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Introduction

Hashing into elliptic curves is needed:
1 In the IBE scheme of Boneh-Franklin (2001).
2 In some Password Based protocols over elliptic curves.

Boneh-Franklin uses a particular super-singular curve on which
hashing is easy

Efficient password based protocols such as the Simple
Password Exponential Key Exchange (SPEKE) [Jab 1996]
need hash function into ordinary curves.
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Introduction

Definition (Notations)

An elliptic curve Ea,b is the set of points verifying the equation:

X 3 + aX + b = Y 2

over a field Fp. The number of points in Ea,b is N.
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Hashing into Finite Fields

Hashing into finite field in deterministic polynomial time is
easy.

Lemma

Let p be a safe prime (p = 2q + 1).

Let H be a |p|-bit one-way hash function

Then H(m)2 mod p is a one-way hash function into the
prime order subgroup of Fp.
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Hashing into Elliptic Curves

Hashing into elliptic curves in deterministic polynomial time is
much harder.

It requires a deterministic function from the base field to Ea,b

The classical point generation algorithm is not deterministic.
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Try and Increment Algorithm

Input: u an integer.
Output: Q, a point of Ea,b(Fp).

1 For i = 0 to k − 1
1 Set x = u + i
2 If x3 + ax + b is a quadratic residue in Fp, then return

Q = (x , (x3 + ax + b)1/2)

2 end For

3 Return ⊥

The running time depends on u. This leads to partition attacks
[BMN 2001].
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Partition Attacks

When u is related to the password π, different passwords lead
to different running times T .

Example: u = H(π,PKC ,PKR) in SPEKE.

A partition of the password dictionary is possible following the
different T .
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Possible solutions

Making the Try and Increment algorithm constant time:

Input: u an integer.
Output: Q, a point of Ea,b(Fp).

1 For i = 0 to k − 1
1 Set x = u + i
2 If x3 + ax + b is a quadratic residue in Fp, then store

Q = (x , (x3 + ax + b)1/2)

2 end For

3 Return Q

The running time is O(log3 p) in general. When using
exponentiation for testing quadratic residuosity, running time in
O(log4 p).
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Supersingular Elliptic Curve

Definition

A curve E0,b:
X 3 + b = Y 2 mod p

with p = 2 mod 3 has p + 1 points and is supersingular.

The function u 7→ ((u2 − b)1/3 mod p−1, u) is a bijection from
Fp to E0,b.

Because of the MOV attacks, larger p should be used (512
bits instead of 160 bits).
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Possible solutions

Previous work:

Shallue-Woestijne’s deterministic algorithm for generating EC
points.

Our algorithm is different, simpler and is an explicit function.

Andrew Shallue and Christiaan van de Woestijne: Construction of
Rational Points on Elliptic Curves over Finite Fields. ANTS 2006
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What do we want?

A function f with the following properties:

It only requires the elliptic curves parameters,

f requires a constant number of finite field operations
(exponentiations, multiplications, additions)

f −1 can be computed in polynomial time. This ensures that
computing the discrete logarithm of f (x) is hard for any x .
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The New Function

Fact

Over fields such that p = 2 mod 3, the map x 7→ x3 is a
bijection.

In particular: x1/3 = x (2p−1)/3.

This operation can be computed in a constant numbers of
operations for a constant p.
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The New Function

Definition

fa,b : Fp 7→ (Fp)2 ∪ {O}
u 7→ (x , y = ux + v)

x =

(
v 2 − b − u6

27

)1/3

+
u2

3
y = ux + v

v =
3a− u4

6u
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The idea

Fact

When p = 2 mod 3, degree 3 polynomials (x − α)3 − β have a
unique root: β1/3 + α

Idea: Assume that y = ux + v , find v(u) such that:

x3 + ax + b − (ux + v(u))2 = (x − α(u))3 − β(u)
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The idea

From the elliptic curve equation and y = ux + v :

x3 + ax + b = u2x2 + 2uvx + v 2 = (ux + v)2

x3 − u2x2 + (a− 2uv)x + b − v 2 = 0(
x − u2

3

)3

+ x

(
a− 2uv − u4

3

)
= v 2 − b − u6

27
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The idea
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3

)3

+ x

(
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3

)
= v 2 − b − u6

27

Let

v =
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This implies: (
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3

)3
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Therefore, we can recover x and y = ux + v
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Properties

Let P = (x , y) be a point on the curve Ea,b.

