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Foundations of Cryptography
Rigorous analysis of the security of cryptographic schemes

Ek
 

(m)

Adversarial model


 

Computational capabilities


 

Access to the system

Notion of security


 

What does it mean to break 
the system?
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Foundations of Cryptography
Rigorous analysis of the security of cryptographic schemes

Adversarial model


 

Computational capabilities


 

Access to the system

Notion of security


 

What does it mean to break 
the system?



 
Notions of security significantly evolved



 
Adversarial access analyzed in the “standard model”...
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SIDE CHANNEL:

Any information not captured 
by the underlying model

Adversarial Models
STANDARD MODEL:


 

Abstract computation


 

Interactive Turing machines


 

Private memory & 
randomness



 

Well-defined adversarial access


 

Can model powerful attacks


 

CPA\CCA, composition, key 
cycles,...

REAL LIFE:


 

Physical implementations leak 
information



 

Side-channel attacks


 

Timing attacks [Kocher 96]


 

Fault detection [BDL 97, BS 97]


 

Power analysis [KJJ 99]


 

Cache attacks [OST 05]


 

Memory attacks [HSHCPCFAF 08]
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Modeling Side Channels


 

Canetti, Dodis, Halevi, Kushilevitz, and Sahai ’00 
Exposure-resilient functions: functions that “look” random even if several 
input bits are leaked



 

Ishai, Prabhakaran, Sahai, and Wagner ’03 ’06 
Private circuit evaluation allowing several wires to leak



 

Micali and Reyzin ’04 
Computation and only computation leaks information



 

Dziembowski and Pietrzak ’08, Pietrzak ’09 
Leakage-resilient stream-ciphers


 

Computation and only computation leaks information


 

Low-bandwidth leakage 



6

Memory Attacks [HSHCPCFAF 08]


 

Not only computation leaks information


 

Memory retains its content after power is lost

5 
seconds

30 
seconds

60 
seconds

5 
minutes

http://citp.princeton.edu/memory

Halderman, Schoen, Heninger, 
Clarkson, Paul, Calandrino, 

Feldman, Appelbaum and Felten
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

 

Not only computation leaks information


 

Memory retains its content after power is lost



 

Recover “noisy” keys 


 

Cold boot attacks


 

Completely compromise popular disk encryption systems


 

Reconstruct DES, AES, and RSA keys http://citp.princeton.edu/memory

Memory content can even last for several minutes

Memory Attacks [HSHCPCFAF 08]

Extended and further 
analyzed by Heninger & 

Shacham 09
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Memory Attacks
Semantic security with key leakage [AGV 09]: 
For any* leakage f(sk)

 
and for any m0

 

and m1
 

infeasible to 
distinguish Epk

 

(m0
 

)
 

and Epk
 

(m1
 

)

(sk, pk)

pk

f

Output b’

f(sk)

b ← {0,1}



 

Clearly, cannot allow f(sk)
 

that easily reveals sk


 

For now f : SK
 

→ {0,1}λ
 

for λ
 

<
 

|sk|

m0
 

, m1

Epk
 

(mb
 

)

Akavia, Goldwasser 
& Vaikuntanathan

[AGV 09]: Regev’s 
lattice-based scheme is 
resilient to such leakage
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Our Results


 
A generic construction secure against key leakage


 

Based on any Hash Proof System [CS 02]


 

Efficient instantiations


 

Various number-theoretic assumptions



 
A new hash proof system


 

Resulting scheme resilient to leakage of L –
 

o(L)
 

bits


 

Based on either DDH or d-Linear



 
The [BHHO 08] circular-secure scheme


 

Fits into our generic approach


 

Resilient to leakage of L –
 

o(L)
 

bits
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Our Results


 
Chosen-ciphertext security

Theoretical side


 

A generic CPA-to-CCA 
transformation



 

Leakage of L –
 

o(L)
 

bits

Practical side


 

Efficient variants of Cramer-Shoup


 

CCA1: Leakage of L/4
 

bits


 

CCA2: Leakage of L/6
 

bits

Satisfied 
by our 

schemes



 
Extensions of the [AGV 09] model


 

Noisy leakage


 

Leakage of intermediate values


 

Keys generated using a “weak” random source
Independently by Tauman Kalai & 

Vaikuntanathan: [BHHO 08] with hard-to-invert 
leakage and CPA-to-CCA
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Outline of the Talk



 
The generic construction by example


 

An efficient scheme with λ
 

≈ |sk|/2



 
Extensions of the model



 
Conclusions & open problems
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

 

G
 

- group of order p in which DDH is hard


 

Ext : G
 

× {0,1}d
 

→ {0,1}
 

- strong extractor



 

Choose g1
 

, g2
 

∈
 

G and x1
 

, x2
 

∈
 

Zp



 

Let h = g1
x1 g2

x2



 

Output sk
 

= (x1
 

, x2
 

) and pk
 

= (g1
 

, g2
 

, h)

Key 
generation

A Simple Scheme

MAIN IDEA


 

