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Simple Distinguisher

distinguisher
sample sequence

biased

unbiased

Sample length=1 bit:

min#samples = O

(

1

ε2

)

,

where the bias ε
def
= Pr(sample = 1) − Pr(sample = 0).
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Simple Distinguisher

distinguisher
sample sequence

biased

unbiased

Sample length=r bits [BJV’04]:

min#samples = O

(

1

∆(D)

)

,

where the Squared Euclidean Imbalance of the sample
distribution D is defined by

∆(D) = 2r
∑

a

(

D(a) − 2−r
)2

.
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Distinguisher with Key-recovery

raw sequence
processing

samples

di
st

in
gu

is
he

r

?

subkey

[BJV’04]:

• Assume the right key (resp. wrong key) transforms the raw
sequences into biased (resp. unbiased) samples;

• to successfully recover L-bit key deterministically,

min#samples =
4L ln 2

∆(D)
.
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Distinguisher & Correlation Attack

• In correlation attacks,

◦ raw sequence: output of LFSR-based keystream
generators

◦ correlation: biased relation between keystream and
certain LFSR output sequence(s)

◦ subkey: state(s) of a subset of involved LFSR(s)

◦ subkey processing: linear transformation

• The distinguisher is used to solve the MLD problem.

• The distinguisher can be either

◦ (often) probabilistic (eg, in fast correlation attacks), or

◦ (rarely) deterministic

depending on the key size L.
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Conditional Correlation Attack
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Related Work

Prior to our work,

• R. Anderson (FSE’94) initiated the work of conditional
correlation attacks on the nonlinear filter generator.

• The notion of conditional correlation was formalized by Lee
et al. (ASIACRYPT’96):

given X0, Y0 =⇒ |Pr(X · X0 = 0|f(X) = Y0) − 0.5| .

• Löhlein’03 extended conditional correlations and studied
efficient attacks.

However, the basic concept of conditional correlations
remains the same: the linear correlation of the inputs
conditioned on a given output pattern of a nonlinear
function.
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Our Problem

• We studied the correlation of the output of a function
conditioned on the unknown (partial) input which is
uniformly distributed.

• Given

◦ a function f(B, X)

◦ n i.i.d. samples of pairs (fB(X),B)

Q: What is the minimum n to spot above sequence from
truly random sequences of equal length?

• Application: B is the key-related material, our problem is
interesting in related-key attacks.
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Smart Distinguisher

• 2L sample sequences: (ZK
i ,BK

i ) for i ∈ [1, n] and L-bit K.

• Related results:
◦ [GBM’02] (conditional correlations): for |Z| = 1 bit,

n =
2L

E[∆(fB)]
.

◦ [BJV’04] (unconditional correlations): for |Z| ≥ 1 bit and
sample sequences do not include B’s,

n =
4L ln 2

∆(f)
.

• Our theoretical result: based on [BJV’04], the deterministic
smart distinguisher that maximizes

∏n

i=1
Df

BK
i

(ZK
i ) solves

our problem with time O(n · 2L) and

n =
4L ln 2

E[∆(fB)]
.
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Optimal Smart Distinguisher

If BK
i ’s and ZK

i ’s exhibit special structures:

• computing
∏n

i=1
Df

BK
i

(ZK
i ) reduces to computing

convolution;

• thanks to Fast Walsh Transform, an optimal smart
distinguisher is achieved within time

O(n + L · 2L+1),

after one-time precomputation O(L · 2L).
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Conditional Correlation & Regular Correlation

Property 1 We have

E[∆(fB)] ≥ ∆(f),

where equality holds iff DfB
is independent of B.

Comments:

• The conditional correlation is no smaller than the
unconditional correlation.

• In particular, even if the traditional distinguisher fails with
∆(f) = 0, the smart distinguisher would still work as long
as DfB

is dependent on B (i.e. E[∆(fB)] > 0).
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Application to Attacking Bluetooth Encryption
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About Bluetooth Encryption

• Encryption key size is a multiple of 8 and ranges over
{8, 16, 24, . . . , 128}.

• The keystream length is limited up to 2745 bits per frame.

• Uses a two-level reinitialization scheme.

