
Batch binary Edwards

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498



Nonnegative elements of Z:

0 meaning 0

1 meaning 20

10 meaning 21

11 meaning 20 + 21

100 meaning 22

101 meaning 20 + 22

110 meaning 21 + 22

111 meaning 20 + 21 + 22

1000 meaning 23

1001 meaning 20 + 23

1010 meaning 21 + 23

etc.

Addition: 2e + 2e = 2e+1.

Multiplication: 2e2f = 2e+f .



Elements of F2[t]:
0 meaning 0

1 meaning t0
10 meaning t1
11 meaning t0 + t1

100 meaning t2
101 meaning t0 + t2
110 meaning t1 + t2
111 meaning t0 + t1 + t2

1000 meaning t3
1001 meaning t0 + t3
1010 meaning t1 + t3

etc.

Addition: te + te = 0.

Multiplication: tetf = te+f .



Modular arithmetic in Z:

e.g., Z=12 = f0; 1; : : : ; 11g
with +, � reduced mod 12.

Modular arithmetic in F2[t]:
e.g., F2[t]=(t4 + t) =�
0; 1; : : : ; t3 + t2 + t + 1

	

with +, � reduced mod t4 + t.
Primes of Z: 2; 3; 5; 7; 11; : : :.
Primes of F2[t]: t; t + 1;

t2 + t + 1; t3 + t + 1; : : :.
Can build finite fields from

arithmetic modulo primes.

e.g. Z=(2127 � 1).

e.g. F2[t]=(t127 + t + 1).



Many decades of literature

have explored number-theoretic

analogies between Z and F2[t].
Often F2[t] is simpler than Z.

e.g. Breaking F2[t] RSA is

much faster than breaking Z RSA.

Fastest known algorithm

to compute prime factors

of a b-bit element of Z:

worst-case time 2b1=3+o(1)
.

Fastest known algorithm

to compute prime factors

of a b-bit element of F2[t]:
time 2(
+o(1)) lg b with 
 < 2.



In some cryptographic contexts,

F2[t] and Z have same security.

e.g. Message authentication

using shared secret key.

Take k = Z=(2127 � 1)

or k = F2[t]=(t127 + t + 1).

Message m 2 k[x].

One-time key (r; s) 2 k2:

use for only one message!

Authenticator s + rm(r) 2 k.

Standard security proof )
chance of successful forgery

< 2�128 �#fattack bitsg.



Hardware designers prefer F2[t]
because its costs are lower

for the same security level.

Example: GMAC, inside GCM.

Lack of carries (te + te = 0)

makes addition and multiplication

smaller and faster; also makes

squaring much smaller and faster.



Hardware designers prefer F2[t]
because its costs are lower

for the same security level.

Example: GMAC, inside GCM.

Lack of carries (te + te = 0)

makes addition and multiplication

smaller and faster; also makes

squaring much smaller and faster.

But software is different!

For many years, Z has held

crypto software speed records.

Examples: Poly1305, UMAC.



Why is Z faster than F2[t]?
Standard answer: CPUs are

designed for video games,

movie decompression, etc.

These applications rely heavily

on multiplication in Z.

CPUs devote large area to

Z multiplication circuits,

speeding up these applications.

Conventional wisdom:

Advantages of F2[t]
are outweighed by speed of

CPU’s built-in Z multipliers,

especially big 64-bit multipliers.



Next generation of Intel CPUs

devote some circuit area to

F2[t] multiplier “PCLMULQDQ”.

Maybe still slower than Z,

but maybe fast enough to make

F2[t] set new speed records

for some crypto applications.



Next generation of Intel CPUs

devote some circuit area to

F2[t] multiplier “PCLMULQDQ”.

Maybe still slower than Z,

but maybe fast enough to make

F2[t] set new speed records

for some crypto applications.

This talk: New speed records

for elliptic-curve cryptography

on current Intel CPUs.

These records use F2[t].



User: busy server bottlenecked

by public-key cryptography.

Throughput: tens of thousands

of n; P 7! nP per second.

Latency: a few milliseconds.

Software handles input batch

(n1; P1); (n2; P2); : : : ; (n128; P128).

No need for related inputs.

Security level: � 2128,

assuming standard conjectures;

twist-secure; constant-time.

Free software: binary.cr.yp.to



New software is bitsliced.

Advantage: low-cost shifts.

Disadvantage: high-cost branches.

Low-cost shifts allow

very fast squarings, reductions.

Low-cost shifts minimize

overhead for Karatsuba etc.

See paper for details of

improved Karatsuba, Toom;

often 20% fewer operations

than previous literature.



What about branches?

2007 Bernstein–Lange:

The Edwards addition law

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.

works for all inputs

on the Edwards curve

x2 + y2 = 1 + dx2y2 over Z=p
if d is non-square in Z=p.
Also extremely fast.



Completeness helps against

various side-channel attacks;

simplifies implementations;

and helps bitslicing.

Same for binary curves?



Completeness helps against

various side-channel attacks;

simplifies implementations;

and helps bitslicing.

Same for binary curves?

2008 B.–L.–Rezaeian Farashahi:

Fast complete addition on

“binary Edwards curve”

d(x+x2+y+y2) = (x+x2)(y+y2)

over field F2[t]=(� � �)
if x2 + x + d has no roots.



Continuing work on fast F2[t]:
1. Subfield applications.

Maybe � 1:5� faster ECC?

2. Genus-2 applications.

Maybe � 1:5� faster than ECC?

3. Better code scheduling.

Maybe � 2� faster?

4. Other curve applications;

e.g., faster ECC2K-130.

5. Other crypto applications;

e.g., faster McEliece.


