
Reconstructing RSA Private Keys
from Random Key Bits

Nadia Heninger and Hovav Shacham
Princeton UCSD

August 17, 2009



Motivation:“Cold boot” or “memory” attacks

A new side-channel attack on cryptographic keys
that leaks information independently of computation.

I Data persists on RAM after
power is removed: up to
several seconds at room
temperature, longer if
cooled.

I An attacker can reboot the
computer to get around OS
controls on memory access.

Actually works in practice against software disk encryption.
[HSHCPCFAF 08]



Motivation: Properties of memory remanence and decay

5s. 30s. 1m. 5m.

I Model DRAM as an array of capacitors that discharge to a
known ground state.

I Example: In region of ground state 0. If read in a 1, that bit
must be 1. If read in 0, original bit could have been 0 or 1.

I The decay order is relatively random.



Recent work on memory attacks

Theoretical constructive work:

I Show existing lattice-based cryptosystems resistant to this
sort of attack. [Akavia, Goldwasser, Vaikuntanathan 09]

I Create new, resistant DDH-based cryptosystems. [Naor and
Segev, this session!]

I Create new protocols that can tolerate a fixed rate of key
leakage over time. [Alwen, Dodis, Wichs, this session!]

Empirical attacks:

I DES trivial to reconstruct from about 25% of bits.
[HSHCPCFAF 08]

I Reconstruct an AES key schedule from 30% of bits. [Tsow 09]

I Reconstruct an RSA private key from 27% of bits. [this work]



Problem Statement

Remove all but a δ-fraction of the bits, chosen
at random, from an RSA private key.

(Flip a coin at each bit of the key. With
probability δ, the attacker gets to see the bit’s
value.)

How to efficiently reconstruct the key?

(Spoiler!)

We can do this with δ = 27% of the private key bits for small
public exponent. (Under a heuristic assumption.)



Outline for the rest of the talk

Useful facts about RSA keys.

Recovery Algorithm

1. Write relationships between key values as equations over the
integers.

2. Solve series of equations iteratively over key bits.

Analysis. (And our assumption.)

Experimental results.



Notation and RSA review

Public Key

N = pq modulus

e encryption
exponent

Encryption

c = me (mod N)

Private Key

p, q large primes

d = e−1 mod (p − 1)(q − 1)
decryption exponent

Decryption

m = cd (mod N)

(for speed, decrypt using
Chinese remainder theorem)

dp = d (mod p − 1)

dq = d (mod q − 1)



Observation: Key data is redundant.
PKCS #1: RSA Cryptography Standard

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e

}
RSAPrivateKey ::= SEQUENCE {

version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL

}



Observation→Assumption: Low public exponent

Nearly everyone uses the public exponent

e = 216 + 1 = 65537.

In this work, we assume that e is small.



Step # 1: Relate key values

We can write down the relationships between redundant key
information as equations.

pq = N (1)

ed = 1 (mod (p − 1)(q − 1)) (2)

edp = 1 (mod p − 1) (3)

edq = 1 (mod q − 1) (4)

(upper half of bits of d)

k =
e d̃ − 1

N + 1
(trick from [Boneh, Durfee, Frankel 98])

g2 − [k(N − 1) + 1]g − k ≡ 0 (mod e)



Step # 1: Relate key values over the integers

We can write down the relationships between redundant key
information as equations over the integers.

pq = N (1)

ed + k(p + q) = 1 + k(N − 1) (2)

edp − g(p − 1) = 1 (3)

edq − h(q − 1) = 1 (4)

(upper half of bits of d)

k =
e d̃ − 1

N + 1
(trick from [Boneh, Durfee, Frankel 98])

g2 − [k(N − 1) + 1]g − k ≡ 0 (mod e)



Natural but unsuccessful Idea: Lattice approaches

Lattice approaches used for RSA key recovery in:

[Coppersmith 96], [Boneh, Durfee, Frankel 98],
[Blömer and May 03], [Herrmann and May 08]

What they have: What we have:

Large blocks of
contiguous bits,
no redundancy.

Non-contiguous
bits, redundancy.

Open problem: Make a lattice approach work. (We couldn’t.)



For example the paper tries to factor N = pq by writing
it as a set of binary equations over the bits of p and q.

