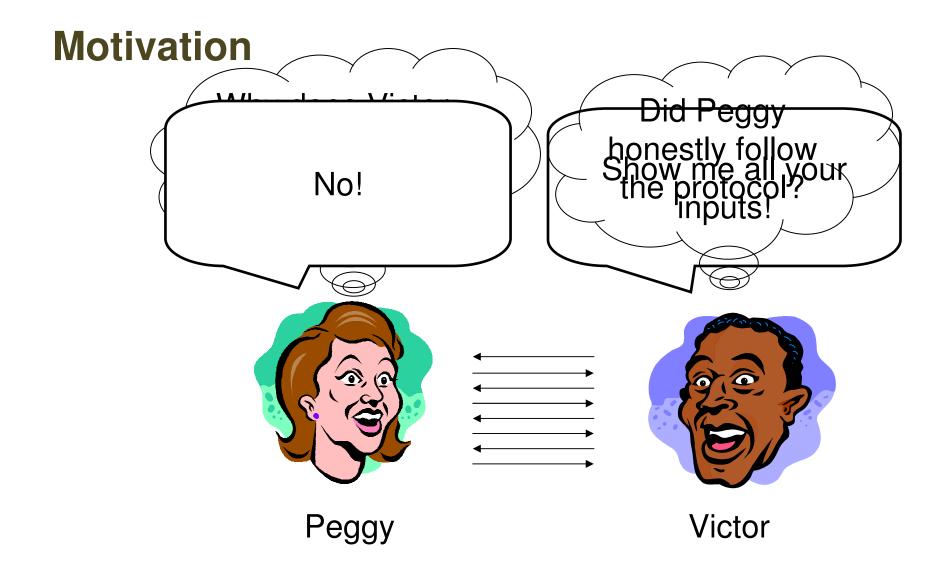
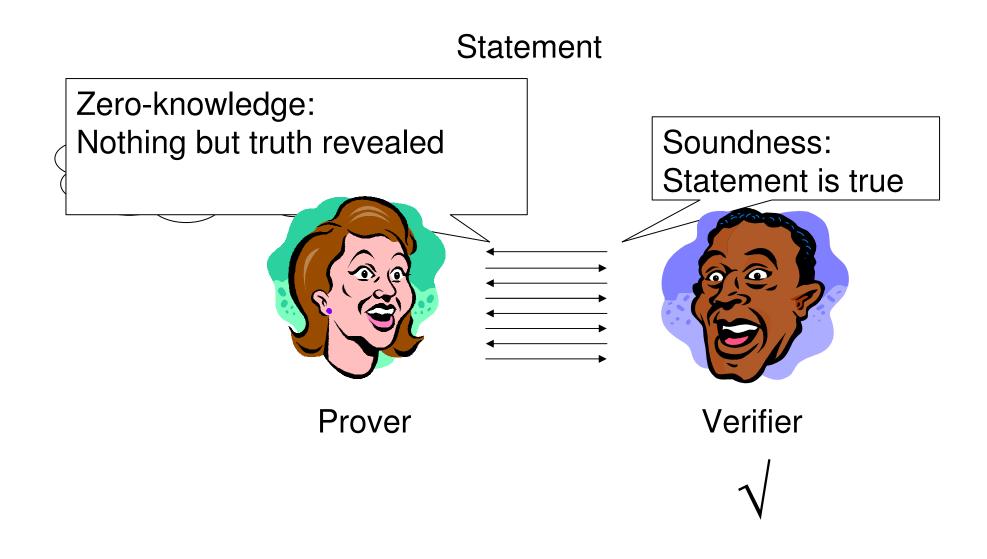


