
Context Our Contribution Conclusion

Practical Cryptanalysis of iso/iec 9796-2 and
emv Signatures

Jean-Sébastien Coron1 David Naccache2

Mehdi Tibouchi2 Ralf Philipp Weinmann1

1Université du Luxembourg

2École normale supérieure

CRYPTO 2009

Context Our Contribution Conclusion

Our Results in a Nutshell

• Improve upon a previous attack [CNS99] against ISO 9796-2
signatures by a large factor.

• Conduct the new attack in practice, demonstrating an actual
vulnerability in the ISO 9796-2:2002 standard.

• Show how the attack applies to certain EMV signatures.

Context Our Contribution Conclusion

Our Results in a Nutshell

• Improve upon a previous attack [CNS99] against ISO 9796-2
signatures by a large factor.

• Conduct the new attack in practice, demonstrating an actual
vulnerability in the ISO 9796-2:2002 standard.

• Show how the attack applies to certain EMV signatures.

Context Our Contribution Conclusion

Our Results in a Nutshell

• Improve upon a previous attack [CNS99] against ISO 9796-2
signatures by a large factor.

• Conduct the new attack in practice, demonstrating an actual
vulnerability in the ISO 9796-2:2002 standard.

• Show how the attack applies to certain EMV signatures.

Context Our Contribution Conclusion

Outline

Context
Signing with RSA (or Rabin)
Previous Work

Our Contribution
Building Blocks
Implementation
Application to EMV Signatures

Context Our Contribution Conclusion

Outline

Context
Signing with RSA (or Rabin)
Previous Work

Our Contribution
Building Blocks
Implementation
Application to EMV Signatures

Context Our Contribution Conclusion

RSA Signatures

• Signing using textbook RSA:

σ = m1/e mod N

is a bad idea (e.g. homomorphic properties).

• Therefore, encapsulate m using an encoding function µ:

σ = µ(m)1/e mod N

Context Our Contribution Conclusion

RSA Signatures

• Signing using textbook RSA:

σ = m1/e mod N

is a bad idea (e.g. homomorphic properties).

• Therefore, encapsulate m using an encoding function µ:

σ = µ(m)1/e mod N

Context Our Contribution Conclusion

Encoding functions

• Two kinds of encoding functions:

1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2,
etc. Designed to prevent specific attacks. Often exhibit other
weaknesses.

2. Provably secure encodings: RSA-FDH, RSA-PSS,
Cramer-Shoup, etc. Proven to be secure under well-defined
assumptions.

• Although potentially less secure, ad-hoc encodings remain in
widespread use in real-world applications (including credit
cards, e-passports, etc.). Re-evaluating them periodically is
thus necessary.

Context Our Contribution Conclusion

Encoding functions

• Two kinds of encoding functions:

1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2,
etc. Designed to prevent specific attacks. Often exhibit other
weaknesses.

2. Provably secure encodings: RSA-FDH, RSA-PSS,
Cramer-Shoup, etc. Proven to be secure under well-defined
assumptions.

• Although potentially less secure, ad-hoc encodings remain in
widespread use in real-world applications (including credit
cards, e-passports, etc.). Re-evaluating them periodically is
thus necessary.

Context Our Contribution Conclusion

Encoding functions

• Two kinds of encoding functions:

1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2,
etc. Designed to prevent specific attacks. Often exhibit other
weaknesses.

2. Provably secure encodings: RSA-FDH, RSA-PSS,
Cramer-Shoup, etc. Proven to be secure under well-defined
assumptions.

• Although potentially less secure, ad-hoc encodings remain in
widespread use in real-world applications (including credit
cards, e-passports, etc.). Re-evaluating them periodically is
thus necessary.

Context Our Contribution Conclusion

Encoding functions

• Two kinds of encoding functions:

1. Ad-hoc encodings: PKCS#1 v1.5, ISO 9796-1, ISO 9796-2,
etc. Designed to prevent specific attacks. Often exhibit other
weaknesses.

