

GLV/GLS Decomposition, Power Analysis, and Attacks on ECDSA Signatures With Single-Bit Nonce Bias

Diego F. Aranha Pierre-Alain Fouque Benoît Gerard Jean-Gabriel Kammerer Mehdi Tibouchi Jean-Christophe Zapalowicz

NTT Secure Platform Laboratories

Asiacrypt, 2014-12-08

Overview

- Apology: although we have "power analysis" in the title and this is a side-channel session, SCA is not our main focus.
- Twofold motivation:
 - Break the 2-bit bias barrier of HNP lattice attacks on (EC)DSA
 - Consider how such attacks apply to elliptic curves with fast endomorphisms

- Apology: although we have "power analysis" in the title and this is a side-channel session, SCA is not our main focus.
- Twofold motivation:
 - Break the 2-bit bias barrier of HNP lattice attacks on (EC)DSA
 - Consider how such attacks apply to elliptic curves with fast endomorphisms

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA Our attack on 1-bit bias

$\mathsf{GLV}/\mathsf{GLS}$ decomposition and HNP

Curves with fast endomorphisms The recomposition approach The decomposition approach

Attack on ECDSA with 1-bit nonce bias

HNP attacks on ECDSA Our attack on 1-bit bias

GLV/GLS decomposition and HNP

Curves with fast endomorphisms The recomposition approach The decomposition approach

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA

Our attack on 1-bit bias

GLV/GLS decomposition and HNP

Curves with fast endomorphisms The recomposition approach The decomposition approach

- Most commonly used elliptic curve-based signature scheme
- Slightly contrived variant of Schnorr signatures (all results in this talk also apply to actual Schnorr and similar schemes)
- Description
 - Public params: elliptic curve E/\mathbb{F}_q , point P generating a subgroup of large known prime order n
 - Key pair: private key x random in $\mathbb{Z}/n\mathbb{Z}$, public key Q = [x]P
 - ▶ Signature on *m*: pair (r, s) computed as $k \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^*$ $(u, v) \leftarrow [k]P$ $r \leftarrow u \mod n$ $s \leftarrow k^{-1}(H(m) + rx) \mod n$
- Randomness k usually called the nonce; indeed, it must not be reused, otherwise:

$$x = (sh' - s'h)/(s'r - sr') \mod n$$

- Most commonly used elliptic curve-based signature scheme
- Slightly contrived variant of Schnorr signatures (all results in this talk also apply to actual Schnorr and similar schemes)
- Description
 - Public params: elliptic curve E/\mathbb{F}_q , point P generating a subgroup of large known prime order n
 - Key pair: private key x random in $\mathbb{Z}/n\mathbb{Z}$, public key Q = [x]P
 - ▶ Signature on *m*: pair (r, s) computed as $k \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^*$ $(u, v) \leftarrow [k]P$ $r \leftarrow u \mod n$ $s \leftarrow k^{-1}(H(m) + rx) \mod n$
- Randomness k usually called the nonce; indeed, it must not be reused, otherwise:

$$x = (sh' - s'h)/(s'r - sr') \mod n$$

- Most commonly used elliptic curve-based signature scheme
- Slightly contrived variant of Schnorr signatures (all results in this talk also apply to actual Schnorr and similar schemes)
- Description
 - Public params: elliptic curve E/\mathbb{F}_q , point P generating a subgroup of large known prime order n
 - Key pair: private key x random in $\mathbb{Z}/n\mathbb{Z}$, public key Q = [x]P
 - Signature on *m*: pair (r, s) computed as $k \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^*$ $(u, v) \leftarrow [k]P$ $r \leftarrow u \mod n$ $s \leftarrow k^{-1}(H(m) + rx) \mod n$
- Randomness k usually called the nonce; indeed, it must not be reused, otherwise:

$$x = (sh' - s'h)/(s'r - sr') \bmod n$$

- Most commonly used elliptic curve-based signature scheme
- Slightly contrived variant of Schnorr signatures (all results in this talk also apply to actual Schnorr and similar schemes)
- Description
 - Public params: elliptic curve E/\mathbb{F}_q , point P generating a subgroup of large known prime order n
 - Key pair: private key x random in $\mathbb{Z}/n\mathbb{Z}$, public key Q = [x]P
 - ▶ Signature on *m*: pair (r, s) computed as $k \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^*$ $(u, v) \leftarrow [k]P$ $r \leftarrow u \mod n$ $s \leftarrow k^{-1}(H(m) + rx) \mod n$
- Randomness k usually called the nonce; indeed, it must not be reused, otherwise:

