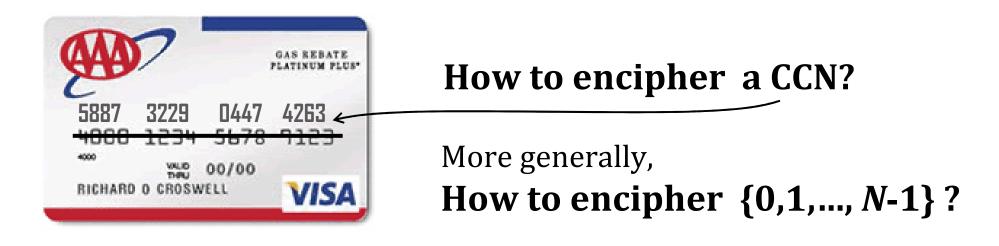
How to Encipher Messages on a Small Domain Deterministic Encryption and the Thorp Shuffle

Ben Morris University of California, Davis Dept of Mathematics

Phil Rogaway Till Stegers University of California, Davis Dept of Computer Science

CRYPTO 2009 — August 18, 2009



A special case of *Format-Preserving Encryption* (FPE) [Brightwell, Smith 97; Spies 08; Bellare, Ristenpart, R, Steger 09]

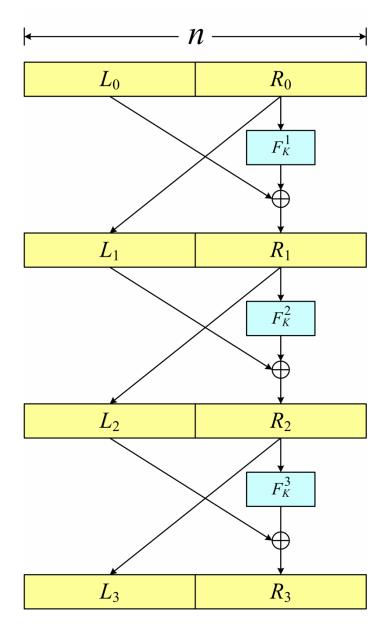
PRFPRP
$$F: \mathcal{K} ` \{0,1\}^{128} \rightarrow \{0,1\}^{128}$$
 \blacktriangleright $E: \mathcal{K} ` \{0,1,..., N-1\} \rightarrow : \{0,1,..., N-1\}$

Known technique

Limitation

• Balanced Feistel [Luby, Rackoff 88; Maurer, Pietrzak 03; Patari • Benes construction [Aiello, Venkatesan 96; Patarin 08] • Feistel adapted to $Z_a \ Z_b$ [Black Rogaway 02]	n 04] Poor proven bounds for small <i>N</i>	
 Induced ordering on AES_K(0),, AES_K(N-1) "Knuth shuffle" 	Preprocessing time Ω(<i>N)</i>	
• Cycle walking [Folklore; Black Rogaway02] For enciphering on $\mathcal{X} \subseteq \mathcal{M}$ when $ \mathcal{X} / \mathcal{M} $ is reasonably large		
 <i>De novo</i> constructions [Schroeppel 98] Provable security <i>Ad hoc</i> modes [FIPS 74: 1981, Brightwell, Smith 97; Mattsson 09] not possible 		
• Wide-block modes [Naor, Reingold 99; Halevi 04] block	Starts beyond cipher's blocksize	
• Granboulan-Pornin construction [GP 07]	Very inefficient	

