
Leakage-Resilient
Public-Key Cryptography

in the
Bounded-Retrieval Model
Joël Alwen, Yevgeniy Dodis, Daniel Wichs

New York University

CRYPTO ‘09 Speaker: Daniel Wichs

Goal of Leakage-Resilient Crypto

f(sk)

Model of Leakage Resilience

� Adversary can learn any efficiently computable function
f : {0,1}* → {0,1}L of the secret key. L = Leakage Bound.

� Relative Leakage […, AGV09, DKL09, NS09].

� “Standard” cryptosystem with small keys
(e.g. 1,024 bits).

� Leakage L is a large portion of key size.
(e.g. 50% of key size).

� Bounded Retrieval Model [Dzi06, CLW06,…]

� Leakage L is a parameter. Can be large.
(e.g. few bits or many Gigabytes).

� Increase sk size to allow L bits of leakage.
(e.g. set |sk| = 2L).

� System remains efficient as L grows.
PK size, comm., comp. are independent of L.

sk

leak

50% of |sk|

Why have schemes in the BRM?

� Security against Hackers/Malware/Viruses:
� Hacker/Malware/Virus downloads arbitrary information

from compromised system, but bounded in length (< 10 GB).
� Bandwidth too low, Cost too high, System security may detect.

� Protect against such attacks by making secret key large (20
GB).
� But everything else efficient.

� Security against side-channel attacks:
� Adversary gets some “physical output” of computation

(e.g. timing/power consumptions).

� Many physical measurements => leakage can be large.

� Still, may be reasonable to assume that it is bounded overall.

� How “bounded” is it? Varies! (few Kb – few Mb).

Crypto Primitives with Leakage

� Limitations to leakage-resilience in non-interactive primitives.
� Encryption Schemes: Leakage cannot depend on the ciphertext.

� Existentially Unforgeable Signatures: Leakage must be smaller than
signature size.
� Impractical in BRM.

� Can have qualitatively stronger security with interaction:

� Main goal: Authenticated Key Agreement.
� Allows for interactive Encryption/Authentication.

� Leakage before and after, but not during, protocol execution.

Full Leakage

Private Communication

Partial Leakage No Leakage

Non-interactive

(Encryption)

Timeline:

Partial Leakage

AKA

Timeline: No Leakage

Protocol Run

(pkAlice, skAlice)

Prior to Communication After Communication

Prior to Communication After Communication

pkAlice

(pkAlice, skAlice)

Enc(m; pkAlice)

pkAlice

Two Goals

� GOAL 1(BRM): Schemes that allow arbitrarily large
leakage bounds L, by increasing |sk|, but without
increasing public key size, computation, communication.

� GOAL 2: Ensure privacy/authenticity of communication
even if leakage occurs both before and after the
communication takes place.

Prior Work

� Much prior and recent work on restricted classes of leakage functions
[CDH+00, MR04, DP08, Pie08…].

� Not applicable to e.g. hacking/malware attacks.

� Relative Leakage.
� Symmetric-Key Authenticated Encryption [DKL09]

� Public-Key Encryption [AGV09, NS09, KV09]

� Problems: 1) non-BRM 2) no leakage after ciphertext.

� Bounded Retrieval Model [Dzi06,CLW06].
� Symmetric-Key Identification [Dzi06]

� Symmetric-Key Authenticated Key Agreement [Dzi06,CDD+07]

� Main Problem: So far, only symmetric key.
� Key distribution of huge keys is even more difficult in the BRM than usual.

� This Work: Public-Key Authenticated Key Agreement in BRM.

� Authenticated Key Agreement
� Based on “Entropically Unforgeable Signatures”

� Entropcially Unforgeable Signatures
� Based on “Identification Schemes”

� Identification Schemes:
�Scheme 1: Relative Leakage

�Scheme 2: “Direct product” extension to BRM

�Scheme 3: Compressing Communication

Roadmap of Construction

Authenticated Key Agreement (AKA)

� Alice and Bob agree on shared session-key, secret from adversary.

� Need: public-key infrastructure (signing/verification keys).

� Past session-key secure, even if adv. learns all signing keys in future.

� If adv. gets leakage of sig. keys, may impersonate parties in future.

� Need: Leakage-Resilient Signature Scheme in the BRM.

� Bad News: Existential-Unforgeability Impossible in BRM.

� Good News: Only need “Entropic-Unforgeability”.

