How to Hash into Elliptic Curves

Thomas Icart

thomas.icart@m4x.org

18/08/2009

- Hashing into elliptic curves is needed:
 - 1 In the IBE scheme of Boneh-Franklin (2001).
 - 2 In some Password Based protocols over elliptic curves.

- Hashing into elliptic curves is needed:
 - 1 In the IBE scheme of Boneh-Franklin (2001).
 - In some Password Based protocols over elliptic curves.
- Boneh-Franklin uses a particular super-singular curve on which hashing is easy

- Hashing into elliptic curves is needed:
 - 1 In the IBE scheme of Boneh-Franklin (2001).
 - In some Password Based protocols over elliptic curves.
- Boneh-Franklin uses a particular super-singular curve on which hashing is easy
- Efficient password based protocols such as the Simple Password Exponential Key Exchange (SPEKE) [Jab 1996] need hash function into ordinary curves.

Definition (Notations)

An elliptic curve $E_{a,b}$ is the set of points verifying the equation:

$$X^3 + aX + b = Y^2$$

over a field \mathbb{F}_p . The number of points in $E_{a,b}$ is N.

- Related Works
 - Try and Increment
 - Supersingular
 - SW
 - Wanted
- 2 Proposal
 - Definition
 - Idea
 - Properties
- 3 Hashing
 - Preimage
 - Collision

Hashing into Finite Fields

 Hashing into finite field in deterministic polynomial time is easy.

Hashing into Finite Fields

 Hashing into finite field in deterministic polynomial time is easy.

Lemma

- Let p be a safe prime (p = 2q + 1).
- Let H be a |p|-bit one-way hash function

Hashing into Finite Fields

 Hashing into finite field in deterministic polynomial time is easy.

Lemma

- Let p be a safe prime (p = 2q + 1).
- Let H be a |p|-bit one-way hash function
- Then $H(m)^2 \mod p$ is a **one-way** hash function into the prime order subgroup of \mathbb{F}_p .

Hashing into Elliptic Curves

 Hashing into elliptic curves in deterministic polynomial time is much harder.

Hashing into Elliptic Curves

- Hashing into elliptic curves in deterministic polynomial time is much harder.
- It requires a deterministic function from the base field to $E_{a,b}$
- The classical point generation algorithm is not deterministic.

- Related Works
 - Try and Increment
 - Supersingular
 - SW
 - Wanted

- - Definition
 - Idea
 - Properties
- - Preimage
 - Collision

Try and Increment Algorithm

Input: u an integer.

Output: Q, a point of $E_{a,b}(\mathbb{F}_p)$.

- **1** For i = 0 to k 1
 - **1** Set x = u + i
 - ② If $x^3 + ax + b$ is a quadratic residue in \mathbb{F}_p , then return $Q = (x, (x^3 + ax + b)^{1/2})$
- end For
- Return ⊥

Try and Increment Algorithm

Input: u an integer.

Output: Q, a point of $E_{a,b}(\mathbb{F}_p)$.

- **1** For i = 0 to k 1
 - Set x = u + i
 - ② If $x^3 + ax + b$ is a quadratic residue in \mathbb{F}_p , then return $Q = (x, (x^3 + ax + b)^{1/2})$
- end For
- Return ⊥

The running time depends on u. This leads to partition attacks [BMN 2001].

Partition Attacks

• When u is related to the password π , different passwords lead to different running times T.

Partition Attacks

- When u is related to the password π , different passwords lead to different running times T.
- Example: $u = H(\pi, PK_C, PK_R)$ in SPEKE.

Partition Attacks

- When u is related to the password π , different passwords lead to different running times T.
- Example: $u = H(\pi, PK_C, PK_R)$ in SPEKE.
- A partition of the password dictionary is possible following the different T.

Making the Try and Increment algorithm constant time:

Making the Try and Increment algorithm constant time: Input: u an integer.

Output: Q, a point of $E_{a,b}(\mathbb{F}_p)$.

- **1** For i = 0 to k 1
 - **1** Set x = u + i
 - ② If $x^3 + ax + b$ is a quadratic residue in \mathbb{F}_p , then store $Q = (x, (x^3 + ax + b)^{1/2})$
- end For
- Return Q

Making the Try and Increment algorithm constant time: Input: u an integer.

