The Conditional Correlation Attack: A Practical Attack on Bluetooth Encryption

Yi Lu Willi Meier

EPFL

FH Aargau

Serge Vaudenay

EPFL

Т

$$\min \# \mathsf{samples} = O\left(\frac{1}{\epsilon^2}\right),\,$$

where the bias $\epsilon \stackrel{\text{def}}{=} \Pr(\text{sample} = 1) - \Pr(\text{sample} = 0)$.

Sample length=*r* bits [BJV'04]:

$$\min \# \mathsf{samples} = O\left(\frac{1}{\Delta(D)}\right),\,$$

where the Squared Euclidean Imbalance of the sample distribution D is defined by

$$\Delta(D) = 2^r \sum_{a} \left(D(a) - 2^{-r} \right)^2.$$

[BJV'04]:

- Assume the right key (resp. wrong key) transforms the raw sequences into biased (resp. unbiased) samples;
- to successfully recover *L*-bit key deterministically,

$$\min \# \text{samples} = \frac{4L \ln 2}{\Delta(D)}.$$

Distinguisher & Correlation Attack

Background

- Simple Distinguisher
- Distinguisher with Kev-recovery
- Distinguisher & Correlation Attack

Conditional Correlation Attack

Attack on Bluetooth Encryption

- In correlation attacks,
 - raw sequence: output of LFSR-based keystream generators
 - correlation: biased relation between keystream and certain LFSR output sequence(s)
 - subkey: state(s) of a subset of involved LFSR(s)
 - subkey processing: linear transformation
- The distinguisher is used to solve the MLD problem.
- The distinguisher can be either
 - (often) probabilistic (eg, in fast correlation attacks), or
 - (rarely) deterministic

depending on the key size *L*.

Conditional Correlation Attack

+

Related Work

Prior to our work,

Background

Conditional Correlation Attack

- Related Work
- Our Problem
- Smart Distinguisher
- Optimal Smart
 Distinguisher
- Conditional Correlation & Regular Correlation

Attack on Bluetooth Encryption

- R. Anderson (FSE'94) initiated the work of conditional correlation attacks on the nonlinear filter generator.
- The notion of conditional correlation was formalized by Lee et al. (ASIACRYPT'96):

given $X_0, Y_0 \implies |\Pr(X \cdot X_0 = 0 | f(X) = Y_0) - 0.5|$.

• Löhlein'03 extended conditional correlations and studied efficient attacks.

However, the basic concept of conditional correlations remains the same: the linear correlation of the inputs conditioned on a given output pattern of a nonlinear function.

Our Problem

Background

Conditional Correlation Attack

- Related Work
- Our Problem
- Smart Distinguisher
- Optimal Smart
 Distinguisher
- Conditional Correlation & Regular Correlation

Attack on Bluetooth Encryption

- We studied the correlation of the output of a function conditioned on the unknown (partial) input which is uniformly distributed.
- Given
 - \circ a function $f(\mathcal{B}, X)$
 - *n* i.i.d. samples of pairs $(f_{\mathcal{B}}(X), \mathcal{B})$

Q: What is the minimum *n* to spot above sequence from truly random sequences of equal length?

• Application: *B* is the key-related material, our problem is interesting in related-key attacks.

Smart Distinguisher

- 2^L sample sequences: (Z_i^K, \mathcal{B}_i^K) for $i \in [1, n]$ and L-bit K.
- Related results:
 - [GBM'02] (conditional correlations): for |Z| = 1 bit,

$$n = \frac{2L}{\mathsf{E}[\Delta(f_{\mathcal{B}})]}.$$

• [BJV'04] (unconditional correlations): for $|Z| \ge 1$ bit and sample sequences do not include \mathcal{B} 's,

$$n = \frac{4L\ln 2}{\Delta(f)}.$$

• Our theoretical result: based on [BJV'04], the deterministic smart distinguisher that maximizes $\prod_{i=1}^{n} D_{f_{\mathcal{B}_{i}^{K}}}(Z_{i}^{K})$ solves our problem with time $O(n \cdot 2^{L})$ and

$$n = \frac{4L\ln 2}{\mathsf{E}[\Delta(f_{\mathcal{B}})]}.$$

Conditional Correlation Attack

- Related Work
- Our Problem
- Smart Distinguisher
- Optimal Smart
 Distinguisher
- Conditional Correlation & Regular Correlation

Attack on Bluetooth Encryption

Optimal Smart Distinguisher

Background

Conditional Correlation Attack

- Related Work
- Our Problem
- Smart Distinguisher
- Optimal Smart
 Distinguisher
- Conditional Correlation & Regular Correlation

Attack on Bluetooth Encryption

If \mathcal{B}_i^K 's and Z_i^K 's exhibit special structures:

- computing $\prod_{i=1}^{n} D_{f_{\mathcal{B}_{i}^{K}}}(Z_{i}^{K})$ reduces to computing convolution;
- thanks to Fast Walsh Transform, an optimal smart distinguisher is achieved within time

$$O(n+L\cdot 2^{L+1}),$$

after one-time precomputation $O(L \cdot 2^L)$.

Conditional Correlation & Regular Correlation

Property 1 We have

 $\boldsymbol{E}[\Delta(f_{\mathcal{B}})] \geq \Delta(f),$

where equality holds iff $D_{f_{\mathcal{B}}}$ is independent of \mathcal{B} .

Comments:

- The conditional correlation is no smaller than the unconditional correlation.
- In particular, even if the traditional distinguisher fails with $\Delta(f) = 0$, the smart distinguisher would still work as long as $D_{f_{\mathcal{B}}}$ is dependent on \mathcal{B} (i.e. $\mathsf{E}[\Delta(f_{\mathcal{B}})] > 0$).