What's wrong with balanced Feistel? $N = 2^n$

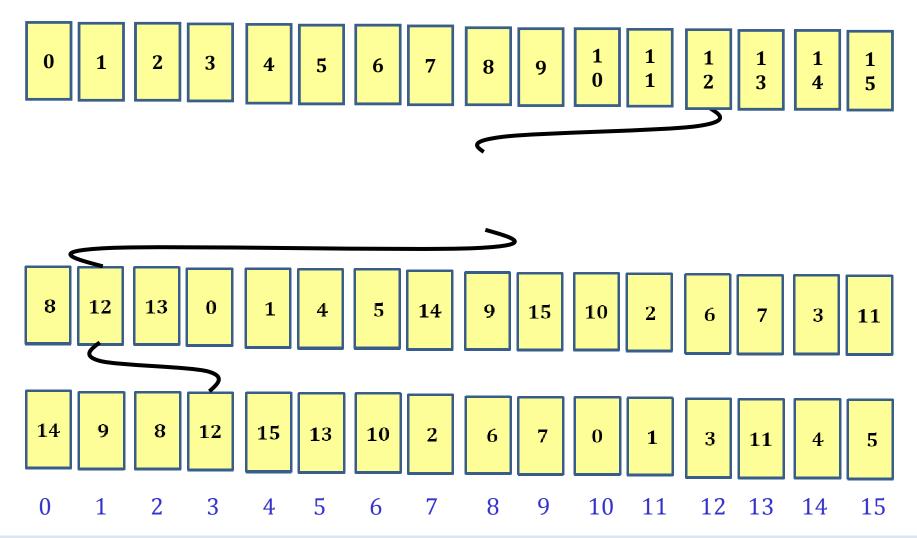


In practice, probably **nothing**. But, information theoretically, it only tolerates $2^{n/2}$ queries

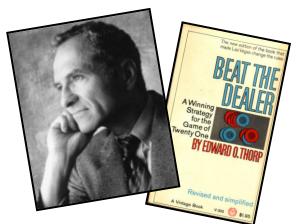
Approximate security bounds

[Luby, Rackoff 88] (3 and 4 rounds)	$2^{n/4}$
[Maurer, Pietrzak 03] (<i>R</i> rounds)	$2^{n/2} - 1/R$
[Patarin 04] (asymptotic)	$2^{n/2-\varepsilon}$
	Attacks
For constant rounds	$2^{n/2}$
For <i>R</i> rounds	$2^{n/2 + \lg R}$

Encrypting by shuffling



[Naor ~1989] An **oblivious** shuffle: you can follow the path of a card without attending to the other cards. The riffle shuffle is **not** oblivious. The **Thorp shuffle** is.



[Thorp 73]

Thorp Shuffle

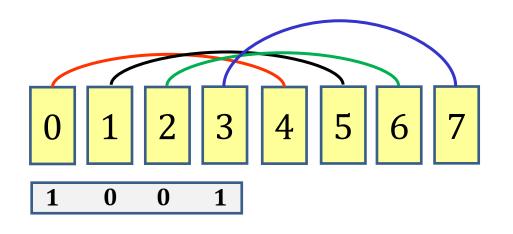
Edward Thorp

To shuffle a deck of *N* cards (*N* even):

```
For round r = 1, 2, ..., R do
```

- Cut the deck exactly in half
- Using a fair coin toss *c*, drop left-then-right (*c*=0) or right-then-left (*c*=1)