Output: Q, a point of $E_{a,b}(\mathbb{F}_p)$.

- **1** For i = 0 to k 1

 - ② If $x^3 + ax + b$ is a quadratic residue in \mathbb{F}_p , then store $Q = (x, (x^3 + ax + b)^{1/2})$
- end For
- Return Q

The running time is $\mathcal{O}(\log^3 p)$ in general. When using exponentiation for testing quadratic residuosity, running time in $\mathcal{O}(\log^4 p)$.

Supersingular Elliptic Curve

Definition

A curve $E_{0,b}$:

$$X^3 + b = Y^2 \mod p$$

with $p = 2 \mod 3$ has p + 1 points and is supersingular.

Supersingular Elliptic Curve

Definition

A curve $E_{0,b}$:

$$X^3 + b = Y^2 \mod p$$

with $p = 2 \mod 3$ has p + 1 points and is supersingular.

• The function $u \mapsto ((u^2 - b)^{1/3 \mod p - 1}, u)$ is a bijection from \mathbb{F}_p to $E_{0,b}$.

Supersingular Elliptic Curve

Definition

A curve $E_{0,b}$:

$$X^3 + b = Y^2 \mod p$$

with $p = 2 \mod 3$ has p + 1 points and is supersingular.

- The function $u \mapsto ((u^2 b)^{1/3 \mod p 1}, u)$ is a bijection from \mathbb{F}_p to $E_{0,b}$.
- Because of the MOV attacks, larger p should be used (512 bits instead of 160 bits).

Previous work:

- Shallue-Woestijne's deterministic algorithm for generating EC points.
- Our algorithm is different, simpler and is an explicit function.

Andrew Shallue and Christiaan van de Woestijne: Construction of Rational Points on Elliptic Curves over Finite Fields. ANTS 2006

A function *f* with the following properties:

It only requires the elliptic curves parameters,

A function *f* with the following properties:

- It only requires the elliptic curves parameters,
- f requires a constant number of finite field operations (exponentiations, multiplications, additions)

A function *f* with the following properties:

- It only requires the elliptic curves parameters,
- f requires a constant number of finite field operations (exponentiations, multiplications, additions)
- f^{-1} can be computed in polynomial time. This ensures that computing the **discrete logarithm of** f(x) **is hard for any** x.

A function *f* with the following properties:

- It only requires the elliptic curves parameters,
- f requires a constant number of finite field operations (exponentiations, multiplications, additions)
- f^{-1} can be computed in polynomial time. This ensures that computing the **discrete logarithm of** f(x) **is hard for any** x.

- - Try and Increment
 - Supersingular
 - SW
 - Wanted

- 2 Proposal
 - Definition
 - Idea
 - Properties

- - Preimage
 - Collision

The New Function

Fact

- Over fields such that $p = 2 \mod 3$, the map $x \mapsto x^3$ is a bijection.
- In particular: $x^{1/3} = x^{(2p-1)/3}$.
- This operation can be computed in a constant numbers of operations for a constant p.

The New Function

Definition

$$f_{a,b}: \mathbb{F}_p \mapsto (\mathbb{F}_p)^2 \cup \{\mathcal{O}\}$$

 $u \mapsto (x, y = ux + v)$

$$x = \left(v^2 - b - \frac{u^6}{27}\right)^{1/3} + \frac{u^2}{3}$$

$$y = ux + v$$

$$v = \frac{3a - u^4}{6u}$$

Fact

When $p = 2 \mod 3$, degree 3 polynomials $(x - \alpha)^3 - \beta$ have a unique root: $\beta^{1/3} + \alpha$

Fact

When $p = 2 \mod 3$, degree 3 polynomials $(x - \alpha)^3 - \beta$ have a unique root: $\beta^{1/3} + \alpha$

• Idea: Assume that y = ux + v, find v(u) such that:

$$x^3 + ax + b - (ux + v(u))^2 = (x - \alpha(u))^3 - \beta(u)$$

From the elliptic curve equation and y = ux + v:

$$x^3 + ax + b = u^2x^2 + 2uvx + v^2 = (ux + v)^2$$

From the elliptic curve equation and y = ux + v:

$$x^{3} + ax + b = u^{2}x^{2} + 2uvx + v^{2} = (ux + v)^{2}$$

 $x^{3} - u^{2}x^{2} + (a - 2uv)x + b - v^{2} = 0$

From the elliptic curve equation and y = ux + v:

$$x^{3} + ax + b = u^{2}x^{2} + 2uvx + v^{2} = (ux + v)^{2}$$

$$x^{3} - u^{2}x^{2} + (a - 2uv)x + b - v^{2} = 0$$

$$\left(x - \frac{u^{2}}{3}\right)^{3} + x\left(a - 2uv - \frac{u^{4}}{3}\right) = v^{2} - b - \frac{u^{6}}{27}$$

