M02]: $S|A \equiv T \Rightarrow \Delta(S, T) \leq \text{optimal prob. of}$ provoking the MBO non-adaptively in S (same # of queries).







Levels of abstraction in cryptography

#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5 .	System implem.	complexity, efficiency notion
6.	Physical models	timing, power, side-channels

Levels of abstraction in cryptography

#	possible name	concepts treated at this level
1.	Reductions	def. of (universal) composability
2.	Abstract resources	isomorphism
3.	Abstract systems	distinguisher, hybrid argument, secure reduction, compos. proof
4.	Discrete systems	games, equivalence, indistinguishability proofs
5 .	System implem.	complexity, efficiency notion
6.	Physical models	timing, power, side-channels

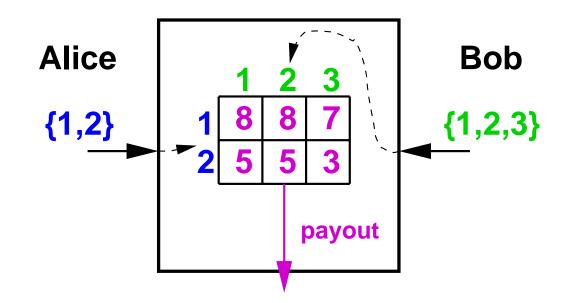
Abstract Cryptography (with Renato Renner) [1-3]

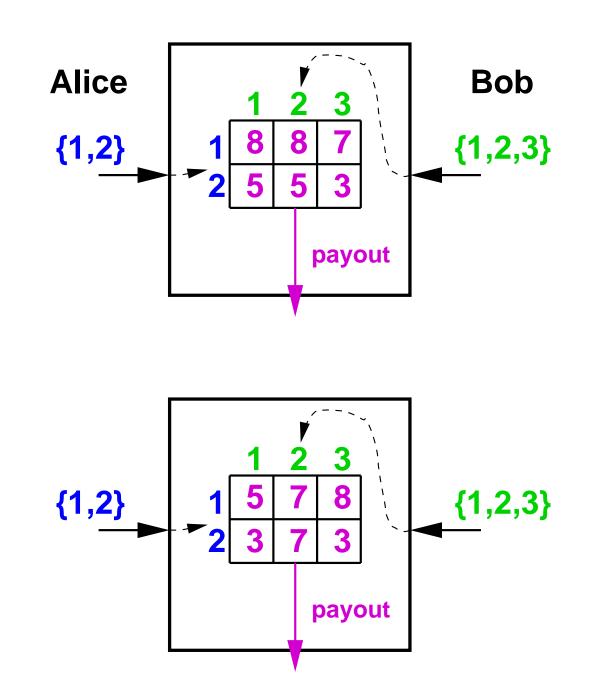
 capture the constructive security paradigm at high(est) abstraction level

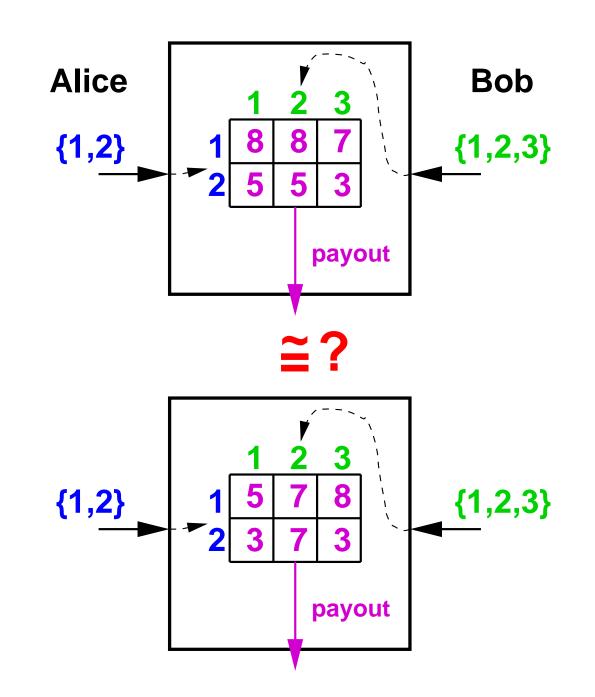
- capture the constructive security paradigm at high(est) abstraction level
- define strongest possible reduction between resources

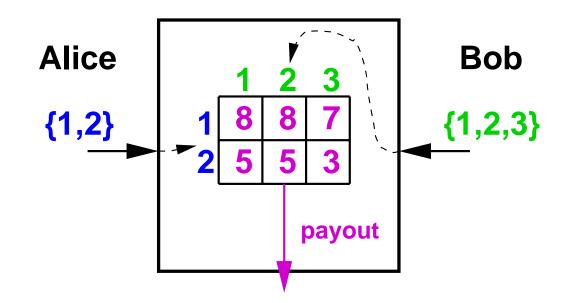
- capture the constructive security paradigm at high(est) abstraction level
- define strongest possible reduction between resources
- see other frameworks as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]