(vkAlice, sigkAlice), vkBob(vkBob, sigkBob), vkAlice

ga

agb
b

, Sign((ga ,gb), sigkBob)

Sign((ga ,gb), sigkAlice)
Key = gab Key = gab

Entropically Unforgeable Signatures:

Adversary cannot forge signatures of random
messages from high-entropy dist.

(even after leakage)

� Authenticated Key Agreement
� Based on “Entropically Unforgeable Signatures”

� Entropcially Unforgeable Signatures
� Based on “Identification Schemes”

� Identification Schemes:
�Scheme 1: Relative Leakage

�Scheme 2: “Direct product” extension to BRM

�Scheme 3: Compressing Communication

Roadmap of Construction

Definition: Identification Schemes

(pkBob, skBob) pkBob

Prover Bob Verifier Alice

accept

Learning Stage

(pkBob, skBob) pkBobpkBob

Impersonation Stage
reject!

Leakage-Resilient Identification

Learning Stage

(pkBob, skBob) pkBobpkBob

Impersonation Stage
reject!

� Bob’s key can leak !!!

� Pre-impersonation leakage: all in learning stage

� Anytime leakage: can happen anywhere

� Cannot achieve in BRM

skBob

� 3 round (public-coin) ID scheme => Signature.

� Only works in the Random Oracle Model.

Fiat-Shamir: Signatures from ID

(pkBob, skBob) pkBob

Prover Bob Verifier Alice
a

z

(pkBob, skBob) pkBob

Signer Bob
Verifier Alicem, sig = (a,z)

c=H(m)

Message m

� Theorem: Applying Fiat-Shamir

� Anytime Leakage ID ⇒ Existentially Unforgeable Sig.

� Pre-imperson. Leakage ID ⇒ Entropically Unforgeable Sig.

� Fiat-Shamir preserves leakage bound L, public/secret
key sizes, communication, computation.

� New Goal: Construct efficient ID schemes with “pre-
impersonation leakage” in the BRM.

From ID to Signatures

� Authenticated Key Agreement
� Based on “Entropically Unforgeable Signatures”

� Entropcially Unforgeable Signatures
� Based on “Identification Schemes”

� Identification Schemes:
�Scheme 1: Relative Leakage

�Scheme 2: “Direct product” extension to BRM

�Scheme 3: Compressing Communication

Roadmap of Construction

PK = h = g1
x1 · g2

x2 ,
SK = (x1, x2)

PK

Prover Bob Verifier Alice

Okamoto’s ID Scheme

a = g1
r1 · g2

r2

c

z1 = r1 − c · x1 , z2 = r2 − c · x2

Check: a = g1
z

1 · g2
z

2 · h c

� Properties of Protocol:

� Many possible SK’s (x1, x2) consistent with fixed PK h.

� WI: proof perfectly hides which (x1, x2) is used.

� Can extract a valid SK’ = (x’1, x’2) from adv. prover.

� DL ⇒ given one secret key, hard to find another.

� Many possible SK’s (x1, x2) consistent with fixed PK h.

� ⇒ Bob’s SK has entropy, even if adv. gets PK+ “some” leakage.

� WI: proof perfectly hides which (x1, x2) is used.
� ⇒ “proofs” do not reduce entropy in SK.

� Can extract a valid SK’ = (x’1, x’2) from adv. prover.
� ⇒ Adv. prover yields SK’ ≠ SK.

� Contradict: DL ⇒ given one secret key, hard to find another.

� Leakage:
� As Is: Pre-imper. leakage |SK|/2, anytime leakage |SK|/4.

� More generators: Pre-imper. (1 − ε)·|SK|, anytime (½ − ε)·|SK|.

Leakage Resilience of Okamoto ID

� Authenticated Key Agreement
� Based on “Entropically Unforgeable Signatures”

� Entropcially Unforgeable Signatures
� Based on “Identification Schemes”

� Identification Schemes:
�Scheme 1: Relative Leakage

�Scheme 2: “Direct product” extension to BRM

�Scheme 3: Compressing Communication

Roadmap of Construction

Prover Bob Verifier Alice

Direct-Product ID Scheme

sk1

sk2

sk3

skn

…

SK PK

� Bob’s SK is a database of n Okamoto keys ski

� Alice chooses random k indices in {1,…,n}.

� Alice and Bob execute k copies of Okamoto ID in parallel.

� Hope: Basic scheme allows L bits of pre-impersonation leakage

=> Direct-Product allows ≈ nL pre-impersonation leakage.