–Ten Reasons why a Paper is Rejected
from a Crypto Conference



Step #2: Solve our equations iteratively

Generate a tree of partial solutions, starting at bit 0.

What’s a tree node?

A simultaneous assignment of bits
[0 . . . i ] of p, q, d , dp, dq.

It’s easy to lift a solution mod 2i to all
equivalent solutions mod 2i+1.

How much branching at each level?

32? No, 4 equations for 5 unknowns.

2? No, we can prune a solution when it
conflicts with our known bits.

10. . .

10. . .10. . . 1X

100. . .101. . .



Step #2: Solve our equations iteratively

Algorithm:

1. Enumerate tree of partial solutions.

2. Prune incorrect solutions.



Analysis: Overall structure

At every step, we have one good solution and some number of bad
solutions. The number of bad solutions determines the runtime.

I Model the generation of bad solutions as a statistical
branching process.

I We can use the machinery of generating functions to analyize
this branching process.

I Our machinery tells us that the number of solutions we
generate at step i is determined by the number of new bad
solutions generated from an old bad solution.

(This is where we’re going to use the fact that we have a uniform
distribution of known bits and not adversarial.)



Analysis: Model the branching as a statistical process

Write a generating function to represent the distribution of the
number of bad solutions generated at every step.

I g(s) counts bad solutions generated from a good solution

I b(s) counts bad solutions generated from a bad solution.

I Fi (s) counts the total bad solutions at step i

Fi satisfies a nice recurrence:

Fi+1(s) = Fi (b(s))g(s)

Solve the recurrence to learn the expected number of bad solutions
at step i :

F ′i (1) =
g ′(1)

1− b′(1)
(1− b′(1)i )

When b′(1) < 1, the expected number of bad solutions at any step
is bounded.



Analysis: Model the branching as a statistical process

Write a generating function to represent the distribution of the
number of bad solutions generated at every step.

I g(s) counts bad solutions generated from a good solution

I b(s) counts bad solutions generated from a bad solution.

I Fi (s) counts the total bad solutions at step i

Fi satisfies a nice recurrence:

Fi+1(s) = Fi (b(s))g(s)

Solve the recurrence to learn the expected number of bad solutions
at step i :

F ′i (1) =
g ′(1)

1− b′(1)
(1− b′(1)i )

When b′(1) < 1, the expected number of bad solutions at any step
is bounded.



Analysis: Bound the expectation of bad solutions

The overall behavior of the algorithm is determined by b′(1).

p[i ] + q[i ] ≡ c1 (mod 2)

d [i ] + p[i ] + q[i ] ≡ c2 (mod 2)

dp[i ] + p[i ] ≡ c3 (mod 2)

dq[i ] + q[i ] ≡ c4 (mod 2)

Conjecture

An incorrect partial solution ends up producing ci at random.

b′(1) = E(#solutions) =
(2− δ)5

24

Open problem: Prove or disprove.
(Experimentally, this is close to being true.)



Results for different key redundancy

If the attacker has ... then recovery
partial knowledge of... is efficient for...

d , p, q, dp, dq δ > 2− 2
4
5 ≈ .2589

d , p, q δ > 2− 2
3
4 ≈ .4126

p, q δ > 2− 2
1
2 ≈ .5859

p Open problem

fraction of key bits known.



Experimental validation of analysis
Total number of solutions generated vs. fraction of known bits δ

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.34 0.36 0.38 0.4

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

delta

le
n

T
ot

al
n

u
m

b
er

of
so

lu
ti

on
s

ge
n

er
at

ed

Fraction of known key bits δ

< 1 second to run!

(More than 1 million experiments.)



Summary

Motivation:
Cold boot attacks.

Assumptions:

Redundant key data, low public exponent.

Attack algorithm

1. Relate redundant key values over the integers.

2. Iteratively solve equations.

Analysis

Model the branching process using statistics, heuristic assumption.
Analysis validated by experiments.



Open problems

I How can we use q−1 (mod p)?

I How true is our conjecture that an incorrect solution looks
random?

I Is it possible to improve this using lattice methods?

I Is it possible to apply more intelligent decoding methods?

I Can you factor using knowledge of bits in random positions of
only p?


	Title Page
	Problem Statement
	Motivation
	Introduction

	RSA key data
	Facts about RSA

