Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1

Kazumaro Aoki and Yu Sasaki

NTT

Copyright 2009 ⓒNTT - p.1/16

Contents

- Results
- Preparation
- Problem and idea
- Application to SHA-0 and SHA-1
- Conclusion

Results

		[3]		Ours			
	type	step	comp	step	comp		
SHA-0	PPI	50	2^{158}	52	$2^{151.2}$		
	PI	49	2^{159}	52	$2^{156.6}$		
SHA-1	PPI	45	2^{157}	48	$2^{156.7}$		
	PI	44	2^{157}	48	$2^{159.3}$		
PPI: pseudo-preimage. PI: preimage							

• # of SHA-0/1 steps is 80.

Copyright 2009 ⓒNTT - **p.3/16**

Recent progress for (MitM) PI attack

Conversion from PPI attack to PI attack:

- MitM [Fact 9.99@HAC]
- Tree [Leurent@FSE08]
- P3graph [Cannière&Rechberger@C08]

Finding a preimage of compression function:

- FORK-256 [Saarinen@I07]
- MD4 [Leurent@FSE08]
- One-block MD4 and MD5 [Ours@SAC08]

Reduced SHA-0/1 [This talk]

SHA-*b* **compression function**

CF: (H_i (160-bit), M_i (512-bit)) $\mapsto H_{i+1}$ (160-bit) Message schedule:

 $\begin{cases} (m_0, m_1, \dots, m_{15}) \leftarrow M_i & (m_j \in \{0, 1\}^{32}) \\ (w_0, w_1, \dots, w_{15}) \leftarrow (m_0, m_1, \dots, m_{15}) \\ w_j \leftarrow (\bigoplus_{k \in \{3, 8, 14, 16\}} w_{j-k})^{\lll b} & (j \ge 16) \end{cases}$

Iteration of step function (s = 80)

$$\begin{cases} p_0 \leftarrow H_i \\ p_{j+1} \leftarrow R_j(p_j, w_j) & j = 0, 1, \dots, s-1 \\ H_{i+1} \leftarrow H_i + p_s \end{cases}$$

Copyright 2009 ©NTT – **p.5/16**

MitM attack for compression function

Q: How to find t and neutral words m_v and m_u ?

Copyright 2009 ⓒNTT – **p.6/16**

Difficulties to find t, m_u , and m_v

- w_i is one of m_j s for MD{4,5}.
 - \Rightarrow Their dependency is easy to analyze.
- Linear message schedule is adopted for SHA-0 ⇒ How to analyze???

Presumable condition:

 $W_1 = [w_0, \dots, w_{t-1}], \text{ rank}_M W_1 < 16 \text{ (full)}$ $W_2 = [w_t, \dots, w_{s-1}], \text{ rank}_M W_2 < 16 \text{ (full)}$

(This is the generalization of the case for $MD{4,5}$.)

How to decide neutral words

- For MD{4,5}, neutral words are simply chosen from m_j which is not used. It can be interpreted using the notations from linear algebra, $\langle \begin{bmatrix} m_0 & m_{j-1} & m_j & m_{j+1} & m_{15} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^T \rangle \subseteq \ker W_1$
- In the example from SHA-0 case, ker $W_1 = \langle [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]^T \rangle$ ker $W_2 = \langle [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]^T \rangle$
 - **1st chunk:** $m_1 = m_4$ **2nd chunk:** $m_0 = m_2 = m_3$

How to decide neutral words (cont'd)

To see the another example of SHA-0, we may encounter

 $\ker W_1 = \left\langle [0, 0, 0, 1, 0, 1, 0, 1, 0, \mathbf{1}, 0, 0, 0, 0, 0, 0]^T \right\rangle$ $\ker W_2 = \left\langle [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, \mathbf{1}, 0, 0, 0, 1, 1, 1]^T \right\rangle$

1st chunk: $m_6 = m_8 = m_9 = m_{13} = m_{14} = m_{15}$ 2nd chunk: $m_3 = m_5 = m_7 = m_9$

How to choose neutral words?

Copyright 2009 ©NTT – **p.9/16**

Idea

Apply linear transformation R to the input of CF: $CF(H, (RM'^T)^T)$, where $M^T = RM'^T$. R should satisfy the followings.

 $\begin{cases} (W_1 R) \mathbf{e}_0 = 0\\ (W_2 R) \mathbf{e}_1 = 0\\ \text{(Kernel vectors do not share 1 in the same position.)} & j\\ (\text{Unit vector } \mathbf{e}_j = \begin{bmatrix} 0 & \cdots & 1 & \cdots & 0 \end{bmatrix}^T.) \end{cases}$

• Regular. (Converted message M' must be computed from the original message M.)

Copyright 2009 ©NTT - **p.10/16**

Construction of *R*

$$\begin{cases} \ker W_1 = \langle k_1 \rangle \\ \ker W_2 = \langle k_2 \rangle \end{cases}, \quad R = T^{-1} B^{-1} S, \end{cases}$$

1

Copyright 2009 ©NTT – **p.11/16**

Properties

Let $W'_1 = W_1 R$ and $W'_2 = W_2 R$, then we have $\begin{cases} W'_1 \mathbf{e}_0 = W_1 R \mathbf{e}_0 = 0\\ W'_2 \mathbf{e}_1 = W_2 R \mathbf{e}_1 = 0 \end{cases}$ Regard $M' = [m'_0, m'_1, \dots, m'_{15}]$ as a message

with $- [m_0, m_1, \dots, m_{15}]$ as a message

$$M^T = RM'^T$$

 $\Rightarrow m'_0$ and m'_1 are natural words. Hence, we can use MitM as the MD{4,5} attacks.

Copyright 2009 ©NTT – **p.12/16**

Notes

- The proposed method can be used with splice-and-cut, initial structure, partial-matching, and partial-fixing techniques used in the attacks against MD{4,5}.
- The same approach can be applied for SHA-1 using bit instead of word (32 bits).

Application to SHA-{0,1}

of internal steps to attack SHA- $\{0,1\}$

	1 C	IS	2C	PM+PF	total
SHA-0	15	2	21	14	52
SHA-1	15	4	15	14	48

- 1C: first chunk
- 2C: second chunk
- **IS: initial structure**
- **PM:** partial-matching
- **PF: partial-fixing**

Conclusion

- A similar MitM attack for MD{4,5} can be established for SHA-b, whose message schedule is linear and not simply the permutations of message words.
- Attackable steps are increased. SHA-0: $49 \rightarrow 52$, SHA-1: $44 \rightarrow 48$

Thank you for your attention!

Correction (page 72): *Memory complexities in Table 1 for [3] should be corrected to* "negligible".

Copyright 2009 ©NTT – **p.16/16**