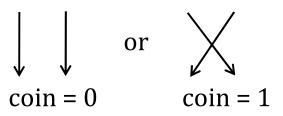
One round of the Thorp shuffle



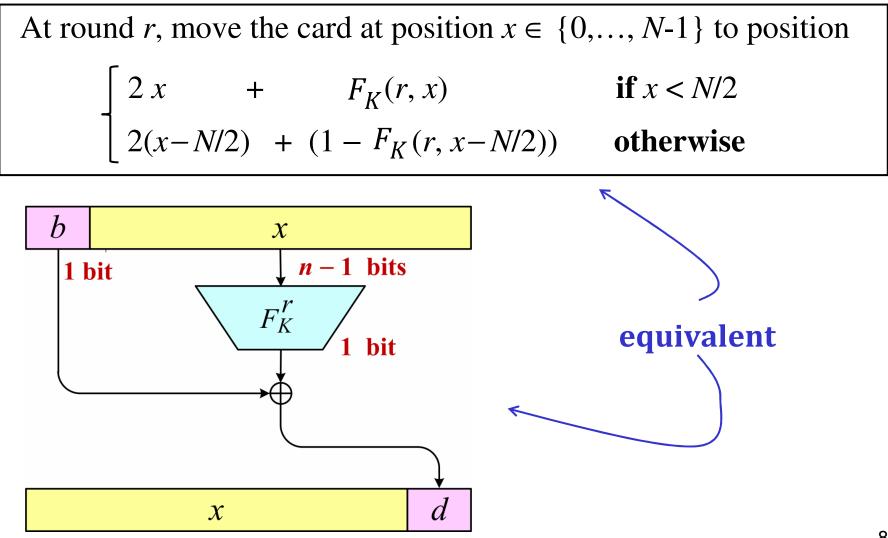
1. Cards at positions x and x + N/2 are said to be **adjacent**

2. Flip a coin for each pair of adjacent cards

3. The coins indicate if adjacent cards get moved



Thorp shuffle = maximally unbalanced Feistel when $N = 2^n$



Measuring adversarial success

$$E = \mathrm{Th}[N, R]$$

$$E_{K}(\times) \qquad \pi(\times)$$

$$A \qquad A$$

$$E_{K}^{-1}(\times) \qquad \pi^{-1}(\times)$$

strong PRP
Adv_{N,R}^{cca} (q) =
$$\max_{A \in CCA(q)}$$
 Pr[$A \xrightarrow{E_K} \xrightarrow{E_K^{-1}} \rightarrow 1$] – Pr[$A \xrightarrow{\pi \pi^{-1}} \rightarrow 1$]

nonadaptive PRP

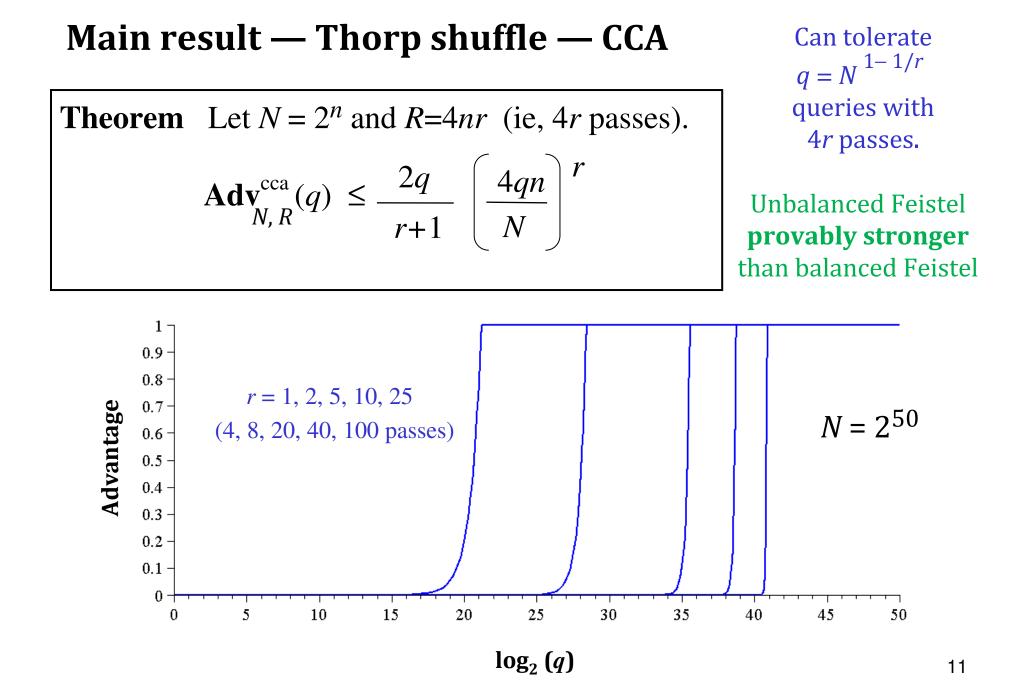
$$Adv_{N,R}^{ncpa}(q) = \max_{A \in NCPA(q)} Pr[A \xrightarrow{E_K} 1] - Pr[A^{\pi} \rightarrow 1]$$