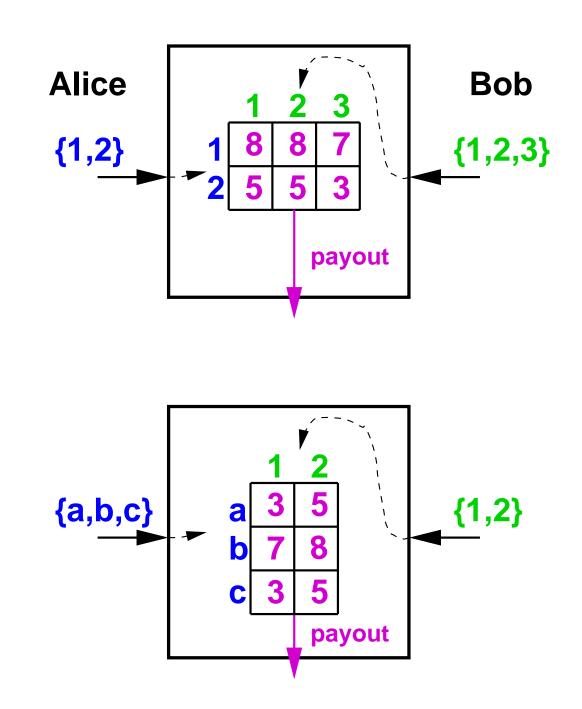
- capture the constructive security paradigm at high(est) abstraction level
- define strongest possible reduction between resources
- see other frameworks as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
- capture scenarios that could previously not be modeled.

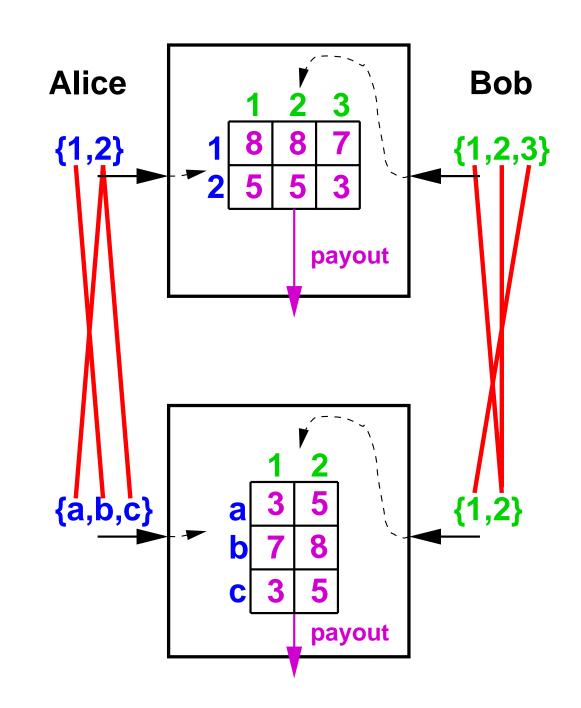


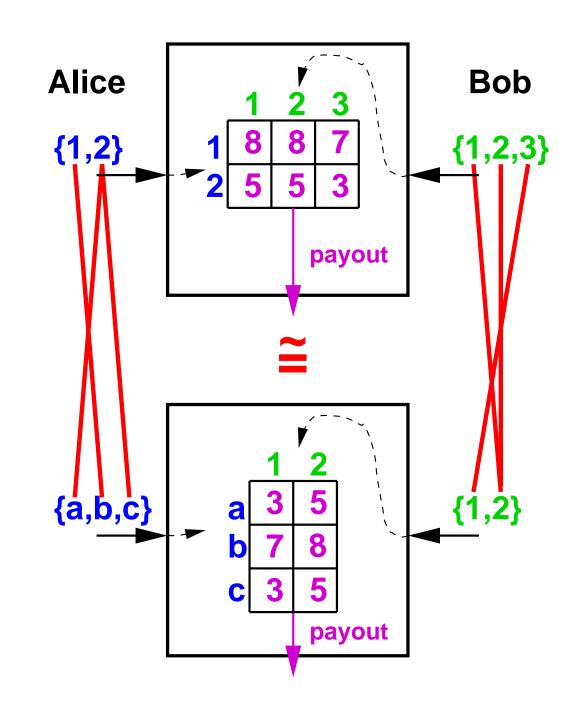


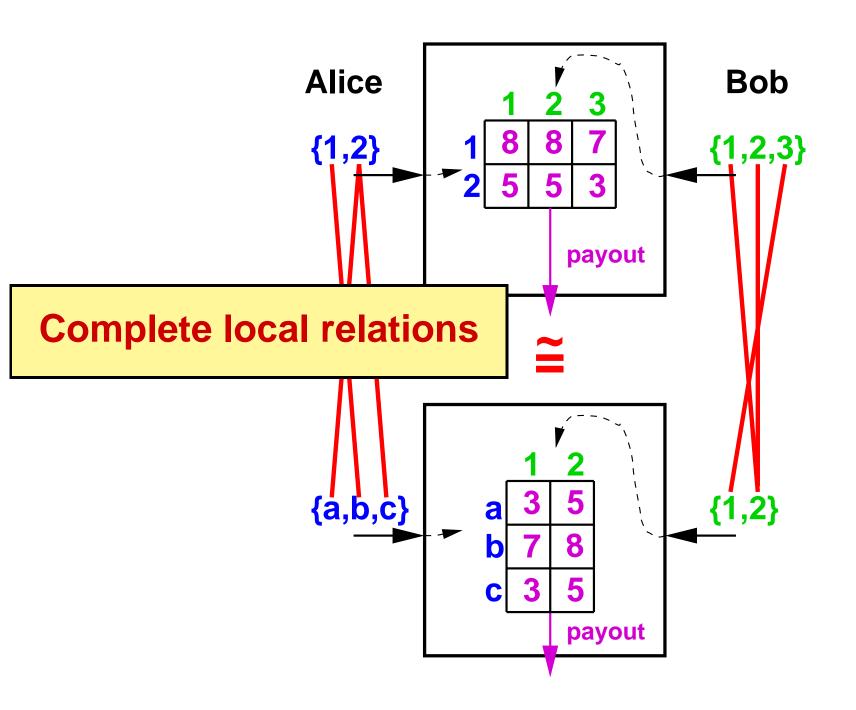


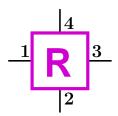


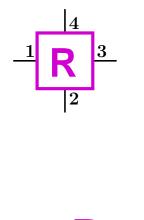






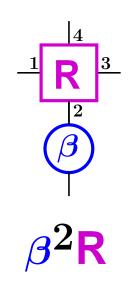


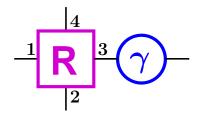




 $\alpha^1 R$

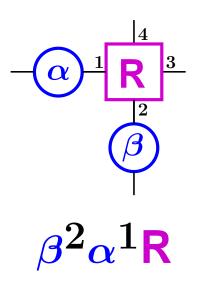
 $-\alpha \frac{1}{\mathbf{R}} \frac{1}{2}$