2. Provably secure encodings: RSA-FDH, RSA-PSS,
Cramer-Shoup, etc. Proven to be secure under well-defined
assumptions.

• Although potentially less secure, ad-hoc encodings remain in
widespread use in real-world applications (including credit
cards, e-passports, etc.). Re-evaluating them periodically is
thus necessary.

Context Our Contribution Conclusion

ISO 9796-2

• The ISO 9796-2 standard defines an ad-hoc encoding with
partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.

Context Our Contribution Conclusion

ISO 9796-2

• The ISO 9796-2 standard defines an ad-hoc encoding with
partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.

Context Our Contribution Conclusion

ISO 9796-2

• The ISO 9796-2 standard defines an ad-hoc encoding with
partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.

Context Our Contribution Conclusion

ISO 9796-2

• The ISO 9796-2 standard defines an ad-hoc encoding with
partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.

Context Our Contribution Conclusion

ISO 9796-2

• The ISO 9796-2 standard defines an ad-hoc encoding with
partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.

Context Our Contribution Conclusion

ISO 9796-2

• The ISO 9796-2 standard defines an ad-hoc encoding with
partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.

Context Our Contribution Conclusion

ISO 9796-2

• The ISO 9796-2 standard defines an ad-hoc encoding with
partial or total message recovery. We only consider partial
message recovery.

• Let k be the size of N. The encoding function has the
following form:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16

with 2 fixed bytes, a digest of kh bits and the first k − kh − 16
bits of m.

• The size of µ(m) is thus always k − 1 bits.

• ISO 9796-2:1997 recommended 128 ≤ kh ≤ 160.
ISO 9796-2:2002 now recommends kh ≥ 160, and EMV uses
kh = 160.

Context Our Contribution Conclusion

Outline

Context
Signing with RSA (or Rabin)
Previous Work

Our Contribution
Building Blocks
Implementation
Application to EMV Signatures

Context Our Contribution Conclusion

The Desmedt-Odlyzko Attack

Suppose the encoded messages µ(m) are relatively short. In
[DO85], Desmedt and Odlyzko proposed the following attack.

1. Choose a bound B and let p1, . . . , p` be the primes smaller
than B.

2. Find `+ 1 messages mi such that the µ(mi) are B-smooth:

µ(mi) = p
vi,1

1 · · · pvi,`

`

3. Obtain a linear dependence relation between the exponent
vectors vi = (vi ,1 mod e, . . . , vi ,` mod e) and deduce the
expression of one µ(mj) as a multiplicative combination of the
µ(mi), i 6= j .

4. Ask for the signatures of the mi and forge the signature of mj .

Context Our Contribution Conclusion

The Desmedt-Odlyzko Attack

Suppose the encoded messages µ(m) are relatively short. In
[DO85], Desmedt and Odlyzko proposed the following attack.

1. Choose a bound B and let p1, . . . , p` be the primes smaller
than B.

2. Find `+ 1 messages mi such that the µ(mi) are B-smooth:

µ(mi) = p
vi,1

1 · · · pvi,`

`

3. Obtain a linear dependence relation between the exponent
vectors vi = (vi ,1 mod e, . . . , vi ,` mod e) and deduce the
expression of one µ(mj) as a multiplicative combination of the
µ(mi), i 6= j .

4. Ask for the signatures of the mi and forge the signature of mj .

Context Our Contribution Conclusion

The Desmedt-Odlyzko Attack

Suppose the encoded messages µ(m) are relatively short. In
[DO85], Desmedt and Odlyzko proposed the following attack.

1. Choose a bound B and let p1, . . . , p` be the primes smaller
than B.

2. Find `+ 1 messages mi such that the µ(mi) are B-smooth:

µ(mi) = p
vi,1

1 · · · pvi,`

`

3. Obtain a linear dependence relation between the exponent
vectors vi = (vi ,1 mod e, . . . , vi ,` mod e) and deduce the
expression of one µ(mj) as a multiplicative combination of the
µ(mi), i 6= j .

