

What constitutes an identity?

Your public key

Your biometric

Ζ

X

PK

- Email ID
 abc@gmail.com
- How about where you are?

Geographical Position as an Identity

- We trust physical security
- Guarantee that those inside a particular geographical region are good

US Military Base in Iraq

Other Applications

- Position-based Authentication: guarantee that a message came from a person at a particular geographical position
- Position-based access control: allow access to resource only if user is at particular geographical position

Many more....

Problem (informally)

- A set of verifiers present at various geographical positions in space
- A prover present at some geographical position P

GOAL: Exchange a key with the prover if and only if prover is in fact at position P

Secure Positioning

- Set of verifiers wish to verify the position claim of a prover at position P
- Run an interactive protocol with the prover at P to verify this
- Studied in wireless security [SSW03, B04, SP05, CH05, CCS06]

Talk Outline

- Vanilla ModelSecure Positioning
 - Impossible in vanilla model
 - Positive information-theoretic results in the Bounded Retrieval Model
- Position-based Key Exchange
 - Positive information-theoretic results in the BRM

Vanilla Model

Lower Bound

Theorem: There does not exist any protocol to achieve secure positioning in the Vanilla model

Corollary: Position-based key exchange is impossible in the Vanilla model

Lower bound implications

- Secure positioning and hence positionbased cryptography is <u>impossible</u> in Vanilla model (even with computational assumptions!)
- Search for alternate models where position-based cryptography is possible?

CONSTRUCTIONS & PROOFS

Bounded Retrieval Model (BRM) [Maurer'92, Dziembowski06, CLW06]

- Assumes long string X (of length n and high minentropy) in the sky or generated by some party
- Assumes all parties (including honest) have retrieval bound β n for some 0< β <1
- Adversaries can retrieve any information from X as long as the total information retrieved is bounded

Several works have studied the model in great detail

BRM in the context of Positionbased Cryptography

Verifiers can broadcast HUGE X Note that Adversaries can NOT "reflect" X (violates BRM framework)

To make things more clear

 Computation is instantaneous – modern GPS perform computation while using speed of light assumption (relaxation → error in position)

 Huge X travels in its entirety when broadcast and not as a stream (again, relaxation → error in position)

Physically realizing BRM

- Seems reasonable that an adversary can only retrieve small amount of information as a string passes by
- Verifiers could split X and broadcast the portions on different frequencies.
- Adversary cannot listen on all frequencies

BSM/BRM primitives needed

- Locally computable PRG from [Vad04]
- PRG takes as input string X with high minentropy and short seed K
- PRG(X,K) ≈ Uniform, even given K and A(X) for arbitrary bounded output length function A

P₁ closer to V₁ than P, but has only A(X) and K
P₂ can compute PRG(X,K), but farther away from V₁ than P

Secure Positioning in 3-Dimensional Space

- First, we will make an UNREASONABLE assumption...
- Then show how to get rid of it!

Secure Positioning in 3-Dimensional Space

- Security will follow from security of position based based key exchange protocol presented later
- What about correctness??

X₃

Secure Positioning in 3-Dimensional Space ELIMINATING CHEATING: Protocol when Verifiers cannot store X_i's

V₁, V₂, V₃, V₄ pick K₁, K₂, K₃, K₄ at random before protocol

- Now, Verifiers know K₄; they must help prover compute it
- V₁ broadcasts K₁
- V_2 broadcasts X_1 and $K_2' = PRG(X_1, K_1)$ xor K_2
- V_3 broadcasts X_2 and $K_3' = PRG(X_2, K_2)$ xor K_3
- V_4 broadcasts X_3 and $K_4' = PRG(X_3, K_3)$ xor K_4

Verifiers secret share K_is and broadcast one share according to X_is

Secure Positioning: Bottom line

- We can do secure positioning in 3D in the bounded retrieval model
- We can obtain a protocol even if there is a small variance in delivery time when small positioning error is allowed

What else can we do in this model?

What about key agreement?

Seems like no adversary can compute PRG(X₂, K₂) Intuition works!!

Proof Ideas

Part 1: Geometric Arguments

• A lemma ruling out any adversary simultaneously receiving all messages of the verifiers

Characterizes regions within convex hull where position-based key exchange is possible

 Combination of information that obtain

o characterize It positions can

Proof Ideas

Part 2: Extractor Arguments

 Build on techniques from Intrusion-Resilient Random Secret Sharing scheme of Dziembowski-Pietrzak [DP07]

 Show a reduction of the security of our protocol to a (slight) generalization of [DP07] allowing multiple adversaries working in parallel

A REMINDER: Intrusion-Resilient Random Secret Sharing Scheme (IRRSS) [DP07]

- K₁ is chosen at random and given to S₁
- S_i computes K_{i+1} = PRG(X_i, K_i) and sends K_{i+1} to S_{i+1}
- S_n outputs key K_{n+1}

Bounded adversary can corrupt a sequence of players (with repetition) as long as sequence is valid

Valid sequence does not contain $S_1, S_2, ..., S_n$ as a subsequence Eg: If n = 5; $\underline{1}34\underline{2}54\underline{34}12\underline{5}$ is invalid, but 134525435 is valid

Then, K_{n+1} is statistically close to uniform

Reduction to IRRSS

P₁: corrupts S₄ P₂: corrupts S₃ P₃: corrupts S₄, S₃, S₁

All adversaries given K_1 for free

Reduction to IRRSS

- For every adversary A that receives information only from a verifier (not from other adversaries), we show a *corresponding* adversary B for [DP07] with valid corruption sequence C.
- If the *corresponding* adversary for *A* has an invalid corruption sequence in [DP07], then *A* must have received info from all verifiers simultaneously (Not possible by geometric lemma)
- Given two adversaries A₁ and A₂ with corresponding adversaries B₁ and B₂ (in [DP07]) and sequences C₁ and C₂, show how to get corresponding adversary B for A₁ U A₂ with corruption sequence C.

Conclusions

• WE HAVE SHOWN IN THE PAPER:

- Position based Key Exchange in BRM for entire convex hull region (but computational security)
- Protocol for position based Public Key Infrastructure
- Protocol for position based MPC
- OPEN:
 - Other models?
 - (Quantum: [C-Fehr-Goyal-Ostrovsky'09])
 - Other applications of position-based crypto?

Thank you

Full version available at http://eprint.iacr.org/2009/364