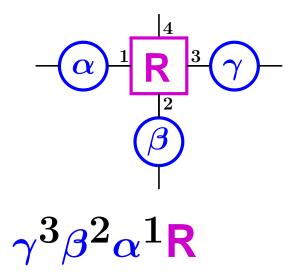


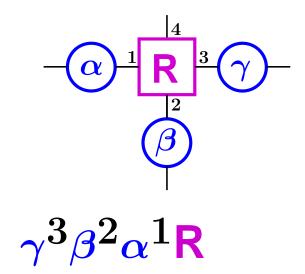
 $\alpha^1 R$

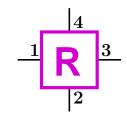
 $-\alpha \frac{1}{\mathbf{R}} \frac{1}{2}$

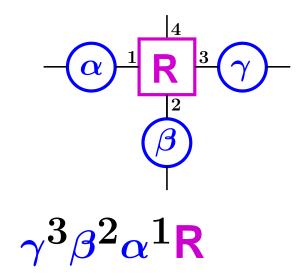


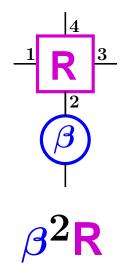
[3]

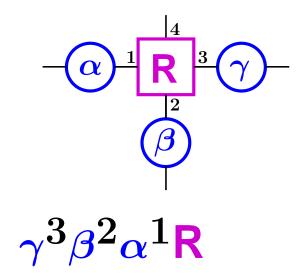


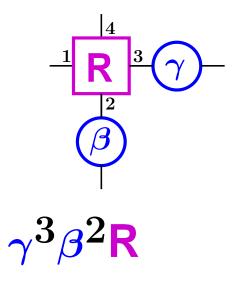


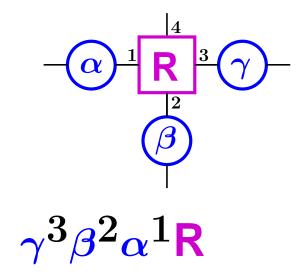


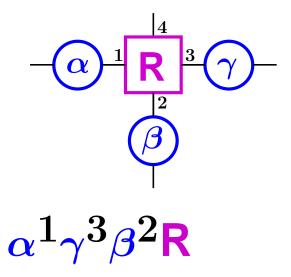


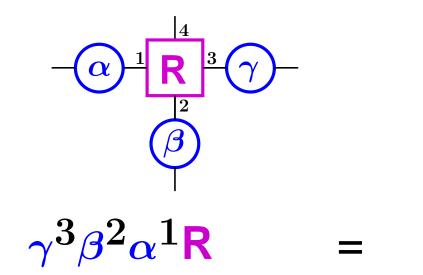




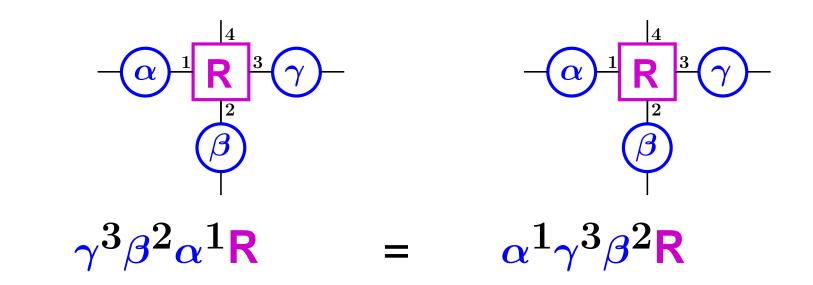




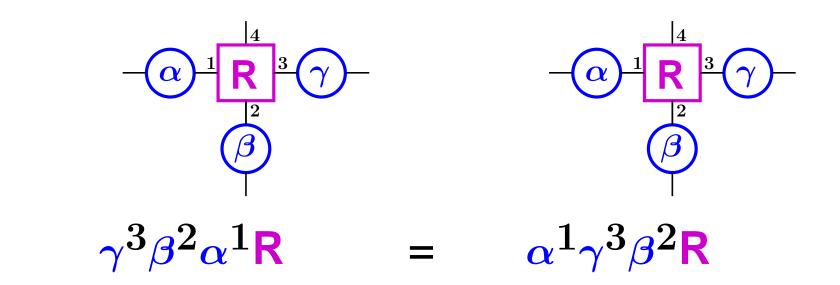




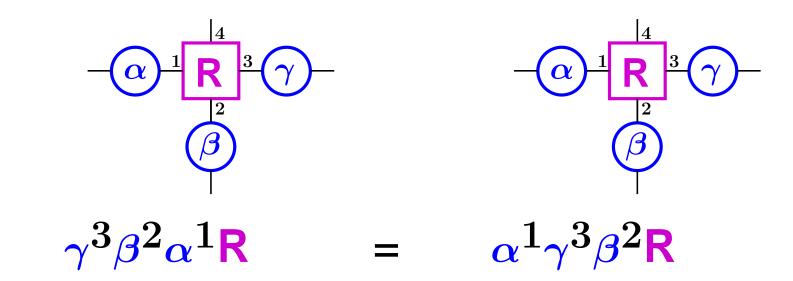




Resource set Φ for interface set $\mathcal{I} = \{1, 2, 3, 4\}$, oper. ||



Resource set Φ for interface set $\mathcal{I} = \{1, 2, 3, 4\}$, oper. || **Converter set** Σ , with operation \circ