$$x = (sh' - s'h)/(s'r - sr') \bmod n$$

The risk of leaky nonces

Rewrite the relation satisfied by ECDSA signatures as:

$$k = \underbrace{H(m)s^{-1}}_{h} + \underbrace{rs^{-1}}_{c} x \bmod n$$

- We know pairs (h, c) such that h + cx = k mod n. If we know "something" about k (such as its MSBs), it should translate to information about the private key x! Essentially the hidden number problem.
- Main attack due to Howgrave-Graham & Smart using lattice reduction (reduces HNP to CVP in a suitable lattice)
 - carried out for 2-bit leaks on 160-bit curves (Liu–Nguyen 2013)
 - currently out of reach for for 2-bit leaks on 256-bit curves
 - currently out of reach for for 3-bit leaks on 384-bit curves
 - hard limit: impossible for 1-bit leaks (the hidden vector in the lattice is not short enough to recover, even with a CVP oracle)

The risk of leaky nonces

Rewrite the relation satisfied by ECDSA signatures as:

$$k = \underbrace{H(m)s^{-1}}_{h} + \underbrace{rs^{-1}}_{c} x \bmod n$$

- We know pairs (h, c) such that h + cx = k mod n. If we know "something" about k (such as its MSBs), it should translate to information about the private key x! Essentially the hidden number problem.
- Main attack due to Howgrave-Graham & Smart using lattice reduction (reduces HNP to CVP in a suitable lattice)
 - carried out for 2-bit leaks on 160-bit curves (Liu–Nguyen 2013)
 - currently out of reach for for 2-bit leaks on 256-bit curves
 - currently out of reach for for 3-bit leaks on 384-bit curves
 - hard limit: impossible for 1-bit leaks (the hidden vector in the lattice is not short enough to recover, even with a CVP oracle)

The risk of leaky nonces

Rewrite the relation satisfied by ECDSA signatures as:

$$k = \underbrace{H(m)s^{-1}}_{h} + \underbrace{rs^{-1}}_{c} x \bmod n$$

- We know pairs (h, c) such that h + cx = k mod n. If we know "something" about k (such as its MSBs), it should translate to information about the private key x! Essentially the hidden number problem.
- Main attack due to Howgrave-Graham & Smart using lattice reduction (reduces HNP to CVP in a suitable lattice)
 - carried out for 2-bit leaks on 160-bit curves (Liu–Nguyen 2013)
 - currently out of reach for for 2-bit leaks on 256-bit curves
 - currently out of reach for for 3-bit leaks on 384-bit curves
 - hard limit: impossible for 1-bit leaks (the hidden vector in the lattice is not short enough to recover, even with a CVP oracle)

Bleichenbacher's attack

- Before even the lattice attack was proposed, Bleichenbacher suggested a different approach to HNP (in the context of DSA), based on a Fourier notion of bias
- Requires many more signatures than the lattice attack for the same parameters, but applies in principle to arbitrarily small biases
- Presented at an IEEE P1363 meeting in 2000, but never formally published. Reintroduced in a paper by De Mulder et al. at CHES 2013.

- Before even the lattice attack was proposed, Bleichenbacher suggested a different approach to HNP (in the context of DSA), based on a Fourier notion of bias
- Requires many more signatures than the lattice attack for the same parameters, but applies in principle to arbitrarily small biases
- Presented at an IEEE P1363 meeting in 2000, but never formally published. Reintroduced in a paper by De Mulder et al. at CHES 2013.

- Before even the lattice attack was proposed, Bleichenbacher suggested a different approach to HNP (in the context of DSA), based on a Fourier notion of bias
- Requires many more signatures than the lattice attack for the same parameters, but applies in principle to arbitrarily small biases
- Presented at an IEEE P1363 meeting in 2000, but never formally published. Reintroduced in a paper by De Mulder et al. at CHES 2013.