Linear Algebra with Sub-linear Zero-Knowledge Arguments

Jens Groth University College London



Zero-knowledge argument



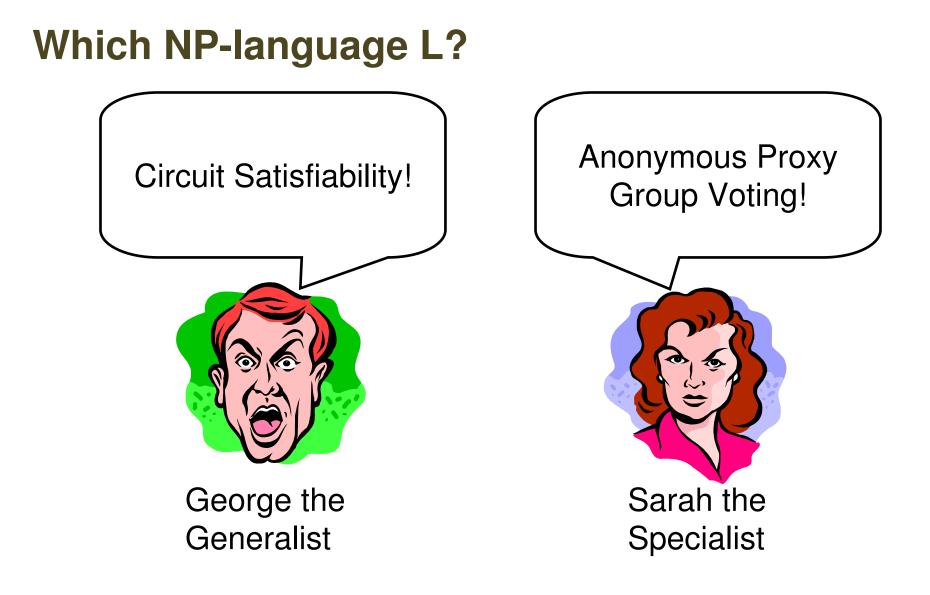
Statements

- Mathematical theorem: 2+2=4
- Identification: I am me!
- Verification: I followed the protocol correctly.
- Anything: X belongs to NP-language L

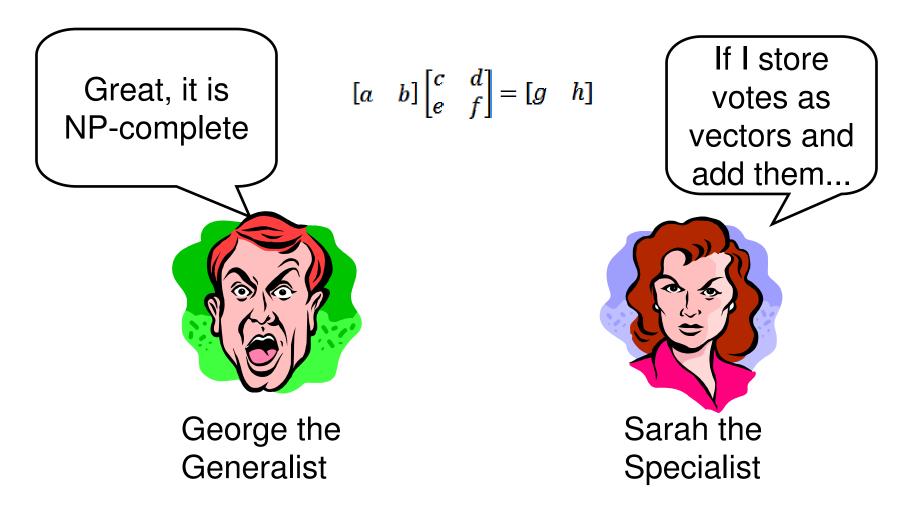
Our contribution

- Perfect completeness
- Perfect (honest verifier) zero-knowledge
- Computational soundness
 - Discrete logarithm problem
- Efficient

Rounds	Communication	Prover comp.	Verifier comp.
O(1)	$O(\sqrt{N})$ group elements	ω(N) expos/mults	O(N) mults
O(log N)	$O(\sqrt{N})$ group elements	O(N) expos/mults	O(N) mults



Linear algebra



Statements

$$\exists \vec{x}, \vec{y} \in Z_p^n \ \exists A, B \in Mat_{n \times n}(Z_p):$$
$$0 = xy^T \ AB = I \ \vec{x}A + \vec{y}B = 2\vec{x}$$

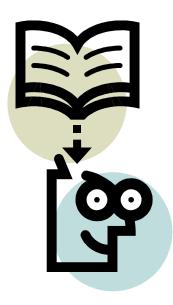
Rounds	Communication	Prover comp.	Verifier comp.
O(1)	O(n) group elements	ω(n²) expos	O(n ²) mults
O(log n)	O(n) group elements	O(n ²) expos	O(n ²) mults

Levels of statements

Circuit satisfiability $det(B) = \pm z$ $B = \pi(A)$ trace(A) = z $0 = xy^T \quad AB = I \quad \vec{x}A + \vec{y}B = 2\vec{x}$ m $z = \sum \vec{x_i} * \vec{y_i}$ i=1 $z = \vec{x} * \vec{y}$ Known