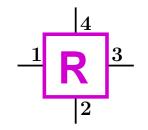


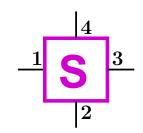
Resource set Φ for interface set $\mathcal{I} = \{1, 2, 3, 4\}$, oper. ||

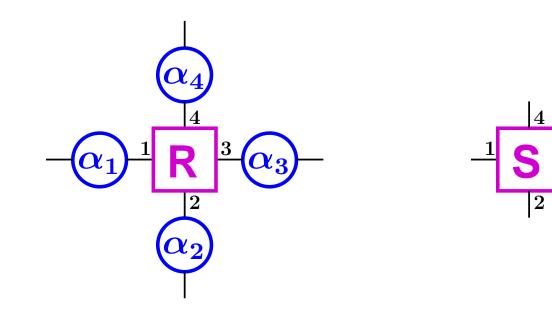
Converter set Σ , with operation \circ

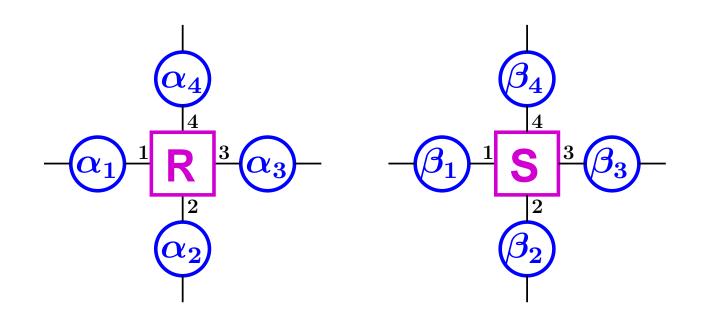
Algebraic laws:

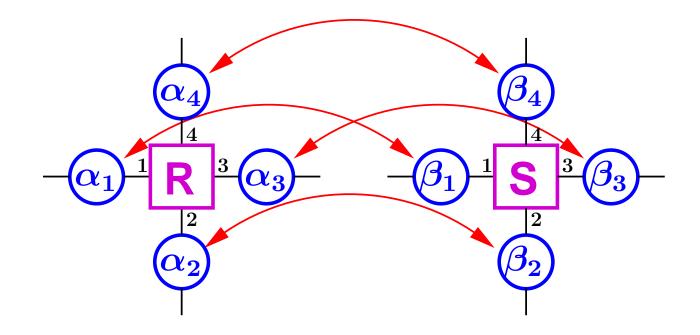
- $\alpha^i \mathbf{R} \in \Phi$ for all $\mathbf{R} \in \Phi$, $\alpha \in \Sigma$, $i \in \mathcal{I}$
- $\alpha^i \beta^j \mathbf{R} \equiv \beta^j \alpha^i \mathbf{R}$ for all $i \neq j$