- ► The HNP problem reduces to the following: we are given samples (*h_j*, *c_j*) such that, for the hidden secret *x*, the MSBs of the values *k_j* = *h_j* + *c_jx* vanish.
- The sampled bias of a set of points $V = (v_0, \dots, v_{L-1})$ in $\mathbb{Z}/n\mathbb{Z}$ defined as $B_n(V) = \frac{1}{L} \sum_{j=0}^{L-1} e^{2\pi i \cdot v_j/n}$
- Given the (h_j, c_j), consider the vector
 V = (v_j) given by v_j = h_j + c_j ⋅ w for
 some w ∈ ℤ/nℤ. One can check that:
 - if $w \neq x$, $B_n(V) \approx 1/\sqrt{L}$ is negligible
 - if w = x, $B_n(V)$ is close to 1
 - hence a distinguisher, but not useable because n choices for w
- Bleichenbacher idea: broaden the peak in bias by reducing the c_j's.

- ► The HNP problem reduces to the following: we are given samples (*h_j*, *c_j*) such that, for the hidden secret *x*, the MSBs of the values *k_j* = *h_j* + *c_jx* vanish.
- The sampled bias of a set of points $V = (v_0, \cdots, v_{L-1})$ in $\mathbb{Z}/n\mathbb{Z}$ defined as $B_n(V) = \frac{1}{L} \sum_{j=0}^{L-1} e^{2\pi i \cdot v_j/n}$
- Given the (h_j, c_j), consider the vector
 V = (v_j) given by v_j = h_j + c_j ⋅ w for
 some w ∈ ℤ/nℤ. One can check that:
 - if $w \neq x$, $B_n(V) \approx 1/\sqrt{L}$ is negligible
 - if w = x, $B_n(V)$ is close to 1
 - hence a distinguisher, but not useable because n choices for w
- Bleichenbacher idea: broaden the peak in bias by reducing the c_j's.

- ► The HNP problem reduces to the following: we are given samples (h_j, c_j) such that, for the hidden secret x, the MSBs of the values k_i = h_i + c_ix vanish.
- The sampled bias of a set of points $V = (v_0, \cdots, v_{L-1})$ in $\mathbb{Z}/n\mathbb{Z}$ defined as $B_n(V) = \frac{1}{L} \sum_{j=0}^{L-1} e^{2\pi i \cdot v_j/n}$
- Given the (h_j, c_j), consider the vector
 V = (v_j) given by v_j = h_j + c_j ⋅ w for
 some w ∈ ℤ/nℤ. One can check that:
 - if $w \neq x$, $B_n(V) \approx 1/\sqrt{L}$ is negligible
 - if w = x, $B_n(V)$ is close to 1
 - hence a distinguisher, but not useable because n choices for w
- Bleichenbacher idea: broaden the peak in bias by reducing the c_i's.

- ► The HNP problem reduces to the following: we are given samples (*h_j*, *c_j*) such that, for the hidden secret *x*, the MSBs of the values *k_j* = *h_j* + *c_jx* vanish.
- The sampled bias of a set of points $V = (v_0, \cdots, v_{L-1})$ in $\mathbb{Z}/n\mathbb{Z}$ defined as $B_n(V) = \frac{1}{L} \sum_{j=0}^{L-1} e^{2\pi i \cdot v_j/n}$
- Given the (h_j, c_j) , consider the vector $V = (v_j)$ given by $v_j = h_j + c_j \cdot w$ for some $w \in \mathbb{Z}/n\mathbb{Z}$. One can check that:
 - if $w \neq x$, $B_n(V) \approx 1/\sqrt{L}$ is negligible
 - if w = x, $B_n(V)$ is close to 1
 - hence a distinguisher, but not useable because n choices for w
- Bleichenbacher idea: broaden the peak in bias by reducing the c_j's.

