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Focus of the Talk

• Relaxations of differential privacy for 

computational adversaries

• How they relate to one another and other 

existing notions

• Natural protocols demonstrating their 

benefits



Motivation

• Achieve better utility

• Standard MPC does not prevent what is 

leaked by the output

– Can we combine computational MPC protocols with 

DP-functions [DKMMN’06,BNO’08]? 

• Nontrivial differentially private mechanisms 

must be randomized

– Applications typically use pseudorandom sources. 

What are the formal privacy guarantees achieved?



Differential  Privacy 
[Dwork’06]

• Mechanism K provides privacy to an individual, if 
individual’s data effects the output of K only “little”

K: D ���� R ensures ε-DP if for all adjacent datasets 

D1, D2 and for all subsets S of R:

K: D ���� R ensures ε-DP if for all adjacent datasets 

D1, D2 and for all subsets S of R:

1

2

( )

( )

Pr[ ]

Pr[ ]

K D S

K D S
e

ε∈

∈

≤

“adjacent” means 

“differ in one 

individual’s entry”

“adjacent” means 

“differ in one 

individual’s entry”



Pictorial Representation

— bad outcome

— probability with record x
— probability without record x



Towards Computational Notions
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Equivalently,



First Definition: IND-CDP

ε-IND-CDP : Mechanism K is ε-IND-CDP if for all 
adjacent D1, D2, for all polynomial sized circuits

A, and for all large enough λ, it holds that,

ε-IND-CDP : Mechanism K is ε-IND-CDP if for all 
adjacent D1, D2, for all polynomial sized circuits

A, and for all large enough λ, it holds that,
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Necessary



Simulation-based Approach
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Second Definition: SIM-CDP

ε-SIM-CDP : Mechanism K is ε-SIM-CDP if there 
exists an ε-differentially-private mechanism M
such that for all D, distributions M(D) and K(D)
are computationally indistinguishable.

ε-SIM-CDP : Mechanism K is ε-SIM-CDP if there 
exists an ε-differentially-private mechanism M
such that for all D, distributions M(D) and K(D)
are computationally indistinguishable.

1 2, ( , )M D D∃ ∀

– M is not necessarily a PPTmechanism

– Reversing the order of quantifiers yields 

another definition, SIM∀∃∀∃∀∃∀∃ -CDP:

1 2( , ),D D M∀ ∃



Immediate Questions

• Are these definitions equivalent?

• Not hard to see that

• Main question:

SIM-CDP          IND-CDP⇒

IND-CDP          SIM-CDP?⇒



Connection with Dense Models
[RTTV’08, Imp’08]

• Distribution X is α-dense in Y if for all tests T,

• X is α-pseudodense in Y if for all PPT tests T,
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[RTTV’08] : Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.

“Dense subsets of Pseudorandom Sets”, FOCS 2008.



Connection with Dense Models
[RTTV’08, Imp’08]

• Differential Privacy:

–

–

• In the language of dense models

– K(D1) is e
ε-dense in K(D2)

– K(D2) is e
ε-dense in K(D1)
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ε-DP: K(D1) and K(D2) are mutually e
ε-denseε-DP: K(D1) and K(D2) are mutually e
ε-dense



Connection with Dense Models
[RTTV ’08, Imp’08]

• ε - IND-CDP:

–

–

• In the language of dense models

– K(D1) is e
ε-pseudodense in K(D2)

– K(D2) is e
ε-pseudodense in K(D1)
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ε-IND-CDP: K(D1) and K(D2) are mutually e
ε-pseudodenseε-IND-CDP: K(D1) and K(D2) are mutually e
ε-pseudodense
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Some Notation

X Y ( X is pseudodense in Y )

X Y ( X,Y are mutually pseudodense )

X Y ( X is dense in Y )

X Y ( X,Y are mutually dense)

( X,Y comp. indistinguishable)X Y≈



The Dense Model Theorem
[RTTV’08]

X1 X2

Y

Thm : If X1 is pseudodense in X2, there exists a model Y
(truly) dense in X2 such that X1 is computationally 
indistinguishable from Y.

Thm : If X1 is pseudodense in X2, there exists a model Y
(truly) dense in X2 such that X1 is computationally 
indistinguishable from Y.



X1 X2
X1=K(D1)

X2=K(D2)
(IND-CDP)

Y1 Y2

Y1=M(D1)

Y2=M(D2)
X1 X2

⇑ ⇑Z1 Z2?

Proof Ideas
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X          Y: X dense in Y, X          Y: X,Y mutually dense

X          Y: X pseudo-dense in Y, X          Y: X,Y mutually pseudo-dense

(SIM    -CDP)
∀∃

1 2( , ),D D M∀ ∃
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To Recap

• We prove an extension of “The Dense Model 

Theorem” of [RTTV’08].

• Sufficient to establish:

• Still OPEN: IND-CDP       SIM-CDP⇒?

IND-CDP ⇔ SIM∀∃∀∃∀∃∀∃-CDP



Benefits: Better Utility

CDP : Easily get ΘΘΘΘ(1/ε) error w/ constant probability.

Alice Bob

x1

x2
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y1
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yn

H(x,y)

Protocol:
Trusted Party: H(x,y)+Lap(1/ε)

SFE

DP : Requires Ω(n½) error !          [Reingold-Vadhan]~



Other Results

• A new protocol for Hamming Distance:

– Differentially private (standard)

– Constant multiplicative error

• Differentially Private Two-Party Computation



Thank you for your attention!