What is Known? $N = 2^n$

For
$$q = N$$
, $Adv_{N,R}^{ncpa}(q) \le 2^{-r}$

if $R = O(r \log ^{44} N)$ [Morris 05] $R = O(r \log ^{19} N)$ [Montenegro, Tetali 06] $R = O(r \log ^{4} N)$ [Morris 08]

If
$$R = n$$
, $\operatorname{Adv}_{N,R}^{\operatorname{cca}}(q) \leq (n+1) \frac{q^2}{N}$
(security to about $N^{1/2}$ queries) [Naor, Reingold 99]
(throw in pairwise independent permutations, too)



Proving CCA security

- 1. Prove **NCPA security** of the "projected Thorp shuffle" (and its inverse) using a **coupling argument**
- 2. Conclude **CCA security** using a wonderful theorem from [Maurer, Pietrzak, Renner 2007] :

$$\mathbf{Adv}_{F \circ G^{-1}}^{\operatorname{cca}}(q) \leq \mathbf{Adv}_{F}^{\operatorname{cpa}}(q) + \mathbf{Adv}_{G}^{\operatorname{cpa}}(q)$$

Notation and basic setup

Fix distinct $z_1, ..., z_q \in C = \{0,1\}^n$ and define:

- X_t Positions of cards $z_1, ..., z_q$ at time t
- $\{X_t\}$ Markov chain the projected Thorp shuffle
- $X_t(i)$ Location of card z_i at time t

$$\tau_t$$
 Distribution of $\{X_t\}$

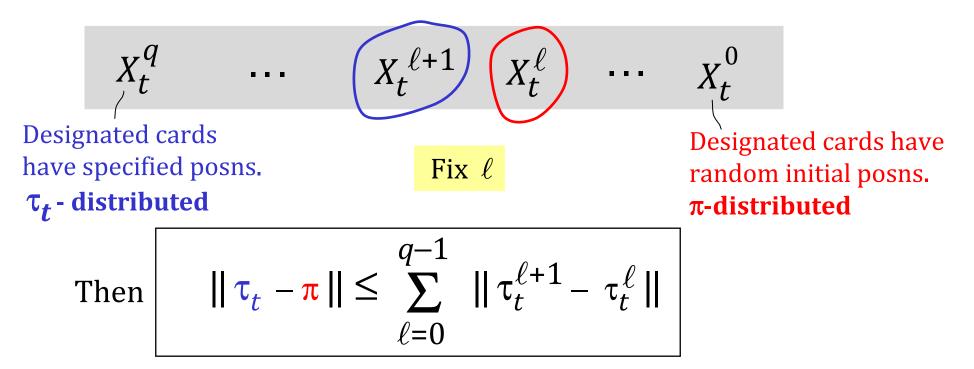
π Stationary distribution of $\{X_t\}$ = Uniform distribution on *q*-tuples of positions, $\{0,1\}^n$

Want to show : $\| \tau_t - \pi \|$ is small (for *t* not too big)

Hybrid argument

For $0 \le \ell \le q$, let

 X_t^{ℓ} = Positions of cards $z_1, ..., z_q$ at time *t* assuming cards $z_1, ..., z_{\ell}$ start in **designated** positions, $z_{\ell+1}, ..., z_q$ start in **random** (uniform, distinct) positions



[Doeblin 1930s; Aldous 1980s] **Coupling arguments**

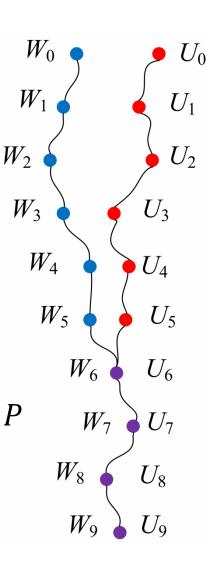
Markov chain { W_t } with transition matrix PStationary distribution π

