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Classic Zero-Knowledge Protocols

- for, e.g.,  discrete log or quadratic residuosity, are of form

Prover Verifier

x= f(w)

e = 0 or 1

a

z

Some constructions do much better: O(k+n) bits. 
• Schnorr: only for groups of public and prime order. 
• Guillou-Quisquater: only for q’th roots mod a composite, q a 
large prime. 
• Okamoto-Fujisaki: discrete log in RSA groups, but only under 
strong RSA assumption and for special moduli.

No better general method known for amplifying error.

w
Has error 
probability ½ . Can 
be amplified to 2-n

by iterating n times. 
Means proof has 
size O(kn) bits, k 
size of problem 
instance.



Results of this paper

For a large class of problems, we show how to do a zero-knowledge proof 
for n problem instances simultaneously, such that: 
• the complexity per instance proved is O(n+k) bits, and 
• the error probability is 2-n.

Construction is unconditional.

Result works for any function f that has certain homomorphic properties
(f is a ”zero-knowledge friendly” function): 
Given x1,...,xn, the prover shows he knows w1,...,wn such that
f(wi) = xi

Includes 
• Discrete log in any group, 
• Quadratic residuosity, improves also classic protocol for quadratic non-
residues
• Goldwasser-Micali encryptions and similar cryptosystems, 
• Integer commitment schemes based on discrete log mod a composite.



Results cont’d

Result extends to show relations between preimages under f, such as 
multiplicative relations.

We obtain a Σ–protocol, a 3-move honest verifier zero-knowledge 
protocol.

Honest-verifier zero-knowledge is enough for many applications.

Upcoming work (Cramer, Damgård and Keller): for same class of 
problems, can get constant-round proof of knowledge that is zero-
knowledge against any verifier,  proof has same size as ours up to a 
constant factor, and properties are unconditional.

Related Work
Ishai et al. (STOC 07) have a construction of zero-knowledge protocols 
from multiparty computation that can give similar complexity as ours for 
some, but not all problems and requires a complexity assumption.



The Construction, preliminaries

Let e be an n-bit string. 

We will need an efficiently computable function: takes e as input 
and outputs matrix Me, with integer entries.
n columns, m rows. In this example m=2n-1.

Other dimensions possible as well. Details on the function later.

e
Me



Idea of construction

- for discrete logarithm in any group

Prover Verifier

h1= g
w1,..., hn= g

wn

e= e1,..., en
z1,..., zm

How to compute z1,..., zm : Let W, R, Z be columns vectors 
containing the wi’s, ri’s and zi’s. Then prover sets
Z= R + Me·W

How to check Z is correct: Let (ti1,..., tin) be i’th row of Me
must be the case that for i=1 ... m:
gzi = ai · h1

ti1 · ...  · hn
tin = gri + w1·ti1 + ... + wn·tin

w1,...,wn

a1= g
r1,..., am= g

rm

Z =
·

+ Me
W

R



Why is this (honest-verifer) zero-knowledge?

If entries in R chosen uniformly in a large enough interval 
(compared to entries in Me·W )
Z will have essentially uniform entries.

Hence, to simulate, choose z1,..., zm and e uniformly, compute
Me, and compute  a1,…,am such that

gzi = ai · h1
ti1 · ...  · hn

tin

is true.

Prover Verifier

h1= g
w1,..., hn= g

wn

e= e1,..., en
Z= R + Me·W

w1,...,wn

a1= g
r1,..., am= g

rm

Check that
gzi = ai · h1

ti1 · ... · hn
tin



Why is this sound?

We show that if, after sending first message, the prover can 
answer two different challenges  e,e’, then he could compute 
w1,...,wn, so error probability is 2

-n.

Intuition on this: if prover can produce 
Z= R + Me·W and Z’= R + Me’·W, then he can also compute
Z - Z’ = (Me-Me’)W

So if we can construct Me from e such that this equation can 
always be solved for W, we are done. 

Prover Verifier

h1= g
w1,..., hn= g

wn

e= e1,..., en
Z= R + Me·W

w1,...,wn

a1= g
r1,..., am= g

rm



Construction of Me from e

Write e as an n-bit column vector

Form the matrix..

e

e

e
e

e

....
Me=

We will get m= 2n-1 rows.

Observation: any difference Me –Me’ is 
an upper triangular matrix with either 
+1 or -1 on the diagonal 

Why? focus on ”lowest” position where 
e is different from e’.

This implies Me –Me’ is invertible.

e’

=
=
≠

0’s

0’s



Complexity

Communication
Per instance proved, we have sent m/n  group elements and 
numbers. 
m/n< 2, so same complexity per instance as Schnorr up to a factor 
2.

Computation
Entries in Me are 0, 1, or -1, so computations involving Me are 
dominated by the exponentiations. Hence also computation per 
instance same as Schnorr up to a factor 2.

Prover Verifier

h1= g
w1,..., hn= g

wn

e= e1,..., en
Z= R + Me·W

w1,...,wn

a1= g
r1,..., am= g

rm

Check that
gzi = ai · h1

ti1 · ... · hn
tin



In general..

The homomorphic property of the function w → gw is what makes this work. 
Many other functions are fine as well, see paper for general framework.

Examples:
Not limited to one base, can do proofs of knowledge for (w,s) → gwhs.

Covers several known cryptosystems (Goldwasser-Micali, Groth, Damgård-
Geisler-Krøigaard)

- And commitment schemes for committing to integers (Fujisaki Okamoto)



More Examples

The function w → w2 mod N
Here special purpose construction of Me makes it even more efficent:

Consider that n-bit string e can be thought of as an element in GF(2n).

GF(2n) is a vector space over GF(2), and multiplication by e is a linear 
mapping. So fix some basis and let Me be the matrix of this mapping.

Then any Me –Me’ is invertible because it corresponds to multiplication 
by e-e’ ≠ 0.

Leads to protocol for proving you know square roots mod N of x1,...,xn. 
Size of proof per instance is exactly equal to one run of the classic 
GMR protocol.



Also in Paper..

Interesting connection between construction of Me and black-box 
secret sharing.

Most known efficent protocols (Schnorr, G-Q, ours) can be thought of 
as being based on a 2 out of T secret sharing scheme, for very large T:

P Va

e

z

P commits to randomness for s.s.

V asks for e’th share of secret

Prover reveals requested share, 
V checks share is correct

xw w: secret, x: commitment to secret

Zero-knowledge because one share does reveal the secret.
Sound because given two correct shares, secret can be computed.


