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More generally, 

How to encipher  {0,1,…, N-1} ? 

How to encipher  a CCN?

PRF

F: K ´ {0,1}128
→ {0,1}128 

PRP

E: K ´ {0,1,…, N-1} → : {0,1,…, N-1}

A special case of Format-Preserving Encryption   (FPE)     [Brightwell, Smith 97;

Spies 08;

Bellare, Ristenpart, R, Steger 09]

5887     3229      0447    4263
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Known technique

• Balanced Feistel    [Luby, Rackoff 88; Maurer, Pietrzak 03; Patarin 04]

• Benes construction   [Aiello, Venkatesan 96; Patarin 08]

• Feistel adapted to Za ´ Zb    [Black Rogaway 02]

• Induced ordering on AESK (0),…, AESK (N−1)

• “Knuth shuffle”

• De novo constructions [Schroeppel 98]

Poor

proven bounds

for small N

Preprocessing

time  Ω(N)

Provable security

not possible

• Cycle walking
For enciphering on X ⊆Mwhen

|X | / |M|   is reasonably large

• Wide-block modes  [Naor, Reingold 99; Halevi 04]
Starts beyond

blockcipher’s blocksize

• Granboulan-Pornin construction [GP 07] Very inefficient

Limitation

• Ad hoc modes [FIPS 74: 1981, Brightwell, Smith 97; Mattsson 09]

[Folklore; Black Rogaway02]
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What’s wrong with balanced Feistel?

[Patarin 04]

Approximate security bounds

Attacks

[Luby, Rackoff 88]

[Maurer, Pietrzak 03]

In practice, probably nothing.

But, information theoretically,

it only tolerates  2
n/2

queries

For constant rounds

2n/2 – 1/R

2n/2 – ε

2n/4

2n/2

N = 2n

For R rounds 2n/2 + lg R

(asymptotic)

(R rounds)

(3 and 4 rounds)
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[Naor ~1989] An oblivious shuffle: you can follow the path of a card without attending

to the other cards.     The riffle shuffle is not oblivious.    The Thorp shuffle is.

Encrypting by shuffling
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Edward

Thorp To shuffle a deck of N cards (N even):

For round r = 1, 2, …,   R do

• Cut the deck exactly  in half

• Using a fair coin toss c, drop 

left-then-right (c=0) or   right-then-left (c=1)

Thorp Shuffle Th[N, R]

[Thorp 73]
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0 1 2 3 4 5 6 7

1 0 0 1

One round of the Thorp shuffle

1. Cards at positions 

x and x + N/2 are

said to be adjacent

3. The coins indicate

if adjacent cards get

moved

coin = 0 coin = 1

or 

2. Flip a coin for each

pair of adjacent cards
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At round r, move the card at position x ∈ {0,…, N-1} to position

2 x +        (r, x)                     if x < N/2 

2(x− N/2)   +  (1 − (r, x− N/2))       otherwise

FK

FK

Thorp shuffle =  maximally unbalanced Feistel 
when N = 2n

equivalent
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Measuring adversarial success

Adv (q) =      max Pr[A EK � 1] – Pr[Aπ
� 1]

A ∈NCPA(q)
N,R

ncpa

Adv (q) =      max Pr[A EK
E

K � 1] – Pr[A π π  
� 1]

A ∈CCA(q)
N,R

cca

A

EK (× )

EK   (× )
−1

π (× )

π (× )
−1

−1−1

E = Th[N, R]

strong PRP

nonadaptive PRP
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R = O(r log 44 N)

R = O(r log 19 N)

R = O(r log 4 N)

What is Known?

Adv (q)  ≤ 2
− r

N,R

ncpa

if [Morris 05]

[Montenegro, Tetali 06]

[Morris 08]

For  q = N, 

Adv (q)  ≤N,R

cca
If    R = n,

q2

N
(n+1)

(security to about N1/2 queries) [Naor, Reingold 99]

N = 2
n

(throw in pairwise independent permutations, too)
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Main result — Thorp shuffle — CCA

Theorem Let N = 2n and R=4nr (ie, 4r passes).

Adv
cca 

(q)  ≤
2q

r+1

4qn

N

r

Can tolerate

q = N
1− 1/r

queries with

4r passes.

log2 (q)           

A
d

v
a

n
ta

g
e r = 1, 2, 5, 10, 25

N, R

N = 250

Unbalanced Feistel

provably stronger

than balanced Feistel

(4, 8, 20, 40, 100 passes)
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Proving CCA security

1. Prove NCPA security of the “projected Thorp shuffle”

(and its inverse) using a coupling argument

2.     Conclude CCA security using a wonderful theorem from 

[Maurer, Pietrzak, Renner 2007] :

Adv (q)   ≤ Adv (q)   + Adv (q)
F °G−1

cca

F

cpa

G

cpa
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Notation and basic setup

{ Xt }         Markov chain — the projected Thorp shuffle

Fix distinct z1, …, zq ∈ C = {0,1}n and define: 

Xt Positions of cards z1, …, zq at time t 

Xt ( i )       Location of card zi at time t

π Stationary distribution of { Xt }

= Uniform distribution on q-tuples of positions, {0,1}n

τt Distribution of {Xt}

Want to show :     || τt − π || is small  (for t not too big)
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Hybrid argument

Xt =  Positions of cards z1, …, zq at time t assuming cards

z1, …, z
`

start in designated positions,

z
 ̀+1, …, zq start in random (uniform, distinct) positions

`

For 0 ≤ ` ≤ q,   let 

`+1Xt
q

Xt
0

Xt
`Xt

Designated cards

have specified posns.
Designated cards have

random initial posns.