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA Our attack on 1-bit bias

GLV/GLS decomposition and HNP

Curves with fast endomorphisms The recomposition approach The decomposition approach

- Key step of Bleicheinbacher's algorithm: reducing the c_j's by finding small linear combinations between them
- De Mulder et al. use lattice reduction
- How Bleichenbacher suggested doing it is not completely clear (iterative collision search on MSBs?)
- We take a straightforward sort-and-difference approach:
 - sort the (c_j, h_j) list according to c_j
 - substract each c_j from the next largest one
 - ▶ (repeat)
- Starting from a list of L = 2^ℓ samples, we reduce the size of the c_j's by roughly ℓ bits per iteration (justified by order statistic arguments)

- Key step of Bleicheinbacher's algorithm: reducing the c_j's by finding small linear combinations between them
- De Mulder et al. use lattice reduction
- How Bleichenbacher suggested doing it is not completely clear (iterative collision search on MSBs?)
- We take a straightforward sort-and-difference approach:
 - sort the (c_j, h_j) list according to c_j
 - substract each c_j from the next largest one
 - ▶ (repeat)
- Starting from a list of L = 2^ℓ samples, we reduce the size of the c_j's by roughly ℓ bits per iteration (justified by order statistic arguments)

- Key step of Bleicheinbacher's algorithm: reducing the c_j's by finding small linear combinations between them
- De Mulder et al. use lattice reduction
- How Bleichenbacher suggested doing it is not completely clear (iterative collision search on MSBs?)
- We take a straightforward sort-and-difference approach:
 - sort the (c_j, h_j) list according to c_j
 - substract each c_j from the next largest one
 - ▶ (repeat)
- Starting from a list of L = 2^ℓ samples, we reduce the size of the c_j's by roughly ℓ bits per iteration (justified by order statistic arguments)

- Key step of Bleicheinbacher's algorithm: reducing the c_j's by finding small linear combinations between them
- De Mulder et al. use lattice reduction
- How Bleichenbacher suggested doing it is not completely clear (iterative collision search on MSBs?)
- We take a straightforward sort-and-difference approach:
 - sort the (c_j, h_j) list according to c_j
 - substract each c_j from the next largest one
 - (repeat)
- Starting from a list of L = 2^ℓ samples, we reduce the size of the c_j's by roughly ℓ bits per iteration (justified by order statistic arguments)

- Key step of Bleicheinbacher's algorithm: reducing the c_j's by finding small linear combinations between them
- De Mulder et al. use lattice reduction
- How Bleichenbacher suggested doing it is not completely clear (iterative collision search on MSBs?)
- We take a straightforward sort-and-difference approach:
 - sort the (c_j, h_j) list according to c_j
 - substract each c_j from the next largest one
 - (repeat)
- Starting from a list of L = 2^ℓ samples, we reduce the size of the c_j's by roughly ℓ bits per iteration (justified by order statistic arguments)

- Rest of the algorithm (as in De Mulder et al.):
 - Once the c_j's are short enough, carry out an FFT computation to find the peak
 - Rank the candidate peaks to reveal the MSBs of *x*, and iterate the attack to find the remaining bits
- Main difficulties:
 - Every reduction step squares the bias
 - The correct guess of x not always the highest ranked
 - On 1-bit bias, non-trivial engineering project: very costly in data, memory and CPU

- Rest of the algorithm (as in De Mulder et al.):
 - Once the c_j's are short enough, carry out an FFT computation to find the peak
 - Rank the candidate peaks to reveal the MSBs of x, and iterate the attack to find the remaining bits
- Main difficulties:
 - Every reduction step squares the bias
 - The correct guess of x not always the highest ranked
 - On 1-bit bias, non-trivial engineering project: very costly in data, memory and CPU

Implementation results

Ь	1	2	3	4	5
$B_n(\mathbf{K})$	0.6366198	0.9003163	0.9744954	0.9935869	0.9983944

α	Fraction of c_j 's reduced by $\ell-eta$ bits in a list of 2^ℓ					
	$\beta = -2$	$\beta = -1$	$\beta = 0$	$\beta = 1$	$\beta = 2$	
1 <i>st</i> iteration	0.22	0.39	0.63	0.86	0.98	
2nd iteration	0.031	0.12	0.36	0.75	0.94	
3rd iteration	$3.2 \ 10^{-3}$	0.025	0.17	0.64	0.89	
4th iteration	$3.0 \ 10^{-4}$	$4.6 \ 10^{-3}$	0.069	0.53	0.84	
5th iteration	$2.0 \ 10^{-5}$	$6.7 \ 10^{-4}$	0.022	0.40	0.79	