Background

Conditional Correlation Attack

- Related Work
- Our Problem
- Smart Distinguisher
- Optimal Smart
 Distinguisher
- Conditional Correlation & Regular Correlation

Attack on Bluetooth Encryption

Application to Attacking Bluetooth Encryption

About Bluetooth Encryption

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

- Encryption key size is a multiple of 8 and ranges over $\{8, 16, 24, \ldots, 128\}$.
- The keystream length is limited up to 2745 bits per frame.
- Uses a two-level reinitialization scheme.
- One secret key can be reinitialized for up to 2^{26} frames.

Known Attacks

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

guess & determine: [Saarinen'00], [FL'01], [Fluhrer'02]

• algebraic attack:

[Krause'02], [AK'03], [Courtois'03], [ALP'04]

• correlation attack:

[HN'99], [GBM'02], [LV'04a], [LV'04b]

Known Correlations: Preliminaries

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

• For any ℓ , $f: B = B_1 B_2 \cdots B_\ell, \qquad X \qquad \mapsto \quad Z = c_0^0 \cdots c_{\ell+1}^0$ $\uparrow \qquad \uparrow \qquad \uparrow$ LFSR input weights, FSM state FSM outputs

• For any $(\ell + 2)$ -bit binary vector α ,

 $f^{\alpha}(B,X) \stackrel{\mathsf{def}}{=} \alpha \cdot f(B,X),$

and B is considered to be partial input.

Known (Unconditional) Correlations

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

• One-level E0 ([HN'99], [EJ'00], [GBM'02], [LV'04a]): notable biases up to 26 bits are

α	1,1,0,1	1,0,1,1	1,1,1,1,1	1,0,0,0,0,1
$ bias(f^{\alpha}) $	0	2^{-4}	$\approx 2^{-3.3}$	$\approx 2^{-3.3}$

• Two-level E0 [LV'04b]: at some specific positions of the header of the keystream,

 $bias(F^{\alpha}) = bias^4(f^{\alpha}) \cdot bias(f^{\bar{\alpha}}),$

for any α of at most 8 bits, where $\bar{\alpha}$ is the vector in reverse order of α . Notable biases up to 8 bits are

Conditional Correlations

• One-level E0:

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

α	1,1,0,1	1,0,1,1	1,1,1,1,1	1,0,0,0,0,1
$\Delta(f^{\alpha})$	0	2^{-8}	$\approx 2^{-6.7}$	$\approx 2^{-6.7}$
$E[\Delta(f^{\alpha}_B)]$	2^{-3}	2^{-4}	$\approx 2^{-2.9}$	$\approx 2^{-2.5}$

• Two-level E0: for any α of at most 8 bits,

 $\mathsf{E}[\Delta(F^{\alpha}_{\mathcal{B}})] = \mathsf{E}^{4}[\Delta(f^{\alpha}_{B})] \cdot \Delta(f^{\bar{\alpha}}).$

α	1,1,0,1	1,0,1,1	1,1,1,1,1	1,0,0,0,0,1
$\Delta(F^{\alpha})$	0	0	$2^{-33.5}$	$2^{-33.5}$
$E[\Delta(F^{\alpha}_{\mathcal{B}})]$	2^{-20}	0	$2^{-18.3}$	$2^{-16.7}$
$\log_2 \mathcal{B} $	33	33	49	65

Experiments

• With

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

 $\alpha = (1, 1, 0, 1) \text{ and } n = \frac{4L \ln 2}{\mathsf{E}[\Delta(F_B^{\alpha})]} \approx 2^{26} \text{ frames},$

• Experiments allow to discover: 256 33-bit subkeys always have the same rank (i.e. the 25-bit subkey). This can halve the run-time.

Table 1: Experiment Settings

CPU	RAM	HD	OS	Compiler
2.4G	2G	128G (32M/s)	LINUX	GCC

Table 2: Partial Key Recovery Attack Results

PreComp.	Run Time	#Tests	Prob _{Success}
37Hr	19Hr	30	100%

Full Attack

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

• In the same spirit of [LV'04a], more sophisticated techniques allow to use multi-biases to reduce data complexity to $2^{23.8}$ frames.

Table 3: Attack Comparison to Recover 128-bit Key

Attack	PreC.	Time	Frames	Data	Space
FĽ01	-	2^{73}	-	2^{43}	2^{51}
F'02	2^{80}	2^{65}	2	$2^{12.4}$	2^{80}
GBM'02	2^{80}	2^{70}	45	2^{17}	2^{80}
LV'04b	-	2^{40}	2^{35}	$2^{39.6}$	2^{35}
Ours (A)	2^{38}	2^{38}	$2^{26.5}$	$2^{31.1}$	2^{33}
Ours (B)	2^{38}	2^{38}	$2^{23.8}$	$2^{28.4}$	2^{33}

Conclusion

Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

- Bluetooth Encryption
- Known Attacks
- Known Correlations
- Conditional Correlations
- Experiments
- Full Attack
- Conclusion

Based on conditional correlations ([Anderson'94], [Lee et al'96], [Löhlein'03]) and the generalized distinguisher [BJV'04], we have further generalized conditional correlations and studied a general statistical model for dedicated key-recovery distinguishers.

- The application leads to a practical known-plaintext attack on Bluetooth encryption.
- It remains to be a big challenge to investigate the redundancy in the header of each frame for a practical ciphertext-only attack on Bluetooth encryption.