Want to show $|| P^{t}(x, \mathbf{x}) - \pi ||$ is small

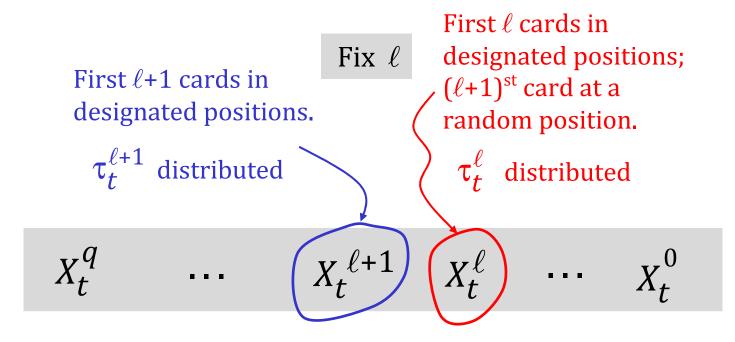
Construct a **pair process**, $\{(W_t, U_t)\}$ (defined on a single prob space), the **coupling**, where

Let
$$T = \min \{t: W_t = U_t\}$$

Coupling time
Then $|| P^t(x, \times) - \pi || \le \Pr(W_t \neq U_t)$
 $= \Pr(T > t)$

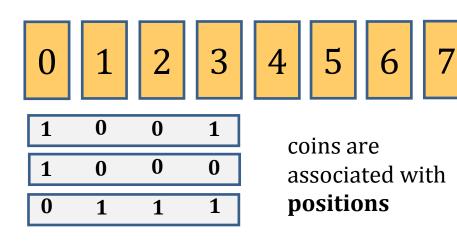


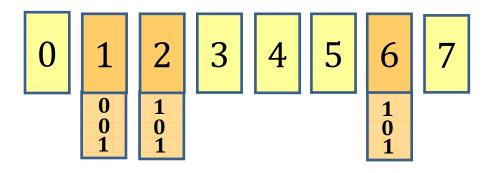
What gets coupled



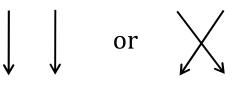
Then $\| \tau_t - \pi \| \le \sum_{\ell=0}^{q-1} \| \tau_t^{\ell+1} - \tau_t^{\ell} \|$

Towards defining our coupling **Re-conceptualizing how our MC evolves**





coins are associated with **designated cards** **Before**: a coin c(r, x) for each round r and **position** (x, x + N/2). The coin determined if cards went

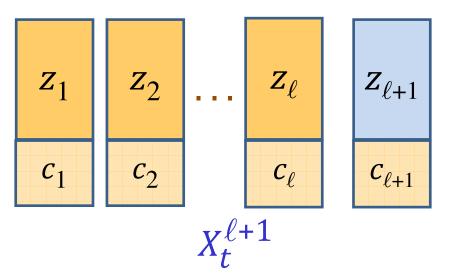


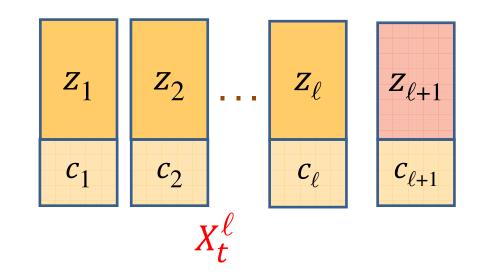
Now: a coin c(r, x) for each round r and **designated card** x.

Update rule:

- Card z_i adjacent to a non-designated card: use its coin to decide if it goes left (0) or right (1)
- Card z_i adjacent to z_j where i < j: use the coin of z_i to decide where it goes ... and so where z_j goes, too.