4. Ask for the signatures of the mi and forge the signature of mj .

Context Our Contribution Conclusion

The Desmedt-Odlyzko Attack

Suppose the encoded messages µ(m) are relatively short. In
[DO85], Desmedt and Odlyzko proposed the following attack.

1. Choose a bound B and let p1, . . . , p` be the primes smaller
than B.

2. Find `+ 1 messages mi such that the µ(mi) are B-smooth:

µ(mi) = p
vi,1

1 · · · pvi,`

`

3. Obtain a linear dependence relation between the exponent
vectors vi = (vi ,1 mod e, . . . , vi ,` mod e) and deduce the
expression of one µ(mj) as a multiplicative combination of the
µ(mi), i 6= j .

4. Ask for the signatures of the mi and forge the signature of mj .

Context Our Contribution Conclusion

The Coron-Naccache-Stern Attack

• The ISO 9796-2 encoding µ(m) has full size, so the [DO85]
attack doesn’t apply.

• However, Coron et al. noticed that the attack generalizes to
the case where, for some fixed a, the ti = a · µ(mi) mod N are
small.

• Moreover, they show that for a = 28, one can choose the
message prefix m[1] such that all the corresponding
a · µ(m) mod N are of size ≤ kh + 16 bits.

• Attacking the instances kh = 128 and kh = 160 requires 254

and 261 operations respectively.

Context Our Contribution Conclusion

The Coron-Naccache-Stern Attack

• The ISO 9796-2 encoding µ(m) has full size, so the [DO85]
attack doesn’t apply.

• However, Coron et al. noticed that the attack generalizes to
the case where, for some fixed a, the ti = a · µ(mi) mod N are
small.

• Moreover, they show that for a = 28, one can choose the
message prefix m[1] such that all the corresponding
a · µ(m) mod N are of size ≤ kh + 16 bits.

• Attacking the instances kh = 128 and kh = 160 requires 254

and 261 operations respectively.

Context Our Contribution Conclusion

The Coron-Naccache-Stern Attack

• The ISO 9796-2 encoding µ(m) has full size, so the [DO85]
attack doesn’t apply.

• However, Coron et al. noticed that the attack generalizes to
the case where, for some fixed a, the ti = a · µ(mi) mod N are
small.

• Moreover, they show that for a = 28, one can choose the
message prefix m[1] such that all the corresponding
a · µ(m) mod N are of size ≤ kh + 16 bits.

• Attacking the instances kh = 128 and kh = 160 requires 254

and 261 operations respectively.

Context Our Contribution Conclusion

The Coron-Naccache-Stern Attack

• The ISO 9796-2 encoding µ(m) has full size, so the [DO85]
attack doesn’t apply.

• However, Coron et al. noticed that the attack generalizes to
the case where, for some fixed a, the ti = a · µ(mi) mod N are
small.

• Moreover, they show that for a = 28, one can choose the
message prefix m[1] such that all the corresponding
a · µ(m) mod N are of size ≤ kh + 16 bits.

• Attacking the instances kh = 128 and kh = 160 requires 254

and 261 operations respectively.

Context Our Contribution Conclusion

Outline

Context
Signing with RSA (or Rabin)
Previous Work

Our Contribution
Building Blocks
Implementation
Application to EMV Signatures

Context Our Contribution Conclusion

Building Blocks of Our Attack

We improve upon [CNS99] using the following techniques.

1. Bernstein’s batch smoothness detection algorithm: we use the
technique of [B04] to find smooth numbers in a large
collection of integers much faster than trial division (speed-up
factor ≈ 1000).

2. The large prime variant: we looked for semi-smooth numbers
in addition to smooth numbers to obtain additional relations
(speed-up factor ≈ 1.4).