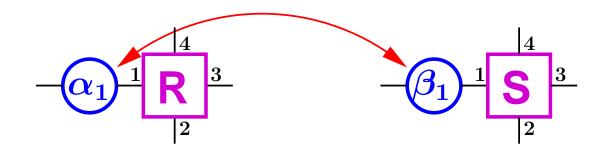


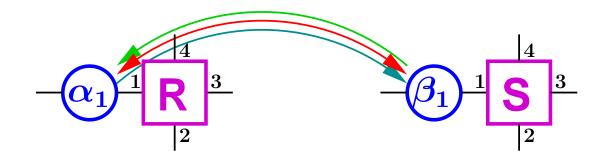


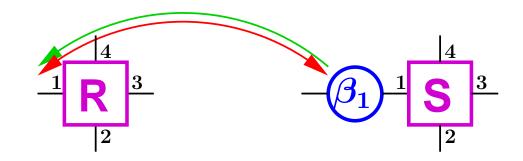


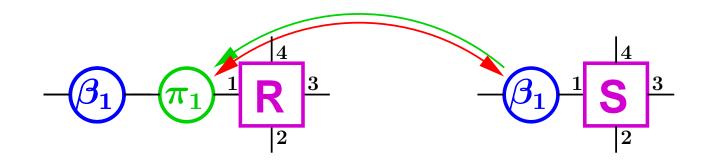


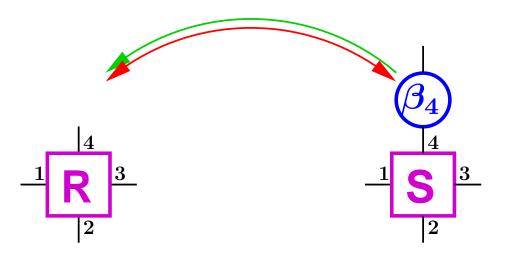


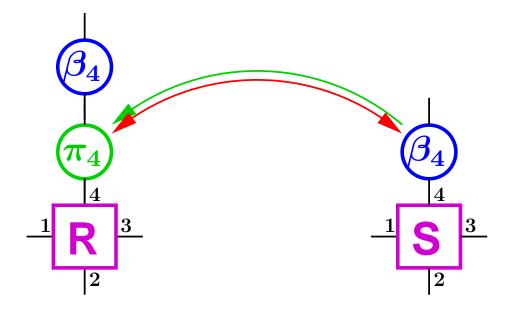


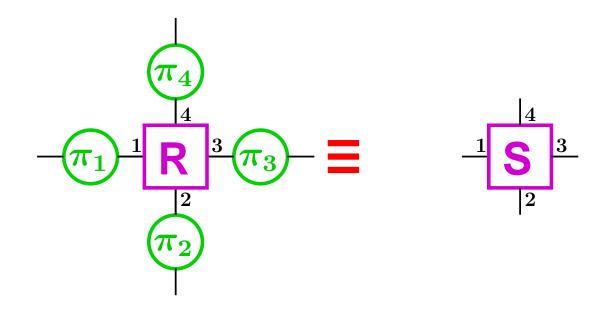


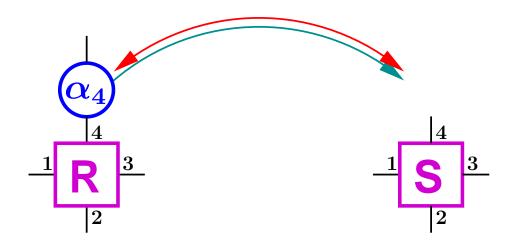


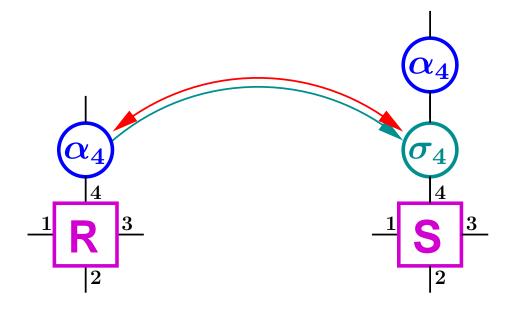


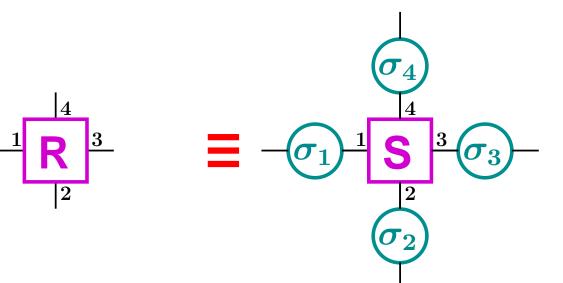


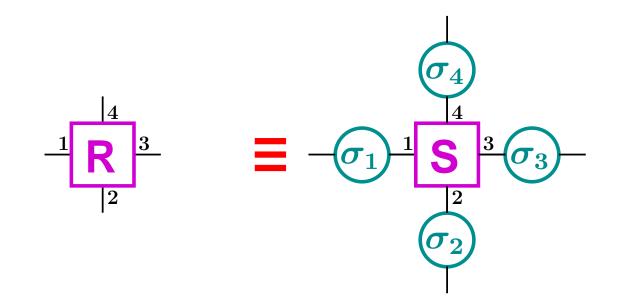


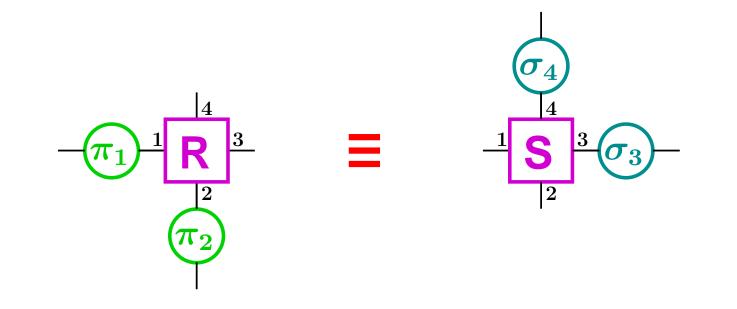


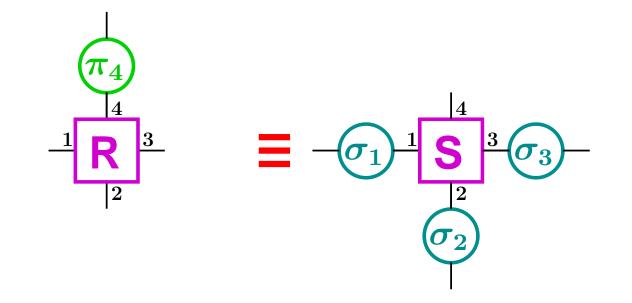


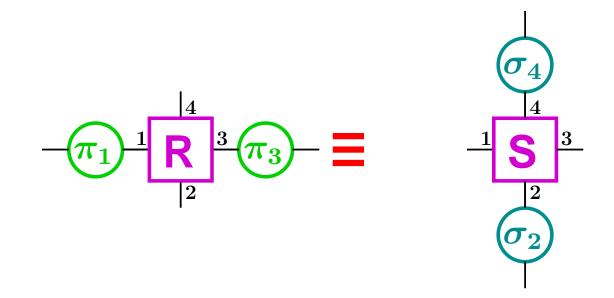


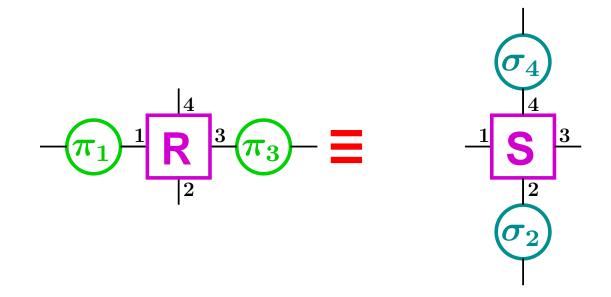






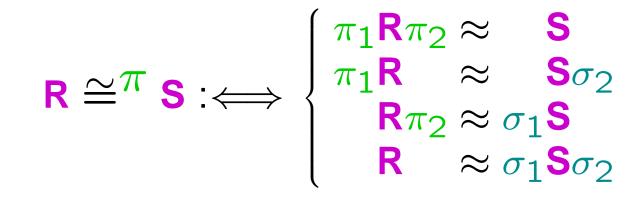






Definition: R *is isomorphic to* S via π , denoted R \cong^{π} S, if R \cong^{π} S : $\iff \exists \sigma \forall \mathcal{P} \subseteq \mathcal{I} : \pi_{\mathcal{P}} R \equiv \sigma_{\overline{\mathcal{P}}} S$

Example: 2-party resources

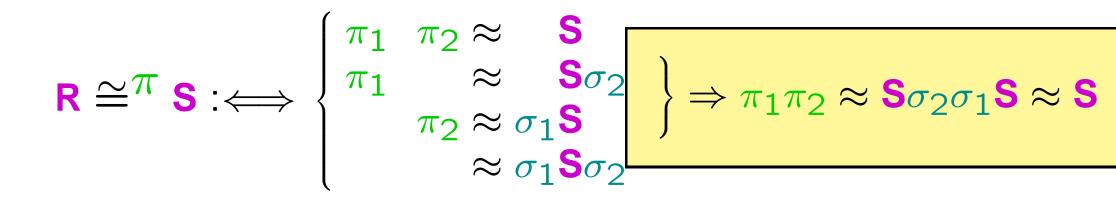


Example: 2-party resources

$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_{1}\mathbf{R}\pi_{2} \approx \mathbf{S} \\ \pi_{1}\mathbf{R} \approx \mathbf{S}\sigma_{2} \\ \mathbf{R}\pi_{2} \approx \sigma_{1}\mathbf{S} \\ \mathbf{R} \approx \sigma_{1}\mathbf{S}\sigma_{2} \end{cases} \end{cases} \Rightarrow \text{abstract UC}$$

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 \mathbf{R} \pi_2 \approx \mathbf{S} \\ \pi_1 \mathbf{R} \approx \mathbf{S} \sigma_2 \\ \mathbf{R} \pi_2 \approx \sigma_1 \mathbf{S} \\ \mathbf{R} \approx \sigma_1 \mathbf{S} \sigma_2 \end{cases}$$

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ & \pi_2 \approx \sigma_1 \mathbf{S} \\ & & \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases}$$



$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S}\sigma_2 \sigma_$$

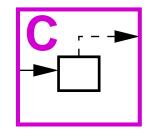
Theorem: A resource **S** such that $S\alpha S \not\approx S$ for all α cannot be realized from a communication channel.

$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S$$

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be realized from a communication channel.

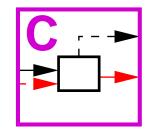
$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \Rightarrow \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S}$$

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be realized from a communication channel.

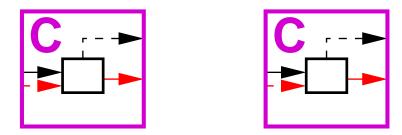


$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S}\sigma_2 \sigma_$$