• One secret key can be reinitialized for up to 226 frames.

key

plaintext

ciphertext

nonce

1st level G 2nd level
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Known Attacks

• guess & determine:

[Saarinen’00], [FL’01], [Fluhrer’02]

• algebraic attack:

[Krause’02], [AK’03], [Courtois’03], [ALP’04]

• correlation attack:

[HN’99], [GBM’02], [LV’04a], [LV’04b]



Background

Conditional Correlation Attack

Attack on Bluetooth Encryption

•Bluetooth Encryption

•Known Attacks

•Known Correlations

•Conditional Correlations

•Experiments

•Full Attack

•Conclusion

CRYPTO’05, Santa Barbara Yi Lu, Willi Meier and Serge Vaudenay - p. 16/21

Known Correlations: Preliminaries

• For any `,

f : B = B1B2 · · ·B`, X 7→ Z = c0
0 · · · c

0
`+1

⇑ ⇑ ⇑

LFSR input weights, FSM state FSM outputs

• For any (` + 2)-bit binary vector α,

fα(B, X)
def
= α · f(B, X),

and B is considered to be partial input.
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Known (Unconditional) Correlations

• One-level E0 ([HN’99], [EJ’00], [GBM’02], [LV’04a]):
notable biases up to 26 bits are

α 1,1,0,1 1,0,1,1 1,1,1,1,1 1,0,0,0,0,1

|bias(fα)| 0 2−4 ≈ 2−3.3 ≈ 2−3.3

• Two-level E0 [LV’04b]: at some specific positions of the
header of the keystream,

bias(F α) = bias4(fα) · bias(f ᾱ),

for any α of at most 8 bits, where ᾱ is the vector in reverse
order of α. Notable biases up to 8 bits are

α 1,1,0,1 1,0,1,1 1,1,1,1,1 1,0,0,0,0,1

|bias(F α)| 0 0 ≈ 2−3.3×5 ≈ 2−3.3×5
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Conditional Correlations

• One-level E0:

α 1,1,0,1 1,0,1,1 1,1,1,1,1 1,0,0,0,0,1

∆(fα) 0 2−8 ≈ 2−6.7 ≈ 2−6.7

E[∆(fα
B)] 2−3 2−4 ≈ 2−2.9 ≈ 2−2.5

• Two-level E0: for any α of at most 8 bits,

E[∆(F α
B )] = E4[∆(fα

B)] · ∆(f ᾱ).

α 1,1,0,1 1,0,1,1 1,1,1,1,1 1,0,0,0,0,1

∆(Fα) 0 0 2−33.5 2−33.5

E[∆(F α
B

)] 2−20 0 2−18.3 2−16.7

log2 |B| 33 33 49 65
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Experiments

• With

α = (1, 1, 0, 1) and n =
4L ln 2

E[∆(F α
B)]

≈ 226 frames,

• Experiments allow to discover: 256 33-bit subkeys always
have the same rank (i.e. the 25-bit subkey). This can halve
the run-time.

Table 1: Experiment Settings

CPU RAM HD OS Compiler

2.4G 2G 128G (32M/s) LINUX GCC

Table 2: Partial Key Recovery Attack Results

PreComp. Run Time #Tests ProbSuccess

37Hr 19Hr 30 100%
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Full Attack

• In the same spirit of [LV’04a], more sophisticated
techniques allow to use multi-biases to reduce data
complexity to 223.8 frames.

Table 3: Attack Comparison to Recover 128-bit Key
Attack PreC. Time Frames Data Space

FL’01 - 273 - 243 251

F’02 280 265 2 212.4 280

GBM’02 280 270 45 217 280

LV’04b - 240 235 239.6 235

Ours (A) 238 238 226.5 231.1 233

Ours (B) 238 238 223.8 228.4 233
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Conclusion

• Based on conditional correlations ([Anderson’94], [Lee et
al’96], [Löhlein’03]) and the generalized distinguisher
[BJV’04], we have further generalized conditional
correlations and studied a general statistical model for
dedicated key-recovery distinguishers.

• The application leads to a practical known-plaintext attack
on Bluetooth encryption.

• It remains to be a big challenge to investigate the
redundancy in the header of each frame for a practical
ciphertext-only attack on Bluetooth encryption.
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