Defining our coupling





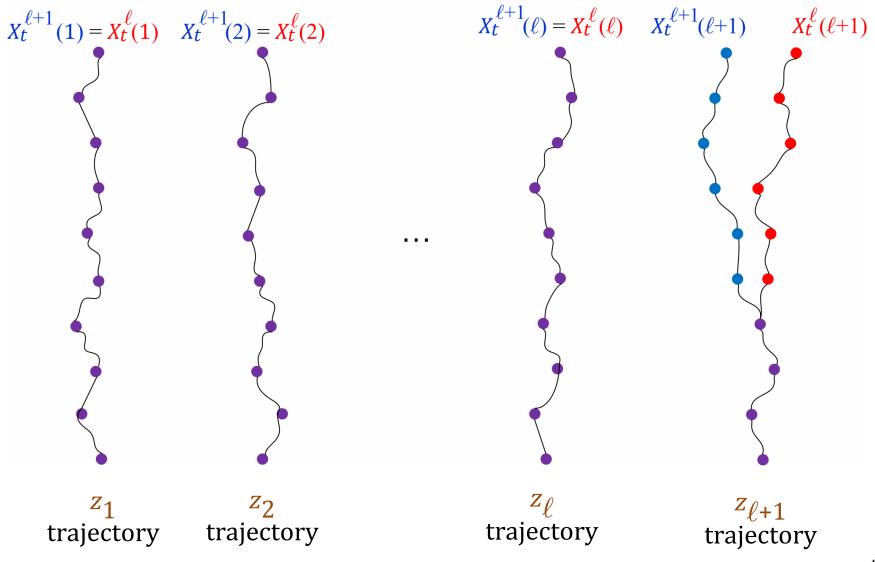
To define the pair process $(X_t^{\ell+1}, X_t^{\ell})$

- Start cards $z_1, ..., z_{\ell}$ in the specified locations for both $X_t^{\ell+1}$ and X_t^{ℓ}
- Start card $z_{\ell+1}$ at specified location in $X_t^{\ell+1}$
- Start card $z_{\ell+1}$ at uniform location in X_t^{ℓ}
- Evolve the process with the same coins and the update rule

Then:

- Cards $z_1, ..., z_\ell$ follow the **same** trajectory
- Once $z_{\ell+1}$ and $z_{\ell+1}$ match, they stay the same
- Card $z_{\ell+1}$ is uniform

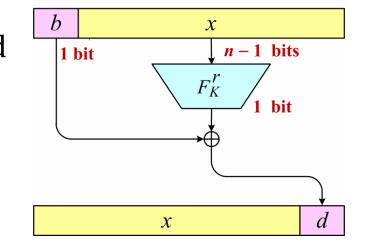
Waiting for the $(\ell+1)^{st}$ cards to couple



After a "burn-in" period, designated cards are rarely adjacent

Claim: For any pair of cards z_i and z_j and any time $t \ge n - 1$, $P(z_i \text{ and } z_j \text{ are adjacent at time } t) \le 1/2^{n-1}$

Reason: The only way for z_i and z_j to end up adjacent at time t is if there were **consistent coin tosses** in in each of the prior n-1 steps. The probability of this is $1/2^{n-1}$.