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be realized from a communication channel.



Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be realized from a communication channel.

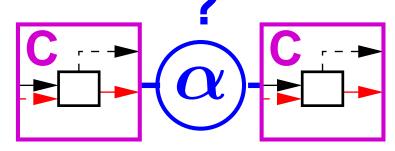


$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \Rightarrow \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S}\sigma_2$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be realized from a communication channel.

Corollary [CF01]: Commitment cannot be realized (from a communication channel).



$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S}\sigma_2 \sigma_$$

Special case: R = channel (neutral element, e.g. $\pi_1 R = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be realized from a communication channel.

Corollary [CF01]: Commitment cannot be realized (from a communication channel).

Corollary: A delayed communication channel cannot be realized (from a communication channel).

$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 \quad \pi_2 \approx \mathbf{S} \\ \pi_1 \quad \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \Rightarrow \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S}$$

Special case: R = channel (neutral element e $\alpha_{-\pi_1}R = \pi_1$ **Note:** Isomorphism is the precisest possible relation between resources, but as such is completely rigid. **Corollary** [CF01]: Commitment cannot be realized (from a communication channel).

Corollary: A delayed communication channel cannot be realized (from a communication channel).

Abstraction of a concept corresponds to a set!

Abstraction of a concept corresponds to a set!

Consider sets \mathcal{R} and \mathcal{S} of resources.

Abstraction of a concept corresponds to a set!

Consider sets \mathcal{R} and \mathcal{S} of resources.

Of special interest: Resources specified by (for each party)

- a guaranteed action space
- a possible action space

Abstraction of a concept corresponds to a set!

Consider sets \mathcal{R} and \mathcal{S} of resources.

Of special interest: Resources specified by (for each party)

- a guaranteed action space
- a possible action space

Definition: S is an abstraction of \mathcal{R} via π :

 $\mathcal{R} \sqsubseteq^{\pi} \mathcal{S} :\iff \forall \mathbf{R} \in \mathcal{R} \ \exists \mathbf{S} \in \mathcal{S} : \ \mathbf{R} \cong^{\pi} \mathbf{S}$

Abstraction of a concept corresponds to a set!

Consider sets \mathcal{R} and \mathcal{S} of resources.