(a1,…,ak)

(c1,…,ck)

(z1,…,zk)

pk1

pk2

pk3

pkn

…

sk4

sk5

(i1,…,ik)

pk4

pk5

Prover Bob Verifier Alice

Direct-Product ID Scheme

sk1

sk2

sk3

skn

…

SK PK

� Problem: Public-Key PK is huge!

(a1,…,ak)

(c1,…,ck)

(z1,…,zk)

pk1

pk2

pk3

pkn

…

sk4

sk5

(i1,…,ik)

pk4

pk5

Prover Bob Verifier Alice

Direct-Product ID Scheme

sk1

sk2

sk3

skn

…

SK MPK

� Problem: Public-Key PK is huge!

� Solution: Bob stores all pki himself. Gives relevant keys to
Alice during protocol execution.

� Bob signs individual public keys pki with a master signing
key (which is deleted). Alice stores master verification key.

(a1,…,ak)

(c1,…,ck)

(z1,…,zk)

pk1

pk2

pk3

pkn

…

sk4

sk5

(i1,…,ik)

pk4

pk5

σ
1

σ
2

σ
3

σ
n

…

σ
4

σ
5

(σ1,…,σk)(pk1,…,pkk)

Prover Bob Verifier Alice

Direct-Product ID Scheme

sk1

sk2

sk3

skn

…

SK MPK

� Problem: 4 rounds instead of 3 (need 3 for Fiat-Shamir).

(a1,…,ak)

(c1,…,ck)

(z1,…,zk)

pk1

pk2

pk3

pkn

…

sk4

sk5

(i1,…,ik)

pk4

pk5

σ
1

σ
2

σ
3

σ
n

…

σ
4

σ
5

(σ1,…,σk)(pk1,…,pkk)

Prover Bob Verifier Alice

Direct-Product ID Scheme

sk1

sk2

sk3

skn

…

SK MPK

� Problem: 4 rounds instead of 3 (need 3 for Fiat-Shamir).

� Solution: Alice chooses indices during challenge round.

� Okamoto has nice property that first round does not

depend on pk.

(a1,…,ak)

(c1,…,ck)

(z1,…,zk)

pk1

pk2

pk3

pkn

…

sk4

sk5

(i1,…,ik)pk4

pk5

σ
1

σ
2

σ
3

σ
n

…

σ
4

σ
5

(σ1,…,σk)(pk1,…,pkk)

Prover Bob Verifier Alice

Direct-Product ID Scheme

sk1

sk2

sk3

skn

…

SK MPK

(a1,…,ak)

(c1,…,ck)

(z1,…,zk)

pk1

pk2

pk3

pkn

…

sk4

sk5

(i1,…,ik)pk4

pk5

σ
1

σ
2

σ
3

σ
n

…

σ
4

σ
5

(σ1,…,σk)(pk1,…,pkk)

� Question: Can we prove that direct-product scheme allows n

times as much leakage as small scheme?

� Answer 1: Interestingly, not in general. (counter-example)

� Answer 2: Works for Okamoto…

Prover Bob Verifier Alice

Direct-Product ID Scheme

sk1

sk2

sk3

skn

…

SK MPK

(a1,…,ak)

(c1,…,ck)

(z1,…,zk)

pk1

pk2

pk3

pkn

…

sk4

sk5

(i1,…,ik)pk4

pk5

σ
1

σ
2

σ
3

σ
n

…

σ
4

σ
5

(σ1,…,σk)(pk1,…,pkk)

� Efficiency Concern: Communication complexity has

multiplied by k (essentially security parameter).

� Authenticated Key Agreement
� Based on “Entropically Unforgeable Signatures”

� Entropcially Unforgeable Signatures
� Based on “Identification Schemes”

� Identification Schemes:
�Scheme 1: Relative Leakage

�Scheme 2: “Direct product” extension to BRM

�Scheme 3: Compressing Communication

Roadmap of Construction

No Time!
Bottom Line: communication is
O(1) group elements, same as

original Okamoto scheme.

� Construct efficient ID schemes, entropic signatures,
Authenticated Key Agreement protocols in BRM.
� Secret key size: L(1+ ε). Leakage bound L.
� Public key, Communication: constant # of group elements.
� Data Accessed: O(sec. parameter) group elements.
� Computation: O(sec. parameter) exponentiations.

� Existentially-UF sigs. with relative leakage of ½ of |sk|.
� Independently discovered by [KV09]. Also possible without RO.

� Key Updates: Can “refresh” secret key to allow more
leakage over the long-run.

� Future Work: Public-key encryption, IBE in BRM [ADN+ 09].

Summary of Results

THANK YOU!

Questions?