Implementation results

Ь	1	2	3	4	5
$B_n(\mathbf{K})$	0.6366198	0.9003163	0.9744954	0.9935869	0.9983944

α	Fraction of c_j 's reduced by $\ell-eta$ bits in a list of 2^ℓ					
	$\beta = -2$	$\beta = -1$	$\beta = 0$	$\beta = 1$	$\beta = 2$	
1 <i>st</i> iteration	0.22	0.39	0.63	0.86	0.98	
2nd iteration	0.031	0.12	0.36	0.75	0.94	
3rd iteration	$3.2 \ 10^{-3}$	0.025	0.17	0.64	0.89	
4th iteration	$3.0 \ 10^{-4}$	$4.6 \ 10^{-3}$	0.069	0.53	0.84	
5th iteration	$2.0 \ 10^{-5}$	$6.7 \ 10^{-4}$	0.022	0.40	0.79	

Successfully implemented: SECG P160 R1 curve (C++, RELIC, FFTW)

- ▶ 2³³ signatures
- 4 sort-and-difference (remove 4 × 32 bits)
- ▶ 52.5% reduced signatures
- 0.00072792 final bias

- FFT on 32 bits
- 30 MSB retrieved
- 1 terabyte
- 1150 CPU-hours

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA Our attack on 1-bit bias

$\mathsf{GLV}/\mathsf{GLS}$ decomposition and HNP

Curves with fast endomorphisms The recomposition approach The decomposition approach

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA Our attack on 1-bit bias

GLV/GLS decomposition and HNP Curves with fast endomorphisms

The recomposition approach The decomposition approach

- The most costly operation in conventional elliptic curve crypto is elliptic curve scalar multiplication; e.g. in ECDSA signature generation, the computation [k]P
- Special curves can be used to increase the efficiency of such schemes: curves endowed with some fast endomorphism ψ
- This technique is used in almost all recent record-breaking implementations of ECC
- Example special curves:
 - (Koblitz curves over binary fields)
 - Gallant–Lambert–Vanstone (GLV) curves over prime fields
 - Galbraith–Lin–Scott (GLS) curves over quadratic extensions
 - more recent work (Ben Smith's Q-curves...)

- The most costly operation in conventional elliptic curve crypto is elliptic curve scalar multiplication; e.g. in ECDSA signature generation, the computation [k]P
- \blacktriangleright Special curves can be used to increase the efficiency of such schemes: curves endowed with some fast endomorphism ψ
 - on a prime order subgroup, ψ is the multiplication by some explicit (usually full size) constant λ
 - to carry out scalar multiplication by k, write $k = k_1 + k_2\lambda$ (k_1, k_2 of half size); then $[k]P = [k_1]P + [k_2]\psi(P)$
 - double exponentiation: ≈ 1.7 -fold speed-up
- This technique is used in almost all recent record-breaking implementations of ECC
- Example special curves:
 - (Koblitz curves over binary fields)
 - Gallant–Lambert–Vanstone (GLV) curves over prime fields
 - Galbraith–Lin–Scott (GLS) curves over quadratic extensions
 - more recent work (Ben Smith's Q-curves...)

- The most costly operation in conventional elliptic curve crypto is elliptic curve scalar multiplication; e.g. in ECDSA signature generation, the computation [k]P
- Special curves can be used to increase the efficiency of such schemes: curves endowed with some fast endomorphism ψ
- This technique is used in almost all recent record-breaking implementations of ECC
- Example special curves:
 - (Koblitz curves over binary fields)
 - Gallant–Lambert–Vanstone (GLV) curves over prime fields
 - Galbraith–Lin–Scott (GLS) curves over quadratic extensions
 - more recent work (Ben Smith's Q-curves...)

- The most costly operation in conventional elliptic curve crypto is elliptic curve scalar multiplication; e.g. in ECDSA signature generation, the computation [k]P
- Special curves can be used to increase the efficiency of such schemes: curves endowed with some fast endomorphism ψ
- This technique is used in almost all recent record-breaking implementations of ECC
- Example special curves:
 - (Koblitz curves over binary fields)
 - Gallant–Lambert–Vanstone (GLV) curves over prime fields
 - Galbraith–Lin–Scott (GLS) curves over quadratic extensions
 - more recent work (Ben Smith's Q-curves...)