3. Smaller ti values: in [CNS99], ti = a · µ(mi) mod N with
a = 28; we show that a careful choice of a depending on N
yields smaller ti values (speed-up factor ≈ 2).

4. Exhaustive search: we reduce the size of ti further by selecting
messages whose hash values match a certain bit pattern
(speed-up factor ≈ 2).

Context Our Contribution Conclusion

Building Blocks of Our Attack

We improve upon [CNS99] using the following techniques.

1. Bernstein’s batch smoothness detection algorithm: we use the
technique of [B04] to find smooth numbers in a large
collection of integers much faster than trial division (speed-up
factor ≈ 1000).

2. The large prime variant: we looked for semi-smooth numbers
in addition to smooth numbers to obtain additional relations
(speed-up factor ≈ 1.4).

3. Smaller ti values: in [CNS99], ti = a · µ(mi) mod N with
a = 28; we show that a careful choice of a depending on N
yields smaller ti values (speed-up factor ≈ 2).

4. Exhaustive search: we reduce the size of ti further by selecting
messages whose hash values match a certain bit pattern
(speed-up factor ≈ 2).

Context Our Contribution Conclusion

Building Blocks of Our Attack

We improve upon [CNS99] using the following techniques.

1. Bernstein’s batch smoothness detection algorithm: we use the
technique of [B04] to find smooth numbers in a large
collection of integers much faster than trial division (speed-up
factor ≈ 1000).

2. The large prime variant: we looked for semi-smooth numbers
in addition to smooth numbers to obtain additional relations
(speed-up factor ≈ 1.4).

3. Smaller ti values: in [CNS99], ti = a · µ(mi) mod N with
a = 28; we show that a careful choice of a depending on N
yields smaller ti values (speed-up factor ≈ 2).

4. Exhaustive search: we reduce the size of ti further by selecting
messages whose hash values match a certain bit pattern
(speed-up factor ≈ 2).

Context Our Contribution Conclusion

Building Blocks of Our Attack

We improve upon [CNS99] using the following techniques.

1. Bernstein’s batch smoothness detection algorithm: we use the
technique of [B04] to find smooth numbers in a large
collection of integers much faster than trial division (speed-up
factor ≈ 1000).

2. The large prime variant: we looked for semi-smooth numbers
in addition to smooth numbers to obtain additional relations
(speed-up factor ≈ 1.4).

3. Smaller ti values: in [CNS99], ti = a · µ(mi) mod N with
a = 28; we show that a careful choice of a depending on N
yields smaller ti values (speed-up factor ≈ 2).

4. Exhaustive search: we reduce the size of ti further by selecting
messages whose hash values match a certain bit pattern
(speed-up factor ≈ 2).

Context Our Contribution Conclusion

Building Blocks of Our Attack

We improve upon [CNS99] using the following techniques.

1. Bernstein’s batch smoothness detection algorithm: we use the
technique of [B04] to find smooth numbers in a large
collection of integers much faster than trial division (speed-up
factor ≈ 1000).

2. The large prime variant: we looked for semi-smooth numbers
in addition to smooth numbers to obtain additional relations
(speed-up factor ≈ 1.4).

3. Smaller ti values: in [CNS99], ti = a · µ(mi) mod N with
a = 28; we show that a careful choice of a depending on N
yields smaller ti values (speed-up factor ≈ 2).

4. Exhaustive search: we reduce the size of ti further by selecting
messages whose hash values match a certain bit pattern
(speed-up factor ≈ 2).

Context Our Contribution Conclusion

Outline

Context
Signing with RSA (or Rabin)
Previous Work

Our Contribution
Building Blocks
Implementation
Application to EMV Signatures

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Setup stage: on a single PC, negligible time.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Sieving stage: on Amazon EC2, 1100 CPU hours, 2 days.