The idea

$$\left(x - \frac{u^2}{3}\right)^3 + x\left(a - 2uv - \frac{u^4}{3}\right) = v^2 - b - \frac{u^6}{27}$$

Let

$$v = \frac{3a - u^4}{6u}$$

The idea

$$\left(x - \frac{u^2}{3}\right)^3 + x\left(a - 2uv - \frac{u^4}{3}\right) = v^2 - b - \frac{u^6}{27}$$

Let

$$v = \frac{3a - u^4}{6u}$$

This implies:

$$\left(x - \frac{u^2}{3}\right)^3 = v^2 - b - \frac{u^6}{27}$$

Therefore, we can recover x and y = ux + v

Let P = (x, y) be a point on the curve $E_{a,b}$.

Lemma

The solutions u_s of $f_{a,b}(u_s) = P$ are the solutions of the equation:

$$u^4 - 6u^2x + 6uy - 3a = 0.$$

Let P = (x, y) be a point on the curve $E_{a,b}$.

Lemma

The solutions u_s of $f_{a,b}(u_s) = P$ are the solutions of the equation:

$$u^4 - 6u^2x + 6uy - 3a = 0.$$

This implies that:

- $f_{a,b}^{-1}(P)$ is computable in polynomial time,
- $|f_{a,b}^{-1}(P)| \le 4$, for all $P \in E_{a,b}$
- 3 $|\text{Im}(f_{a,b})| > p/4$

•
$$|\text{Im}(f_{a,b})| > p/4$$

Conjecture

There exists a constant λ such that for any p, a, b

$$\left||\operatorname{Im}(f_{a,b})| - \frac{5}{8} \left| E_{a,b}(\mathbb{F}_p) \right|\right| \le \lambda \sqrt{p}$$

•
$$|\text{Im}(f_{a,b})| > p/4$$

Conjecture

There exists a constant λ such that for any p, a, b

$$\left| |\operatorname{Im}(f_{a,b})| - \frac{5}{8} |E_{a,b}(\mathbb{F}_p)| \right| \le \lambda \sqrt{p}$$

This enables to prove that $(u_1, u_2) \mapsto f_{a,b}(u_1) + f_{a,b}(u_2)$ is a surjective function.

- - Try and Increment
 - Supersingular
 - SW
 - Wanted

- - Definition
 - Idea
 - Properties
- Hashing
 - Preimage
 - Collision

Hashing into Elliptic Curves

We here focus on standard properties for hash functions:

- Resistance against Preimage Attacks
- Resistance against Collision Attacks

Preimage Resistance

Lemma

If h is a one-way hash function then $H(m) = f_{a,b}(h(m))$ is a one-way hash function into elliptic curves.

Preimage Resistance

Lemma

If h is a one-way hash function then $H(m) = f_{a,b}(h(m))$ is a one-way hash function into elliptic curves.

Idea:

- \bullet $f_{a,b}$ is invertible
- 2 Its preimage size is at most 4

Fact

A collision to $H(m) = f_{a,b}(h(m))$ is either:

- **1** A collision to h: m and m' such that h(m) = h(m')
- ② A collision to $f_{a,b}$: m and m' such that $h(m) \neq h(m')$ and $f_{a,b}(h(m)) = f_{a,b}(h(m'))$

Fact

A collision to $H(m) = f_{a,b}(h(m))$ is either:

- **1** A collision to h: m and m' such that h(m) = h(m')
- ② A collision to $f_{a,b}$: m and m' such that $h(m) \neq h(m')$ and $f_{a,b}(h(m)) = f_{a,b}(h(m'))$
 - We did not find a way to prove the collision resistance of $f_{a,b}(h)$ from the collision resistance of h

Fact

A collision to $H(m) = f_{a,b}(h(m))$ is either:

- **1** A collision to h: m and m' such that h(m) = h(m')
- ② A collision to $f_{a,b}$: m and m' such that $h(m) \neq h(m')$ and $f_{a,b}(h(m)) = f_{a,b}(h(m'))$
 - We did not find a way to prove the collision resistance of $f_{a,b}(h)$ from the collision resistance of h
 - We thus propose a 2nd construction.