- In many algorithms (including ECDSA), we want to compute a random scalar multiplication
- With endomorphisms, two natural approaches considered in the literature:
 - Decomposition: pick k at random, and then use an algorithm (lattice reduction, continued fractions, etc.) to find k_1 , k_2 of half size such that $k = k_1 + k_2 \lambda \mod n$
 - Recomposition: pick k_1 and k_2 at random, implicitly choosing $k = k_1 + k_2 \lambda \mod n$
- We are interested in the implications of these two approaches on vulnerability to HNP-type attacks

- In many algorithms (including ECDSA), we want to compute a random scalar multiplication
- With endomorphisms, two natural approaches considered in the literature:
 - Decomposition: pick k at random, and then use an algorithm (lattice reduction, continued fractions, etc.) to find k_1 , k_2 of half size such that $k = k_1 + k_2 \lambda \mod n$
 - Recomposition: pick k_1 and k_2 at random, implicitly choosing $k = k_1 + k_2 \lambda \mod n$
- We are interested in the implications of these two approaches on vulnerability to HNP-type attacks

- In many algorithms (including ECDSA), we want to compute a random scalar multiplication
- With endomorphisms, two natural approaches considered in the literature:
 - Decomposition: pick k at random, and then use an algorithm (lattice reduction, continued fractions, etc.) to find k_1 , k_2 of half size such that $k = k_1 + k_2 \lambda \mod n$
 - Recomposition: pick k_1 and k_2 at random, implicitly choosing $k = k_1 + k_2 \lambda \mod n$
- We are interested in the implications of these two approaches on vulnerability to HNP-type attacks

- In many algorithms (including ECDSA), we want to compute a random scalar multiplication
- With endomorphisms, two natural approaches considered in the literature:
 - Decomposition: pick k at random, and then use an algorithm (lattice reduction, continued fractions, etc.) to find k_1 , k_2 of half size such that $k = k_1 + k_2 \lambda \mod n$
 - Recomposition: pick k_1 and k_2 at random, implicitly choosing $k = k_1 + k_2 \lambda \mod n$
- We are interested in the implications of these two approaches on vulnerability to HNP-type attacks

- In many algorithms (including ECDSA), we want to compute a random scalar multiplication
- With endomorphisms, two natural approaches considered in the literature:
 - Decomposition: pick k at random, and then use an algorithm (lattice reduction, continued fractions, etc.) to find k_1 , k_2 of half size such that $k = k_1 + k_2 \lambda \mod n$
 - Recomposition: pick k_1 and k_2 at random, implicitly choosing $k = k_1 + k_2 \lambda \mod n$
- We are interested in the implications of these two approaches on vulnerability to HNP-type attacks

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA Our attack on 1-bit bias

GLV/GLS decomposition and HNP Curves with fast endomorphisms The recomposition approach The decomposition approach

- Recomposition certainly presents more interesting theoretical challenges
- We look at the specific case of curves generated with the quadratic GLS method:
 - E_0 over a prime field \mathbb{F}_p ; order: p + 1 t, $|t| \leq 2\sqrt{p}$
 - *E* quadratic twist of E_0 over \mathbb{F}_{p^2}
 - we assume further that $E(\mathbb{F}_{p^2})$ is of prime order *n*; then: $n = (p-1)^2 + t^2$ and $\lambda = \sqrt{-1} = t^{-1}(p-1) \mod n$
- In this setting, two possible ways of carrying out recomposition:
 - Careful way: pick k₁, k₂ uniformly at random in [0, √n). This is secure!
 - Careless way: pick k₁, k₂ uniformly at random in [0, 2^m) with m = [¹/₂ log₂ n]. Can be broken with Bleichebacher's attack!