Context Our Contribution Conclusion

Overview of the Experiment

We implemented the attack for N = rsa-2048, e = 2 and
hash = sha-1. The attack step by step:

1. Determine the constants a, m[1], etc.

2. Compute the product of the first ` primes (` = 220).

3. Compute ti = a · µ(mi) mod N, and hence sha-1(mi), for
many messages mi .

4. Find the smooth and semi-smooth ti ’s.

5. Factor the smooth integers and colliding pairs of semi-smooth
integers, obtaining the sparse matrix of exponents.

6. Reduce modulo e.

7. Find nontrivial vectors in the kernel of the reduced matrix.

Linear algebra stage: on a PC, a few hours.

Context Our Contribution Conclusion

Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.

Context Our Contribution Conclusion

Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.

Context Our Contribution Conclusion

Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.

Context Our Contribution Conclusion

Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.

Context Our Contribution Conclusion

Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.

Context Our Contribution Conclusion

Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.

Context Our Contribution Conclusion

Results of the Experiment

1. 16,230,259,553,940 (≈ 244) digest computations.

2. 739,686,719,488 (≈ 239) ti ’s in 647,901 batches of 219 each.

3. 684,365 smooth ti ’s and 366,302 collisions between 2,786,327
semi-smooth ti ’s.

4. 1,050,667-column matrix (220 + 1 = 1,048,577 needed).

5. Algebra on 839,908 columns having > 1 nonzero entries.

6. 124 kernel vectors.

7. Forgery involving 432,903 signatures.

Context Our Contribution Conclusion

Cost Estimates

Not counting speed-ups by exhaustive search, the CPU time and
equivalent “Amazon cost” of our attack for various sizes of ti
should be as follows.

a = log2 ti log2 ` Estimated Time log2 τ EC2 cost (us$)

64 11 15 seconds 20 negligible
128 19 4 days 33 10

160 21 6 months 38 470

170 22 1.8 years 40 1,620

176 23 3.8 years 41 3,300

204 25 95 years 45 84,000

232 27 19 centuries 49 1,700,000

256 30 320 centuries 52 20,000,000

Context Our Contribution Conclusion

Outline

Context
Signing with RSA (or Rabin)
Previous Work

Our Contribution
Building Blocks
Implementation
Application to EMV Signatures

Context Our Contribution Conclusion

The EMV Data Formats

• The EMV specifications define several message formats for
signing data related to payment cards with ISO 9796-2.

• For example, SDA-IPKD consists of messages of the following
form:

m = 0216‖X‖Y ‖Ni‖0316
including 2 fixed bytes, 7 bytes Y that cannot be controlled
by the adversary, and other bits controlled by the adversary.

• Other formats are similar, but not all of them are vulnerable.

Context Our Contribution Conclusion

The EMV Data Formats

• The EMV specifications define several message formats for
signing data related to payment cards with ISO 9796-2.

• For example, SDA-IPKD consists of messages of the following
form:

m = 0216‖X‖Y ‖Ni‖0316
including 2 fixed bytes, 7 bytes Y that cannot be controlled
by the adversary, and other bits controlled by the adversary.

• Other formats are similar, but not all of them are vulnerable.

Context Our Contribution Conclusion

The EMV Data Formats

• The EMV specifications define several message formats for
signing data related to payment cards with ISO 9796-2.

• For example, SDA-IPKD consists of messages of the following
form:

m = 0216‖X‖Y ‖Ni‖0316
including 2 fixed bytes, 7 bytes Y that cannot be controlled
by the adversary, and other bits controlled by the adversary.

• Other formats are similar, but not all of them are vulnerable.

Context Our Contribution Conclusion

The EMV Data Formats

• The EMV specifications define several message formats for
signing data related to payment cards with ISO 9796-2.

• For example, SDA-IPKD consists of messages of the following
form:

m = 0216‖X‖Y ‖Ni‖0316
including 2 fixed bytes, 7 bytes Y that cannot be controlled
by the adversary, and other bits controlled by the adversary.