• **Heuristically**, for sufficiently small value of u, $f_{a,b}(u)$ is collision free.

- **Heuristically**, for sufficiently small value of u, $f_{a,b}(u)$ is collision free.
- We use pair-wise independent functions to get a **probabilistic** result (i.e. a non-heuristic one). [CW 1981]

- **Heuristically**, for sufficiently small value of u, $f_{a,b}(u)$ is collision free.
- We use pair-wise independent functions to get a **probabilistic** result (i.e. a non-heuristic one). [CW 1981]

Definition (Pair-wise Independent Function)

A family of functions $g: \mathbb{F}_p \mapsto \mathbb{F}_p$ is pair-wise independent if given any couple (x_1, x_2) with $x_1 \neq x_2$ and any couple (u_1, u_2) , $\Pr_g[g(x_1) = u_1 \land g(x_2) = u_2]$ is negligible.

• The affine functions $x \mapsto c.x + d$ for $(c, d) \in (\mathbb{F}_p \times \mathbb{F}_p)$ are pair-wise independent functions

- The affine functions $x \mapsto c.x + d$ for $(c,d) \in (\mathbb{F}_p \times \mathbb{F}_p)$ are pair-wise independent functions
- For sufficiently small value of x, $f_{a,b}(c.x+d)$ is collision free with a very high probability.

- The affine functions $x \mapsto c.x + d$ for $(c, d) \in (\mathbb{F}_p \times \mathbb{F}_p)$ are pair-wise independent functions
- For sufficiently small value of x, $f_{a,b}(c.x+d)$ is collision free with a very high probability.

Lemma

For a random choice of c, d, the function $m \mapsto f_{a,b}(c.h(m) + d)$ is collision resistant with a high probability for a good choice of size parameter assuming that h is collision resistant.

- The affine functions $x \mapsto c.x + d$ for $(c,d) \in (\mathbb{F}_p \times \mathbb{F}_p)$ are pair-wise independent functions
- For sufficiently small value of x, $f_{a,b}(c.x+d)$ is collision free with a very high probability.

Lemma

For a random choice of c, d, the function $m \mapsto f_{a,b}(c.h(m) + d)$ is collision resistant with a high probability for a good choice of size parameter assuming that h is collision resistant.

• If h(m) is a 160-bit hash function, $f_{a,b}(c,h(m)+d)$ is collision resistant if p is a 400-bit integer.

- Related Works
 - Try and Increment
 - Supersingular
 - SW
 - Wanted

- 2 Proposal
 - Definition
 - Idea
 - Properties
- 3 Hashing
 - Preimage
 - Collision

• $f_{a,b}$ enables to deterministically generate points into elliptic curves.

- $f_{a,b}$ enables to deterministically generate points into elliptic curves.
- $f_{a,b}$ exists in characteristic 2.

- $f_{a,b}$ enables to deterministically generate points into elliptic curves.
- $f_{a,b}$ exists in characteristic 2.
- When the cofactor $r \neq 1$, $r.f_{a,b}$ can be used to hash into the subgroup of the curves.

- f_{a,b} enables to deterministically generate points into elliptic curves.
- $f_{a,b}$ exists in characteristic 2.
- When the cofactor $r \neq 1$, $r.f_{a,b}$ can be used to hash into the subgroup of the curves.
- $f_{a,b}$ is based on cube root extraction: over RSA rings, generating a point into elliptic curves only requires a cube root oracle.

- f_{a,b} enables to deterministically generate points into elliptic curves.
- $f_{a,b}$ exists in characteristic 2.
- When the cofactor $r \neq 1$, $r.f_{a,b}$ can be used to hash into the subgroup of the curves.
- $f_{a,b}$ is based on cube root extraction: over RSA rings, generating a point into elliptic curves only requires a cube root oracle.
- f_{a,b} can be used on any curve model (Edwards Curve, etc) whenever the model is birationally equivalent to the Weierstrass model.

Thank You

Thank You

Questions?