Lemma

The solutions us of fa,b(us) = P are the solutions of the equation:

u4 − 6u2x + 6uy − 3a = 0.

This implies that:

1 f −1
a,b (P) is computable in polynomial time,

2

∣∣∣f −1
a,b (P)

∣∣∣ ≤ 4, for all P ∈ Ea,b

3 |Im (fa,b)| > p/4

T. Icart How to Hash into Elliptic Curves



Introduction Related Works Proposal Hashing Conclusion Definition Idea Properties

Properties

Let P = (x , y) be a point on the curve Ea,b.

Lemma

The solutions us of fa,b(us) = P are the solutions of the equation:

u4 − 6u2x + 6uy − 3a = 0.

This implies that:

1 f −1
a,b (P) is computable in polynomial time,

2

∣∣∣f −1
a,b (P)

∣∣∣ ≤ 4, for all P ∈ Ea,b

3 |Im (fa,b)| > p/4

T. Icart How to Hash into Elliptic Curves



Introduction Related Works Proposal Hashing Conclusion Definition Idea Properties

Properties

|Im (fa,b)| > p/4

Conjecture

There exists a constant λ such that for any p, a, b∣∣∣∣|Im(fa,b)| − 5

8
|Ea,b(Fp)|

∣∣∣∣ ≤ λ√p

This enables to prove that (u1, u2) 7→ fa,b(u1) + fa,b(u2) is a
surjective function.
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Hashing into Elliptic Curves

We here focus on standard properties for hash functions:

Resistance against Preimage Attacks

Resistance against Collision Attacks
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Preimage Resistance

Lemma

If h is a one-way hash function then H(m) = fa,b(h(m)) is a
one-way hash function into elliptic curves.

Idea:

1 fa,b is invertible

2 Its preimage size is at most 4

T. Icart How to Hash into Elliptic Curves



Introduction Related Works Proposal Hashing Conclusion Preimage Collision

Preimage Resistance

Lemma

If h is a one-way hash function then H(m) = fa,b(h(m)) is a
one-way hash function into elliptic curves.

Idea:

1 fa,b is invertible

2 Its preimage size is at most 4

T. Icart How to Hash into Elliptic Curves



Introduction Related Works Proposal Hashing Conclusion Preimage Collision

Collision Resistance

Fact

A collision to H(m) = fa,b(h(m)) is either:

1 A collision to h: m and m′ such that h(m) = h(m′)

2 A collision to fa,b: m and m′ such that h(m) 6= h(m′) and
fa,b(h(m)) = fa,b(h(m′))

We did not find a way to prove the collision resistance of
fa,b(h) from the collision resistance of h

We thus propose a 2nd construction.
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Collision Resistance

Heuristically, for sufficiently small value of u, fa,b(u) is
collision free.

We use pair-wise independent functions to get a probabilistic
result (i.e. a non-heuristic one). [CW 1981]

Definition (Pair-wise Independent Function)

A family of functions g : Fp 7→ Fp is pair-wise independent if given
any couple (x1, x2) with x1 6= x2 and any couple (u1, u2),
Prg [g(x1) = u1 ∧ g(x2) = u2] is negligible.
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The affine functions x 7→ c.x + d for (c, d) ∈ (Fp × Fp) are
pair-wise independent functions

For sufficiently small value of x , fa,b(c.x + d) is collision
free with a very high probability.

Lemma

For a random choice of c, d, the function m 7→ fa,b(c.h(m) + d) is
collision resistant with a high probability for a good choice of size
parameter assuming that h is collision resistant.

If h(m) is a 160-bit hash function, fa,b(c.h(m) + d) is collision
resistant if p is a 400-bit integer.
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Conclusion

fa,b enables to deterministically generate points into elliptic
curves.

fa,b exists in characteristic 2.

When the cofactor r 6= 1, r .fa,b can be used to hash into the
subgroup of the curves.

fa,b is based on cube root extraction: over RSA rings,
generating a point into elliptic curves only requires a cube
root oracle.

fa,b can be used on any curve model (Edwards Curve, etc)
whenever the model is birationally equivalent to the
Weierstrass model.
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curves.

fa,b exists in characteristic 2.

When the cofactor r 6= 1, r .fa,b can be used to hash into the
subgroup of the curves.

fa,b is based on cube root extraction: over RSA rings,
generating a point into elliptic curves only requires a cube
root oracle.

fa,b can be used on any curve model (Edwards Curve, etc)
whenever the model is birationally equivalent to the
Weierstrass model.
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