Reduction 1

Circuit satisfiability $det(B) = \pm z$ $B = \pi(A)$ trace(A) = z



See paper

Reduction 2

$$det(B) = \pm z \quad B = \pi(A) \quad trace(A) = z$$
$$\mathbf{0} = xy^T \quad AB = I \quad \vec{x}A + \vec{y}B = 2\vec{x}$$

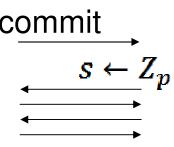
Example:

trace
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{bmatrix}$$

Reduction 3

Peggy

$$0 = xy^{T} \quad AB = I \quad \vec{x}A + \vec{y}B = 2\vec{x}$$
$$z = \sum_{i=1}^{m} \vec{x}_{i} * \vec{y}_{i}$$

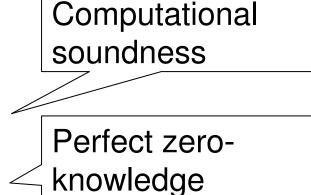


Victor

Pedersen commitment

commit(x₁,..., x_n; r) = h^r
$$\prod_{i=1}^{n} g_i^{x_i}$$

- Computationally binding
 Discrete logarithm hard
- Perfectly hiding



- Only 1 group element to commit to n elements
- Only n group elements to commit to n rows of matrix

Sub-linear size

Pedersen commitment

$$\operatorname{commit}(\vec{x}; r) = h^r \prod_{i=1}^n g_i^{x_i}$$

• Homomorphic

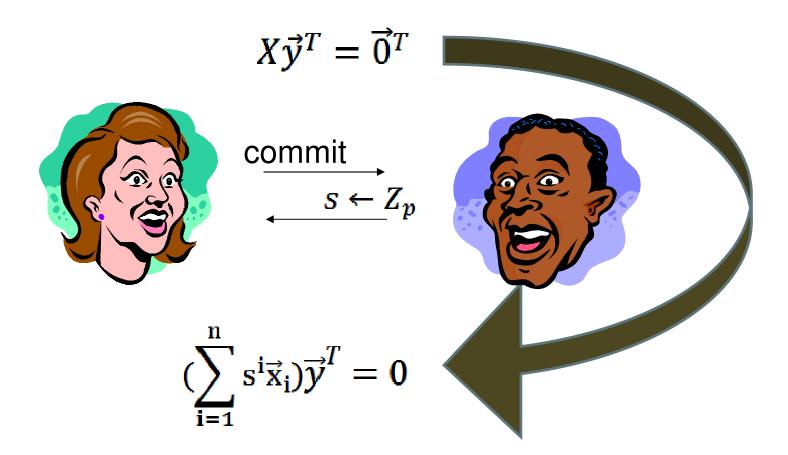
 $commit(\vec{x};*)commit(\vec{y};*) = commit(\vec{x} + \vec{y};*)$

• So

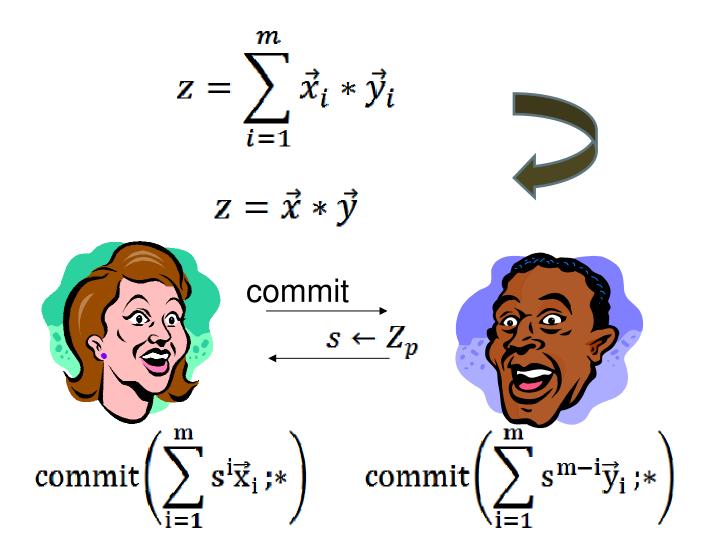
$$\prod_{i=1}^{m} c_{i}^{s^{i}} = \operatorname{commit}\left(\sum_{i=1}^{m} s^{i} \vec{x}_{i};*\right)$$