Redundancy: pk
 

corresponds to many possible sk’s


 

h=g1
x1 g2

x2 reveals only log(p) bits of information on sk=(x1
 

,x2
 

)


 

Leakage of λ
 

bits ⇒ sk
 

still has min-entropy log(p) -
 

λ



13



 

G
 

- group of order p in which DDH is hard


 

Ext : G
 

× {0,1}d
 

→ {0,1}
 

- strong extractor



 

Choose g1
 

, g2
 

∈
 

G and x1
 

, x2
 

∈
 

Zp



 

Let h = g1
x1 g2

x2



 

Output sk
 

= (x1
 

, x2
 

) and pk
 

= (g1
 

, g2
 

, h)



 

Choose r ∈
 

Zp
 

and a seed s ∈
 

{0,1}d



 

Output (g1
r, g2

r, s, Ext(hr, s) ⊕
 

m)



 

Output e ⊕
 

Ext(u1
x1 u2

x2, s)

Key 
generation

Encpk
 

(m)

Decsk
 

(u1
 

, u2
 

, s, e)

A Simple Scheme

Correctness: u1
x1 u2

x2
 

= (g1
x1 g2

x2)r = hr
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Theorem: The scheme is resilient to any leakage of λ
 

≈ log(p) bits

half the 
size of sk

Security of the Simple Scheme

Proof by reduction:

Adversary for the 
encryption scheme

Algorithm for DDH:

(g1
 

, g2
 

, g1
r, g2

r)
or

(g1
 

, g2
 

, g1
r1, g2

r2)
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The Reduction
pk(g1

 

, g2
 

, u1
 

, u2
 

)

b’

If b’
 


 

b
 output YES

 otherwise NO 

f

f(sk)

m0
 

, m1

sk
 

= (x1
 

, x2
 

)
= (g1

 

, g2
 

, h=g1
x1 g2

x2) 

u1
 

, u2
 

, s
Ext(u1

x1
 

u2
x2, s) ⊕

 
mb

Case 1: u1
 

= g1
r & u2

 

= g2
r



 

Simulation is identical to actual attack


 

By assumption Pr[b’
 

= b] > 1/2 + 1/poly

u1
x1 u2

x2
 

= (g1
x1 g2

x2)r = hr
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The Reduction
pk(g1

 

, g2
 

, u1
 

, u2
 

)

b’

If b’
 


 

b
 output YES

 otherwise NO 

f

f(sk)

m0
 

, m1

sk
 

= (x1
 

, x2
 

)
= (g1

 

, g2
 

, h=g1
x1 g2

x2) 

u1
 

, u2
 

, s
Ext(u1

x1
 

u2
x2, s) ⊕

 
mb

Case 2: u1
 

= g1
r1

 
& u2

 

= g2
r2



 

Challenge independent of b


 

Pr[b’
 

= b] = 1/2

u1
x1 u2

x2
 

is uniform in G
λ

 
bits of leakage ⇒

 H∞
 

(u1
x1 u2

x2) ≥
 

log(p) -
 

λ
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Hash Proof Systems
Key-encapsulation mechanisms with an additional property:
Knowing sk, can encapsulate in two modes


 

Valid: Encapsulated key can be recovered


 

Invalid: Encapsulated key is random
computationally 
indistinguishable

Leakage reduces the min-entropy by at 
most λ, extract and mask the message

Our general construction:
Hash proof system + strong extractor 

Key-encapsulation mechanism resilient to key leakage
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Hash Proof Systems
Key-encapsulation mechanisms with an additional property:
Knowing sk, can encapsulate in two modes


 

Valid: Encapsulated key can be recovered


 

Invalid: Encapsulated key is random
computationally 
indistinguishable

Known instantiations:


 

Decisional Diffie-Hellman


 

Linear family (bilinear groups)


 

Quadratic residuosity


 

Composite residuosity (Paillier)

Leakage reduces the min-entropy by at 
most λ, extract and mask the message
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Extensions Satisfied By Our Schemes
Noisy leakage


 

Leakage not necessarily of bounded length

H∞
 

(sk | pk, leakage) > H∞
 

(sk
 

| pk) -
 

λ

Leakage of intermediate values


 

Once the keys are generated, are all intermediate values erased?


 

Leakage depends on the random bits used for generating the keys


 

Crucial for security under composition

Weak random source


 

Keys generated using a low-entropy adversarially chosen source


 

Need only a min-entropy guarantee for sk
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Conclusions & Open Problems



 

Leakage-resilient encryption from general assumptions?


 

From any CPA-secure scheme?



 

Dealing with “iterative’’ leakage and refreshed keys?


 

As in leakage-resilient stream-ciphers [DP08, P09]



 

Other primitives? Other side channels?


 

Signature Scheme [KV09]


 

Bounded Retrieval Model [ADW09]


 

Hard-to-invert leakage [DKL09, KV09]



 
We can meaningfully model various forms of leakage



 
We can build efficient schemes that resist them
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