Computational Differential Privacy

Ilya Mironov Omkant Pandey Omer Reingold Salil Vadhan

(MICROSOFT) (UCLA) (MICROSOFT) (HARVARD)

Focus of the Talk

- Relaxations of differential privacy for computational adversaries
- How they relate to one another and other existing notions
- Natural protocols demonstrating their benefits

Motivation

- Achieve better utility
- Standard MPC does not prevent what is leaked by the output
 - Can we combine computational MPC protocols with DP-functions [DKMMN'06,BNO'08]?
- Nontrivial differentially private mechanisms must be randomized
 - Applications typically use pseudorandom sources.
 What are the formal privacy guarantees achieved?

Differential Privacy

[Dwork'06]

"adjacent" means

"differ in one individual's entry" • Mechanism *K* provides privacy to individual's data effects the output of I little

> K: $D \rightarrow R$ ensures ε -DP if for all adjacent datasets $\overline{D_1}, \overline{D_2}$ and for all subsets S of **R**: $\frac{\Pr[K(D_1) \in S]}{\Pr[K(D_2) \in S]} \le e^{\varepsilon}$

Pictorial Representation

– bad outcome

- probability with record x
- probability without record x

Towards Computational Notions

$\Pr[K(D_1) \in S] \le e^{\varepsilon} \Pr[K(D_2) \in S]$

Equivalently,

 $\Pr[\mathsf{A}(K(D1)) = 1] \le e^{\varepsilon} \Pr[\mathsf{A}(K(D2)) = 1]$

First Definition: IND-CDP

<u>E-IND-CDP</u>: Mechanism *K* is **E-IND-CDP** if for all adjacent $D_{1^{\mu}}$, $D_{2_{\lambda}}$ for all polynomial sized circuits **A**, and for all large enough λ , it holds that,

 $\Pr[A(K(D_1)) = 1] \le e^{\varepsilon} \Pr[A(K(D_2)) = 1] + \operatorname{negl}(\lambda)$

Necessary

Simulation-based Approach

Second Definition: SIM-CDP

E-SIM-CDP: Mechanism K is **E-SIM-CDP** if there exists an <u>E-differentially-private mechanism M</u> such that f all D, distributions M(D) and K(D) $\exists M, \forall (D_1, D_2)$ nally indistinguishable.

M is not necessarily a PPT mechanism
 Reversing the order of quantifiers yields another definition, SIM_{∀∃} -CDP:
 ∀(D1, D2), ∃M

Immediate Questions

- Are these definitions equivalent?
- Not hard to see that

 $SIM-CDP \implies IND-CDP$

• Main question:

IND-CDP \implies **SIM-CDP**?

Connection with Dense Models [RTTV'08, Imp'08]

• Distribution X is a dense in Y if for all tests T, $\Pr[T(X) = 1] \leq \frac{1}{\alpha} \Pr[T(Y) = 1]$

• X is α -pseudodense in Y if for all PPT tests T, $\Pr[T(X) = 1] \le \frac{1}{\alpha} \Pr[T(Y) = 1] + \operatorname{negl}$

[RTTV'08] : Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S. "Dense subsets of Pseudorandom Sets", FOCS 2008.

Connection with Dense Models [RTTV'08, Imp'08]

- Differential Privacy:
 - $\Pr[K(D_1) \in S] \leq e^{\varepsilon} \Pr[K(D_2) \in S]$
 - $\Pr[K(D_2) \in S] \leq e^{\mathcal{E}} \Pr[K(D_1) \in S]$
- In the language of dense models
 - $K(D_1)$ is e^{ε} -dense in $K(D_2)$
 - $K(D_2)$ is e^{ε} -dense in $K(D_1)$

\varepsilon-DP: $K(D_1)$ and $K(D_2)$ are mutually e^{ε} -dense

Connection with Dense Models [RTTV '08, Imp'08]

• ε - IND-CDP:

 $- \Pr[A(K(D_1)) = 1] \le e^{\varepsilon} \Pr[A(K(D_2) = 1] + \operatorname{negl}]$

 $- \Pr[A(K(D_2)) = 1] \le e^{\varepsilon} \Pr[A(K(D_1) = 1] + \operatorname{negl}]$

- In the language of dense models
 - $K(D_1)$ is e^{ε} -pseudodense in $K(D_2)$
 - $K(D_2)$ is e^{ε} -pseudodense in $K(D_1)$

\varepsilon-IND-CDP: $K(D_1)$ and $K(D_2)$ are mutually e^{ε} -pseudodense

Some Notation

- $X \leftarrow - Y$ (X is pseudodense in Y) $X \leftarrow - \rightarrow Y$ (X,Y are <u>mutually</u> pseudodense)
- $X \longleftarrow Y$ (X
- $X \longleftrightarrow Y$

 $\mathbf{X} \approx \mathbf{Y}$

- (X is dense in Y)
- (X,Y are <u>mutually</u> dense)
 - (X,Y comp. indistinguishable)

The Dense Model Theorem [RTTV'08]

Thm : If X_1 is pseudodense in X_2 , there exists a model Y (truly) dense in X_2 such that X_1 is computationally indistinguishable from Y.

Proof Ideas

X ← Y: X dense in Y, X ← Y: X pseudo-dense in Y, X ←→ Y: X,Y mutually dense X <---> Y: X,Y mutually pseudo-dense

To Recap

- We prove an extension of "The Dense Model Theorem" of [RTTV'08].
- Sufficient to establish: IND-CDP \Leftrightarrow SIM_{$\forall 7$}-CDP
- Still OPEN: IND-CDP \Rightarrow SIM-CDP

Benefits: Better Utility

DP : Requires $\widetilde{\Omega}(n^{\frac{1}{2}})$ error ! [Reingold-Vadhan]

CDP : Easily get $\Theta(1/\epsilon)$ error w/ constant probability.

Other Results

- A new protocol for Hamming Distance:
 - Differentially private (standard)
 - Constant multiplicative error
- Differentially Private Two-Party Computation

Thank you for your attention!