Of special interest: Resources specified by (for each party)

- a guaranteed action space
- a possible action space

Definition: S is an abstraction of \mathcal{R} via π :

 $\mathcal{R} \sqsubseteq^{\pi} \mathcal{S} :\iff \forall \mathbf{R} \in \mathcal{R} \ \exists \mathbf{S} \in \mathcal{S} : \ \mathbf{R} \cong^{\pi} \mathbf{S}$

Theorem: $\mathcal{R} \sqsubseteq^{\pi} \mathcal{S}$ is a universally composable reduction.

The reduction

$$\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$$

is called sequentially composable if

1.
$$\mathbb{R} \xrightarrow{\alpha} \mathbb{S} \wedge \mathbb{S} \xrightarrow{\beta} \mathbb{T} \Rightarrow \mathbb{R} \xrightarrow{\alpha \circ \beta} \mathbb{T}$$

The reduction

$$\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$$

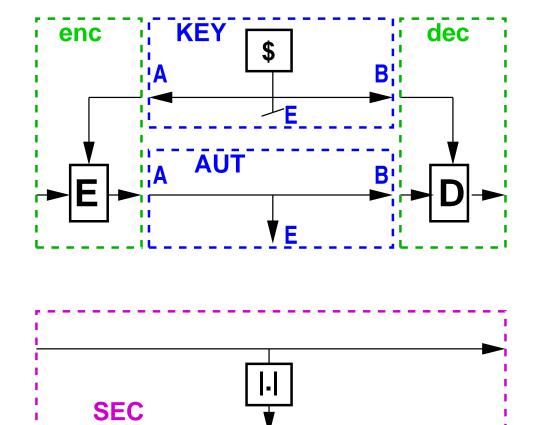
is called sequentially composable if

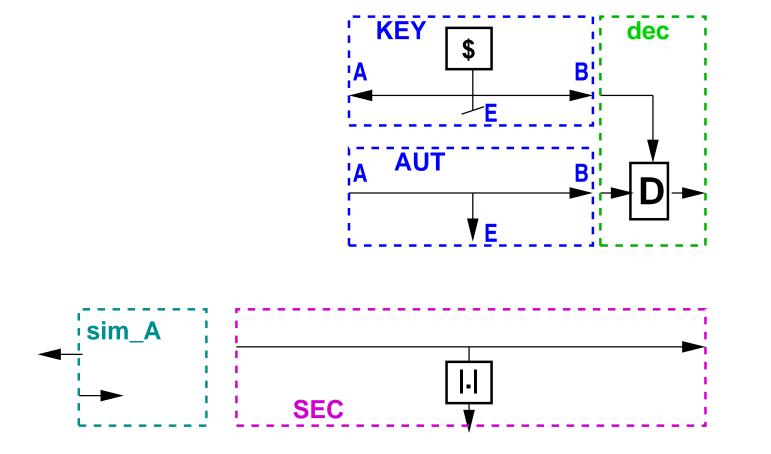
1.
$$\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$$

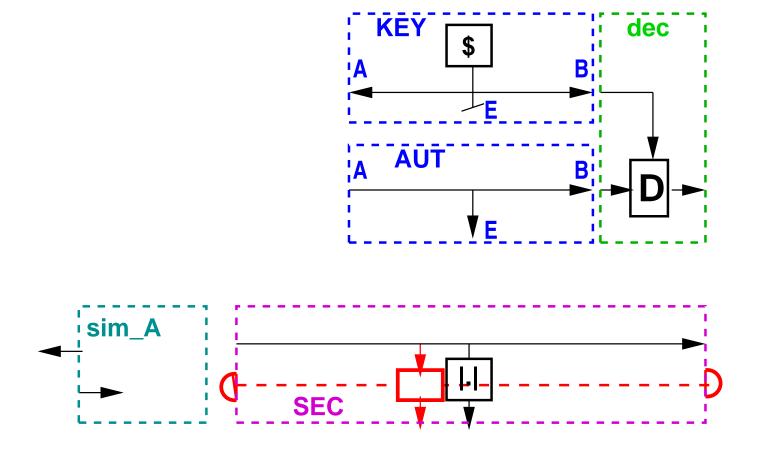
It is called universally composable if in addition:

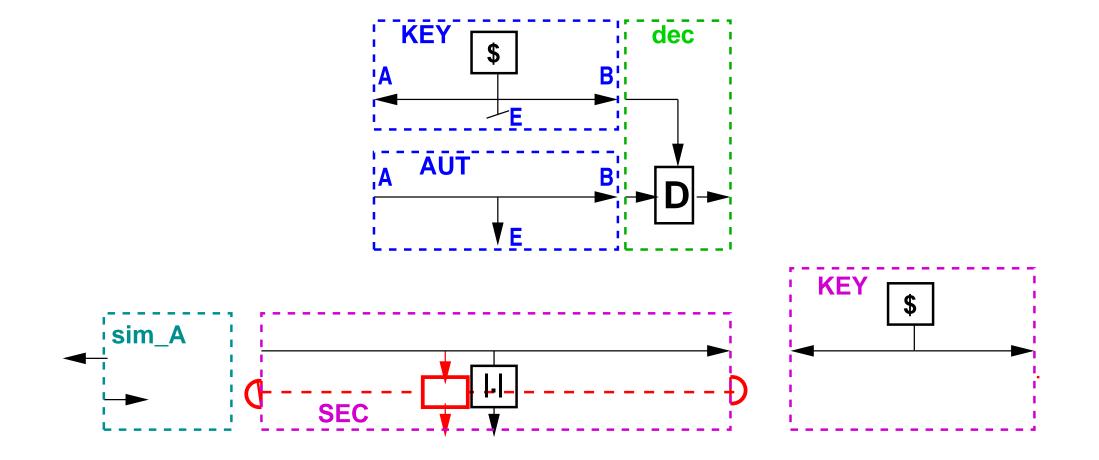
2.
$$\mathbf{R} \xrightarrow{\mathrm{id}} \mathbf{R}$$