UCL

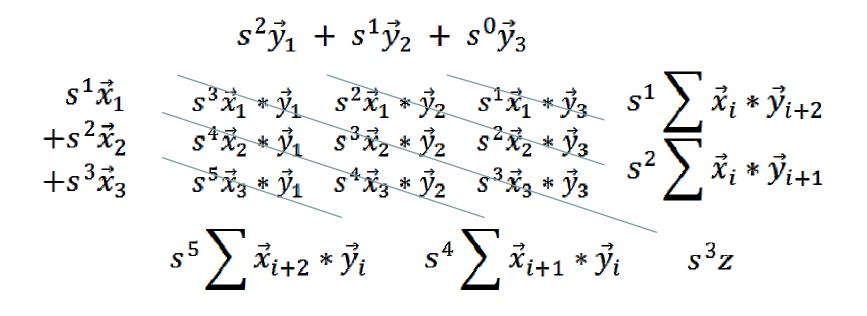
Example of reduction 3



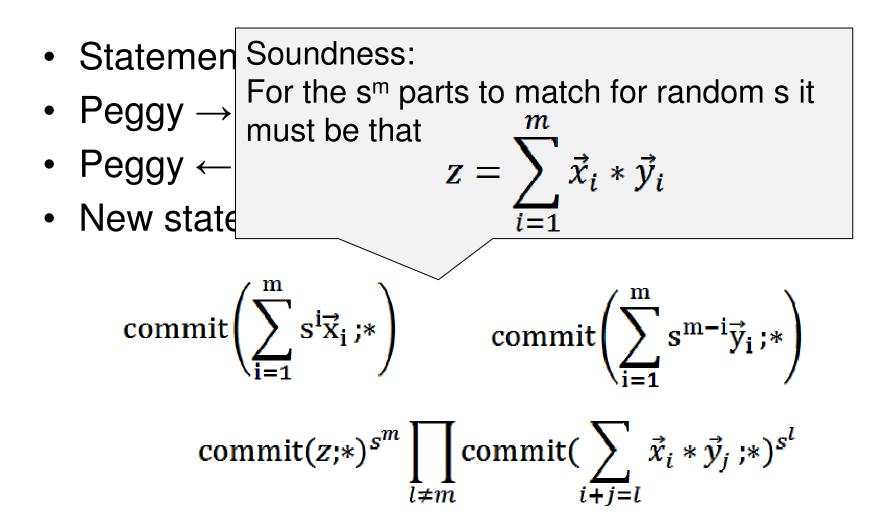
Reduction 4



Product



Example of reduction 4

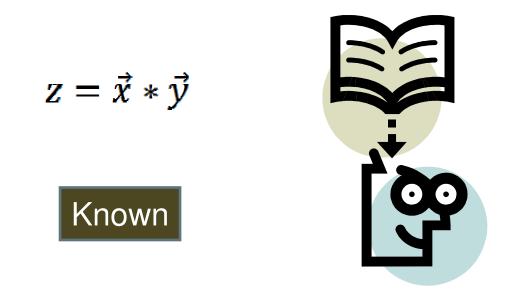


Reducing prover's computation

- Computing diagonal sums requires ω(mn) multiplications
- With 2log m rounds prover only uses O(mn) multiplications

Rounds	Comm.	Prover comp.	Verifier comp.
2	2m group	m²n mult	4m expo
2log m	2log m group	4mn mult	2m expo

Basic step



Rounds	Communication	Prover comp.	Verifier comp.
3	2n elements	2n expos	n expos

Conclusion

	Rounds	Comm.	Prover comp.	Verifier comp.
$z = \vec{x} * \vec{y}$	3	2n group	2n expo	n expo
$z = \sum \vec{x_i} * \vec{y_i}$	5	2n+2m group	m²n mult	4m+n expo
$z = \sum \vec{x_i} * \vec{y_i}$	2log m+3	2n group	4mn mult	2m+n expo
Upper triangular	6	4n group	n ³ add	5n expo
Upper triangular	2log n+4	2n group	6n ² mult	3n expo
Arithmetic circuit	7	O(√N) group	O(N√N) mult	O(N) mult
Arithmetic circuit	log N + 5	O(√N) group	O(N) expo	O(N) mult
Binary circuit	7	O(√N) group	$O(N\sqrt{N})$ add	O(N) mult
Binary circuit	log N + 5	O(√N) group	O(N) mult	O(N) mult