• Other formats are similar, but not all of them are vulnerable.

Context Our Contribution Conclusion

The EMV Data Formats

• The EMV specifications define several message formats for
signing data related to payment cards with ISO 9796-2.

• For example, SDA-IPKD consists of messages of the following
form:

m = 0216‖X‖Y ‖Ni‖0316
including 2 fixed bytes, 7 bytes Y that cannot be controlled
by the adversary, and other bits controlled by the adversary.

• Other formats are similar, but not all of them are vulnerable.

Context Our Contribution Conclusion

The EMV Data Formats

• The EMV specifications define several message formats for
signing data related to payment cards with ISO 9796-2.

• For example, SDA-IPKD consists of messages of the following
form:

m = 0216‖X‖Y ‖Ni‖0316
including 2 fixed bytes, 7 bytes Y that cannot be controlled
by the adversary, and other bits controlled by the adversary.

• Other formats are similar, but not all of them are vulnerable.

Context Our Contribution Conclusion

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

µ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16

• Since the adversary cannot completely choose m, adapt the
attack by finding a and X such that ti = a · µ(mi) mod N is
small. Possible to find such an a < 236.

• The size of ti is then 204 bits, corresponding to a $84,000
attack on Amazon ($45,000 with 8-bit exhaustive search).
The search for a costs an additional $11,000. Within reach!

• However, the CA for payment cards will not sign thousands of
chosen messages: not an immediate threat to EMV cards.

Context Our Contribution Conclusion

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

µ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16

• Since the adversary cannot completely choose m, adapt the
attack by finding a and X such that ti = a · µ(mi) mod N is
small. Possible to find such an a < 236.

• The size of ti is then 204 bits, corresponding to a $84,000
attack on Amazon ($45,000 with 8-bit exhaustive search).
The search for a costs an additional $11,000. Within reach!

• However, the CA for payment cards will not sign thousands of
chosen messages: not an immediate threat to EMV cards.

Context Our Contribution Conclusion

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

µ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16

• Since the adversary cannot completely choose m, adapt the
attack by finding a and X such that ti = a · µ(mi) mod N is
small. Possible to find such an a < 236.

• The size of ti is then 204 bits, corresponding to a $84,000
attack on Amazon ($45,000 with 8-bit exhaustive search).
The search for a costs an additional $11,000. Within reach!

• However, the CA for payment cards will not sign thousands of
chosen messages: not an immediate threat to EMV cards.

Context Our Contribution Conclusion

Attacking EMV

• With ISO 9796-2 encoding, SDA-IPKD gives:

µ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16

• Since the adversary cannot completely choose m, adapt the
attack by finding a and X such that ti = a · µ(mi) mod N is
small. Possible to find such an a < 236.

• The size of ti is then 204 bits, corresponding to a $84,000
attack on Amazon ($45,000 with 8-bit exhaustive search).
The search for a costs an additional $11,000. Within reach!

• However, the CA for payment cards will not sign thousands of
chosen messages: not an immediate threat to EMV cards.

Context Our Contribution Conclusion

Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?

Context Our Contribution Conclusion

Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?

Context Our Contribution Conclusion

Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?

Context Our Contribution Conclusion

Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?

Context Our Contribution Conclusion

Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?

Context Our Contribution Conclusion

Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?

Context Our Contribution Conclusion

Conclusion

• Forging ISO 9796-2 signatures using a 160-bit hash function is
now easily feasible.

• Therefore, ISO 9796-2:2002 should be phased out.

• Signature encodings based on this standard, such as EMV, are
potentially vulnerable.

• Outlook
• Implement further speed-ups (faster hashing, more large

primes)?
• Defeat ratification counters?
• Predict forgery size?

Context Our Contribution Conclusion

Thank you!

	Context
	Signing with RSA (or Rabin)
	Previous Work

	Our Contribution
	Building Blocks
	Implementation
	Application to EMV Signatures

	Conclusion

