

Mohammad Mahmoody-Ghidary

Joint work with **Boaz Barak**

Merkle Puzzles are Optimal.

Spoiler: Key Exchange, Random Oracle, The Result

Key Exchange:

Security: For every eavesdropping Eve outputting k_{EVE} : $\Pr[k_{EVE} = \text{key}] \approx 0$

Random oracle model: All parties have *black-box* access to a random function $H:\{0,1\}^n \rightarrow \{0,1\}^n$

Our Result: $\forall n$ -query protocol, $\exists O(n^2)$ -query Eve: $\Pr[k_{EVE} = \text{key}] \approx 1$

Merkle '74: $\exists n$ -query protocol (using some puzzles!), $\forall o(n^2)$ -query Eve: $\Pr[k_{EVE} = \text{key}] \approx 0$

Rest of the Talk

Part I: Some History and Merkle's Protocol

Part II: Our Attack's Description & Analysis

History I – Modern Crypto

- \rightarrow 1974: Merkle's Key-Exch scheme w/ $\Omega(n^2)$ security (using his puzzles) Could be formalized in Random Oracle Model
- 1976: Diffie-Hellman's Key-Exch scheme (related to discrete log)
 - 1978: Rivest-Shamir-Addleman (related to factoring).
- → 1779: Rabin (exactly based on Factoring!)
 - During 80': What are the minimal assumptions?...

History II – Postmodern Crypto

>> 80'--: One-way function effect. => : Priv-Key, Dig-Sign, ZK, PRG, PRF, PRP Commitments,...

1989: Impagliazzo-Rudich No "black-box way" to get Key-Exch from OWF [Sim98, GKMRV00, GMR01, Fis02, HR04, HH09, KST99, GT00, GGK03, HK05, LTW05, HHRS07,BMG07, BMG08,]

The Main Step in [IR89]:

Break any Key-Exch in Random Oracle Model w/ $O(n^6)$ queries

→ Main Thm: \forall Key-Exch protocol w/ *n* queries to RO, \exists **ADV** asking $O(n^2)$ queries, $\Pr[ADV \text{ finds key}] \approx 1$

Cor : Merkle's scheme ['74] is optimal in OR model. Also [BIG08] is optimal (using exp-hard OWF).

Merkle's Protocol

Alice	Bob
Pick k_1, \dots, k_n at rand	
Put k_i in puzzle P_i	Take the puzzles
Sent $P_1, \dots P_n$ Bob	from Alice
	Solve a random P_j to get k_j

Main Thm: $\forall n$ -query protocol, $\exists O(n^2)$ -query Eve s.t. $\Pr[k_{EVE} = \text{key}] \approx 1$

Puzzles : Solving a fixed P_i takes time n^2 Solving a random P_i takes time n

w/ Random Oracle *H*: $P_j = H(k_j)$ Choose k_i from S where $|S| = n^2$

In fact: The Latter is Merkle's original scheme (not published) and the puzzles above are only "similar" to his actual puzzle scheme published in '78....

6

Rest of the Talk

Part I: Some History and Merkle's Protocol

Part II: Our Attack's Description & Analysis

Intro to Attack

• *A*: Alice's view : (Bob's view *B* is similar)

 rand_A + { $m_1, m_2...$ } + Q_A (her oracle queries)

- output same keys \Rightarrow A and B are correlated.
- Eve's view E: rand_E + { $m_1, m_2...$ } + Q_E (her oracle queries)
- Hope: E contains all the cor between A and B: (A|E), $(B|E) \approx$ indep then if Eve samples A' conditioned on $E \Rightarrow \Pr[k_A' = k_B] = \Pr[k_A = k_B]$

Alice

 k_A

Bob

 k_B

m₁

m₂

 m_{3}

- One Idea : Ask the whole oracle H ! (bad: 2ⁿ queries)
- Our Attack: (1) : If (*) $Q_A \cap Q_B \subset Q_E$ hold \Rightarrow make (A|E), (B|E) \approx indep (2) : make (*) $Q_A \cap Q_B \subset Q_E$ always hold by only $O(n^2)$ queries.
- [IR89]: (1) if (*) \Rightarrow "Cor($A \mid E$, $B \mid E$) = 0" or "a pot.func" increases. (2) make (*) hold with $O(n^6)$ queries.

The Attack.

Attack's Algorithm:

Assume that (*) $Q_A \cap Q_B \subset Q_E$ so far. Conditioned on Eve's info -- and(*): If $\exists q \text{ s.t. } \Pr[q \in Q_A \cup Q_B] \ge 1 / (1000n) \Rightarrow \text{Eve asks } q$

A : Alice's view so far B : Bob's view so far Q_A, Q_B, Q_E : their oracle queries.

We "will see": (cond on *E*): dist *A* and dist *B* become "almost" indep . \Rightarrow Eve can find key.

We won't see but true!:

 $|Q_E| \leq O(n^2)$ (Attack is efficient)

Alice & Bob's distributions as a Graph

Attack's Algorithm:

Assume that (*) $Q_A \cap Q_B \subset Q_E$ so far. Conditioned on Eve's info -- and(*): If \exists q s.t. $\Pr[q \in Q_A \cup Q_B] \ge 1 / (1000n) \Rightarrow$ Eve asks q

A : Alice's view so far B : Bob's view so far Q_A, Q_B, Q_E : their oracle queries.

Let S_A be queries asked by A and not by Eve
S_B be queries asked by B and not by Eve
Note : If S_A ∩ S_B ≠ Ø ⇒ Pr[(A,B)] = 0
Claim: If S_A ∩ S_B = 0 ⇒ Pr[(A,B)] = p_A · p_B
Now: dist (A, B) is choosing random edge (A~B) !

Pure Combinatorics!

Lemma:

 $A \sim B$ iff $S_A \cap S_B = \emptyset$ for $|S_A|, |S_B| \leq n$ and $\forall q, \quad \Pr_{(A,B) \in E(G)}[q \in S_A \cup S_B] \leq 1/(1000n)$ Then every vertex in G is connected to at least 99% of the other side.

Corollary:

sampling a random edge $A \sim B$ is almost same as choosing A and B independently.

Open Questions

 O(n²) bound for random permutations (we improve [IR89]'s O(n¹²) bound to O(n⁴))

can also consider ideal cipher, other "symmetric" primitives.

- Rule out a "classical" const with non-trivial (i.e., ω(n)) security w.r.t. *quantum* attacks? [BrassardSalvail08, BihamIshaiGoren08]
- Find non-black-box constructions of key exchange from one-way functions.

Thank You!