- Recomposition certainly presents more interesting theoretical challenges
- We look at the specific case of curves generated with the quadratic GLS method:
 - E_0 over a prime field \mathbb{F}_p ; order: p + 1 t, $|t| \leq 2\sqrt{p}$
 - *E* quadratic twist of E_0 over \mathbb{F}_{p^2}
 - we assume further that $E(\mathbb{F}_{p^2})$ is of prime order *n*; then: $n = (p-1)^2 + t^2$ and $\lambda = \sqrt{-1} = t^{-1}(p-1) \mod n$
- In this setting, two possible ways of carrying out recomposition:
 - Careful way: pick k_1, k_2 uniformly at random in $[0, \sqrt{n})$. This is secure!
 - Careless way: pick k₁, k₂ uniformly at random in [0, 2^m) with m = [¹/₂ log₂ n]. Can be broken with Bleichebacher's attack!

- Recomposition certainly presents more interesting theoretical challenges
- We look at the specific case of curves generated with the quadratic GLS method:
 - E_0 over a prime field \mathbb{F}_p ; order: p + 1 t, $|t| \leq 2\sqrt{p}$
 - *E* quadratic twist of E_0 over \mathbb{F}_{p^2}
 - we assume further that $E(\mathbb{F}_{p^2})$ is of prime order *n*; then: $n = (p-1)^2 + t^2$ and $\lambda = \sqrt{-1} = t^{-1}(p-1) \mod n$
- In this setting, two possible ways of carrying out recomposition:
 - Careful way: pick k_1, k_2 uniformly at random in $[0, \sqrt{n})$. This is secure!
 - Careless way: pick k₁, k₂ uniformly at random in [0, 2^m) with m = [¹/₂ log₂ n]. Can be broken with Bleichebacher's attack!

- Recomposition certainly presents more interesting theoretical challenges
- We look at the specific case of curves generated with the quadratic GLS method:
 - E_0 over a prime field \mathbb{F}_p ; order: p + 1 t, $|t| \leq 2\sqrt{p}$
 - *E* quadratic twist of E_0 over \mathbb{F}_{p^2}
 - we assume further that $E(\mathbb{F}_{p^2})$ is of prime order *n*; then: $n = (p-1)^2 + t^2$ and $\lambda = \sqrt{-1} = t^{-1}(p-1) \mod n$
- In this setting, two possible ways of carrying out recomposition:
 - Careful way: pick k_1, k_2 uniformly at random in $[0, \sqrt{n})$. This is secure!
 - Careless way: pick k₁, k₂ uniformly at random in [0, 2^m) with m = [¹/₂ log₂ n]. Can be broken with Bleichebacher's attack!

- Recomposition certainly presents more interesting theoretical challenges
- We look at the specific case of curves generated with the quadratic GLS method:
 - E_0 over a prime field \mathbb{F}_p ; order: p + 1 t, $|t| \leq 2\sqrt{p}$
 - *E* quadratic twist of E_0 over \mathbb{F}_{p^2}
 - we assume further that $E(\mathbb{F}_{p^2})$ is of prime order *n*; then: $n = (p-1)^2 + t^2$ and $\lambda = \sqrt{-1} = t^{-1}(p-1) \mod n$
- In this setting, two possible ways of carrying out recomposition:
 - Careful way: pick k_1, k_2 uniformly at random in $[0, \sqrt{n})$. This is secure!
 - Careless way: pick k_1, k_2 uniformly at random in $[0, 2^m)$ with $m = \lfloor \frac{1}{2} \log_2 n \rfloor$. Can be broken with Bleichebacher's attack!

Security of the "careful way"

- When k_1, k_2 are chosen uniformly at random in $[0, \sqrt{n})$, $k = k_1 + k_2 \lambda$ is statistically close to uniform in $\mathbb{Z}/n\mathbb{Z}$, hence security!
- Proof idea: show that $(k_1, k_2) \mapsto k_1 + k_2 \lambda$ induces an injective map $[0, p-1)^2 \to \mathbb{Z}/n\mathbb{Z}$
 - if $(x, y) \neq (x', y')$ have the same image, the fact that $\lambda^2 = -1 \mod n$ yields $(x x')^2 + (y y')^2 = n$
 - ▶ but *n*, as a prime, has only one representation as a sum of two squares: $n = (p 1)^2 + t^2$
 - + therefore, |x x'| or |y y'| must be p 1, which is impossible.
- Good for quadratic GLS. