On the Amortized Complexity of
Zero-Knowledge Proofs

Ronald Cramer, CWI
Ivan Damgdrd, Arhus University

Classic Zero-Knowledge Protocols

- for, e.g., discrete log or quadratic residuosity, are of form

Has error
probability 3 . Can
be amplified to 27"
by iterating n times.
Means proof has
size O(kn) bits, k
size of problem
Instance.

w
2

Prover Verifier

Some constructions do much better: O(k+n) bits.

« Schnorr: only for groups of public and prime order.

« Guillou-Quisquater: only for q'th roots mod a composite, q a
large prime.

« Okamoto-Fujisaki: discrete log in RSA groups, but only under
strong RSA assumption and for special moduli.

No better genera/ method known for amplifying error.

Results of this paper

For a large class of problems, we show how to do a zero-knowledge proof
for n problem instances simultaneously, such that:

* the complexity per instance proved is O(n+k) bits, and

- the error probability is 27",

Construction is unconditional.

Result works for any function f that has certain homomorphic properties
(f is a “zero-knowledge friendly” function):
Given xi,..., X,, The prover shows he knows wy,...,w, such that

f(w;) = x;

Includes

« Discrete log in any group,

« Quadratic residuosity, improves also classic protocol for quadratic non-
residues

* Goldwasser-Micali encryptions and similar cryptosystems,

* Integer commitment schemes based on discrete log mod a composite.

Results cont'd

Result extends to show relations between preimages under f, such as
multiplicative relations.

We obtain a Z-protocol, a 3-move honest verifier zero-knowledge
protocol.

Honest-verifier zero-knowledge is enough for many applications.

Upcoming work (Cramer, Damgdrd and Keller): for same class of
problems, can get constant-round proof of knowledge that is zero-
knowledge against any verifier, proof has same size as ours up to a
constant factor, and properties are unconditional.

Related Work

Ishai et al. (STOC 07) have a construction of zero-knowledge protocols
from multiparty computation that can give similar complexity as ours for
some, but not all problems and requires a complexity assumption.

The Construction, preliminaries

Let e be an n-bit string.

We will need an efficiently computable function: takes e as input
and outputs matrix M, with integer entries.

h columns, m rows. In this example m=2n-1.

Other dimensions possible as well. Details on the function later.

Idea of construction
- for discrete logarithm in any group z|= R +| M
hlz QWI,..., hn: gwn

_ _ rm
a;=g',....8n= g
e= 61 en
Zl, oy Zm
Prover Verifier

How to compute z;,..., z,,: Let W, R, Z be columns vectors
containing the wi's, ri's and zi's. Then prover sets
Z=R+ MW

How to check Z is correct: Let (1;1...., t;,) be i'th row of M,

must be the case that for i=1 ... m:
g% = q;- hl’rll S hn’rm =gt wl-til + ..+ wn-tin

Why is this (honest-verifer) zero-knowledge?

h1: 9W1,..., hn: 9W|"l
e gr'l’ , Q= g™m
€= €y _ Check that
Z=R + Me'W 92l = a - hl‘rll L hn‘rm

Verifier

If entries in R chosen uniformly in a large enough interval
(compared to entries in MW)
Z will have essentially uniform entries.

Hence, to simulate, choose z;...., z,, and e uniformly, compute
M.. and compute aq,,...a,, such that

9zi -a - hl'l'il C hn'l'in

IS true.

Why is this sound?

Prover Verifier

We show that if, after sending first message, the prover can
answer two different challenges e.e’, then he could compute
W1.....Wp,, SO error probability is 27",

Intuition on this: if prover can produce
Z=R+M_Wand Z= R+ M, -W, then he can also compute
Z-7=(M-M_)W

So if we can construct M, from e such that this equation can
always be solved for W, we are done.

Construction of M, from e

Write e as an n-bit column vector

Form the matrix..

O's

n i~

We will get m= 2n-1 rows.

Observation: any difference M, -M,: is
an upper triangular matrix with either
+1 or -1 on the diagonal

Why? focus on “lowest” position where
e is different from e',

This implies M, -M_: is invertible.

Complexity

Check that
g7 = a; - hl'l'll . hn'l'ln

Prover Verifier

Communication

Per instance proved, we have sent m/n group elements and
numbers.

m/n< 2, so same complexity per instance as Schnorr up to a factor
2.

Computation

Entries in M, are O, 1, or -1, so computations involving M, are
dominated by the exponentiations. Hence also computation per
instance same as Schnorr up to a factor 2.

In general..

The homomorphic property of the function w — g%V is what makes this work.
Many other functions are fine as well, see paper for general framework.

Examples:
Not limited to one base, can do proofs of knowledge for (w,s) — g"hS.

Covers several known cryptosystems (Goldwasser-Micali, Groth, Damgard-
Geisler-Kregigaard)

- And commitment schemes for committing to integers (Fujisaki Okamoto)

More Examples

The function w — w? mod N
Here special purpose construction of M, makes it even more efficent:

Consider that n-bit string e can be thought of as an element in GF(2").

GF(2") is a vector space over GF(2), and multiplication by e is a linear
mapping. So fix some basis and let M, be the matrix of this mapping.

Then any M, -M_ is invertible because it corresponds to multiplication
by e-e' 2 0.

Leads to protocol for proving you know square roots mod N of x1,... xn.
Size of proof per instance is exactly equal to one run of the classic
GMR protocol.

Also in Paper..

Interesting connection between construction of M, and black-box
secret sharing.

Most known efficent protocols (Schnorr, 6-Q, ours) can be thought of
as being based on a 2 out of T secret sharing scheme, for very large T:

W X , . .
\P —] \ v w: secret, x: commitment to secret

P commits to randomness for s.s.

€ V asks for e'th share of secret

Z Prover reveals requested share,
V checks share is correct

Zero-knowledge because one share does reveal the secret.
Sound because given two correct shares, secret can be computed.