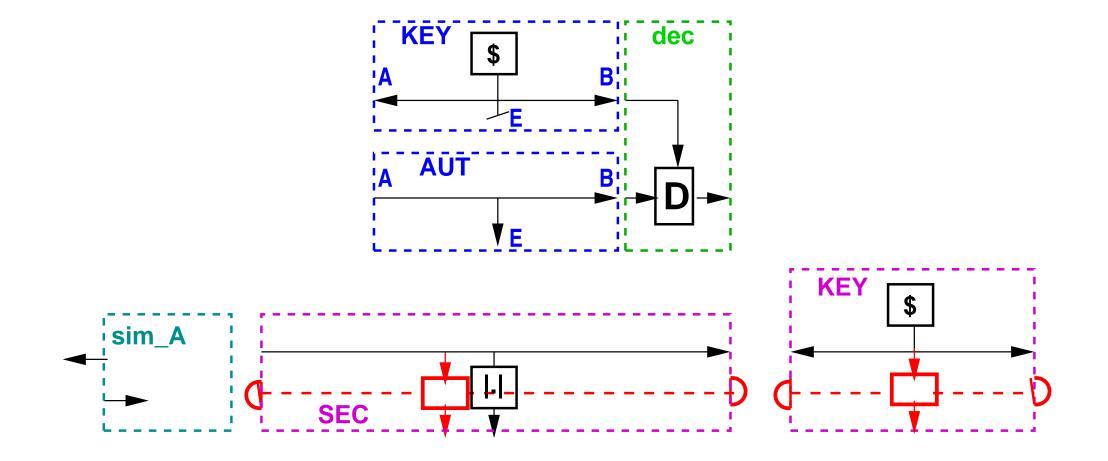
3. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \Rightarrow \mathbf{R} \| \mathbf{T} \xrightarrow{\alpha | \mathrm{id}} \mathbf{S} \|^{2}$

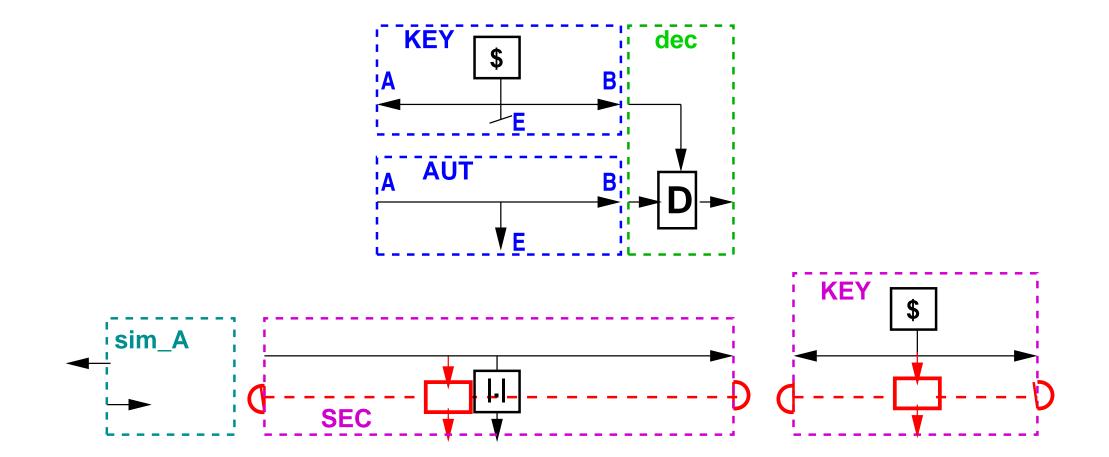












Theorem: An unleakable (uncoercible) secure communication channel cannot be realized from an authenticated channel and a secret key.

• strongest notion of reduction (isomorphism)

- strongest notion of reduction (isomorphism)
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]

- strongest notion of reduction (isomorphism)
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
- communication model, complexity/efficiency notions, treated at lower abstraction levels (not hard-wired)

- strongest notion of reduction (isomorphism)
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
- communication model, complexity/efficiency notions, treated at lower abstraction levels (not hard-wired)
- reductions among resources, all resources captured

- strongest notion of reduction (isomorphism)
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
- communication model, complexity/efficiency notions, treated at lower abstraction levels (not hard-wired)
- reductions among resources, all resources captured
- sets of resources: guaranteed/possible action spaces

- strongest notion of reduction (isomorphism)
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
- communication model, complexity/efficiency notions, treated at lower abstraction levels (not hard-wired)
- reductions among resources, all resources captured
- sets of resources: guaranteed/possible action spaces
- no central adversary \rightarrow local simulators (see [AsV08])

- strongest notion of reduction (isomorphism)
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
- communication model, complexity/efficiency notions, treated at lower abstraction levels (not hard-wired)
- reductions among resources, all resources captured
- sets of resources: guaranteed/possible action spaces
- no central adversary \rightarrow local simulators (see [AsV08])
- general notion of interfaces: consistency domains

- strongest notion of reduction (isomorphism)
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
- communication model. complexity/efficiency notions. ...
 - Let's try to identify the right level of ab-
- straction of what we do in cryptography.
- $\overline{}$ $\overline{$
- no central adversary \rightarrow local simulators (see [AsV08])
- general notion of interfaces: consistency domains