The coupling bound

Want to show this is small. By coupling, it's $\leq \mathbf{P}(T > t)$ where *T* is the coupling time $\|\boldsymbol{\tau}_t - \boldsymbol{\pi}\| \leq \sum \|\boldsymbol{\tau}_t^{\ell+1} - \boldsymbol{\tau}_t^{\ell}\|$ for $X_t^{\ell+1}$ and X_t^{ℓ} : $T = \min \{t: \mathbf{P}(X_{t}^{\ell+1} = X_{t}^{\ell})\}$ $\left| \mathbf{P} \left(T > 2n - 1 \right) \le 2 \times n \times \ell \times \left(1 / 2^{n-1} \right) \right|$ **Claim**: Cards $Z_{\ell+1}$ fail to converge only if $Z_{\ell+1}$ is adjacent to some Z_i in $X_t^{\ell+1}$ or $Z_{\ell+1}$ is adjacent to some Z_i in X_t^{ℓ} t = 2n-2for some $i \leq \ell$, in one of the last *n* time steps. t = 2n - 1At most $2n\ell$ ways for this to happen. Just showed: $P(z_{\ell+1} \text{ and } z_i \text{ are adjacent at time } t \le n+1) \le 1/2^{n-1}$

Concluding the result

$$\mathbf{P}(T > 2n-1) \leq 2 \times n \times \ell \times 2^{1-n}$$

so
$$\mathbf{P}(T > r(2n-1)) \leq (2 \times n \times \ell \times 2^{1-n})^{r}$$
$$\| \tau_t - \pi \| \leq \sum_{\ell=0}^{q-1} (n\ell 2^{2-n})^r \leq (n2^{2-n})^r \int_0^q x^r dx$$
$$\| \mathbf{Adv}_{N,R}^{ncpa}(q) \leq \frac{q}{r+1} \left(\frac{4qn}{N}\right)^r$$

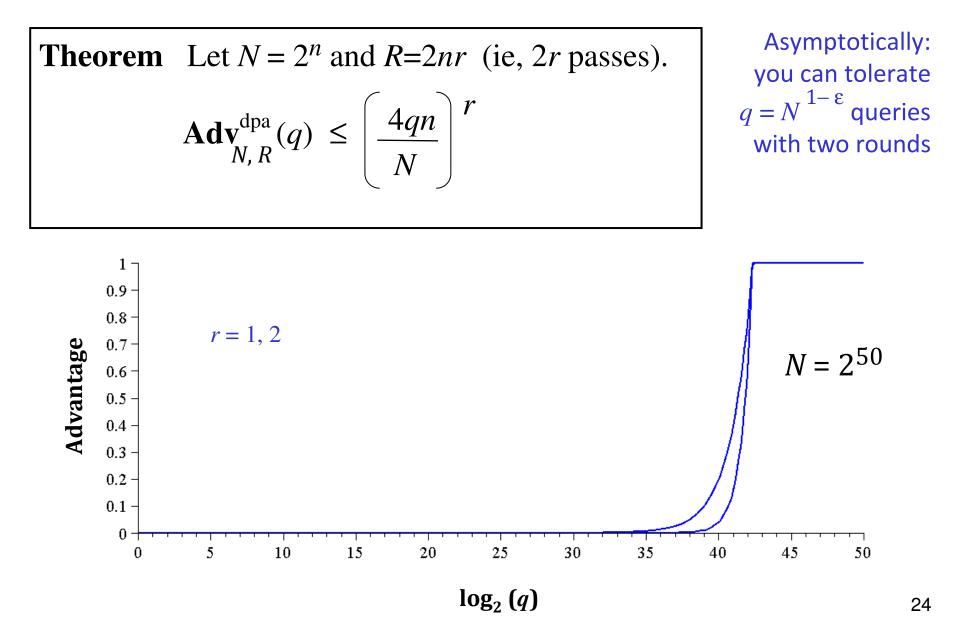
Extensions and directions

- For a weaker security notion, DPA, **two passes** is enough.
- A simple trick lets you do **5 rounds per AES**
- When *N* is **not a power of 2**, things get more complex (in progress; constants increase)
- NIST submission ("FFX mode") (with T. Spies) coming soon
- **Coupling technique** generally useful in cryptography. Analyze other unbalanced Feistel schemes with V.T. Hoang.

• Open:

Tiny *N* ? CCA security for 2 or 4 passes ? Can perfect shuffling (à la [Granboulan, Pornin 07]) be practical?

Thorp shuffle — DPA security



The 5x speedup trick