ππππ-distributedττττt - distributed

. . . . . .

Then || τt − π || ≤ || τt − τt || ΣΣΣΣ
`=0

q−1
`+1 `

Fix  `
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Coupling arguments

Markov chain { Wt } with transition matrix P

Stationary distribution π

Want to show || P t(x, × ) – π || is small

Construct a pair process , {(Wt , Ut)}  (defined

on a single prob space), the coupling,  where 

� { Wt } and { Ut } are MCs with transition matrix P

� If  Wt = Ut then Wt+1 = Ut+1
� W0 = x    and U0 ~ π

Let T  = min {t : Wt = Ut }

Coupling time
Then   || P t(x, × ) – π || ≤ Pr ( Wt ≠ Ut)

=   Pr (T > t)

[Doeblin 1930s;  Aldous 1980s]
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What gets coupled

`+1Xt
q

Xt
0

Xt
`Xt

. . . . . .

Then || τt − π || ≤ || τt − τt || Σ
`+1 `

Fix  `
First `+1 cards in

designated positions.

τt distributed
`+1

First ` cards in

designated positions;

(`+1)st card at a

random position.

τt distributed
`

`=0

q−1
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Re-conceptualizing how our MC evolves

0 1 2 3 4 5 6 7

1 0 0 1

0 1 1 1

1 0 0 0

Before:  a coin c(r , x) for each

round r and  position (x, x + N/2).

The coin determined if cards went

or 

0 1 2 3 4 5 6 7

0 11

1 11
0 00

Now: a coin c(r, x) for each round r

and  designated card x.

• Card zi adjacent to a non-designated

card: use its coin to decide if it

goes left (0) or right (1)

• Card zi adjacent to zj where i <j : 

use the coin of zi to decide where 

it goes … and so where zj goes, too.

Update rule:

Towards defining our coupling

coins are

associated with

positions

coins are

associated with

designated cards
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Defining our coupling

. . . z
`+1

c
`+1

z
`

c
`

z1

c1

z2

c2

. . . z
`+1z

`
z1 z2

Xt

To define the pair process   (Xt     , Xt )

• Start cards z1, …, z
`

in the specified

locations for both Xt and Xt
• Start card z

`+1 at specified location in Xt

• Start card z
`+1 at uniform location in Xt

• Evolve the process with the same coins

and the update rule

Then:

• Cards z1, …, z
`

follow the 

same trajectory

• Once z
`+1 and z

`+1 match, 

they stay the same

• Card z
`+1 is uniform

c
`+1c

`
c1 c2

`+1 Xt
`

`+1  ̀ 

 ̀ `+1

 ̀ 

`+1
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Waiting for the (`̀̀̀+1)     cards to couple
st

z1
trajectory

z2
trajectory

z
`

trajectory
z
`+1

trajectory
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After a “burn-in” period, 

designated cards are rarely adjacent

Claim:    For any pair of cards zi and zj and

any time t ≥ n − 1, 

P(zi and zj are adjacent at time t) ≤ 1/ 2n −1

Reason: The only way for zi and zj to end

up adjacent at time t is if there were 

consistent coin tosses in in each of 

the prior n −1 steps.

The probability of this is 1/2n −1 .
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The coupling bound

|| τt − π || ≤ || τt − τt || Σ `+1 `

Want to show this is small. By coupling, it’s  ≤≤≤≤ P(T > t)

where  T is the coupling time

for Xt and   Xt  :`+1 `

T = min {t: P(Xt = Xt  )
`+1 `

P (T > 2n − 1) ≤ 2 × n × ` × (1 / 2n-1)

Cards z
`+1 fail to converge only if

z
`+1 is adjacent to some z

i
in Xt or

z
`+1 is adjacent to some z

i
in Xt

for some i ≤ `,  in one of the last n time steps.    

At most 2n`ways for this to happen.  Just showed:

P(z
`+1 and zi  are adjacent at time t ≤ n+1) ≤ 1/ 2n −1

Claim:

`+1

`

}
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Concluding the result

Σ|| τt − π || ≤

 ̀= 0

q−1

P (T > 2n-1 ) ≤ 2 × n × ` × 21−n

P (T > r (2n-1) ) ≤ ( 2 × n ×  ̀ × 21−n )r
so

(n`22-n)r
≤

q

r+1

4qn

N

r

∫
0

q
x 

r dx(n22-n)r

≤Adv
ncpa

(q)
N, R
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Extensions and directions

• For a weaker security notion, DPA, two passes is enough.

• A simple trick lets you do 5 rounds per AES 

• When N is not a power of 2, things get more complex 

(in progress; constants increase)

• NIST submission (“FFX mode”)  (with T. Spies) coming soon

• Coupling technique generally useful in cryptography. 

Analyze other unbalanced Feistel schemes with V.T. Hoang.

• Open:

Tiny N ?

CCA security for 2 or 4 passes ?    

Can perfect shuffling   (à la [Granboulan, Pornin 07])    be practical?
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Theorem Let N = 2n and R=2nr (ie, 2r passes).

Adv
dpa 

(q)  ≤ 4qn

N

r

Asymptotically:

you can tolerate

q = N 
1− ε

queries

with two roundsN, R

log2 (q)           

A
d

v
a

n
ta

g
e r = 1, 2

N = 250

Thorp shuffle — DPA security
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The 5x speedup trick


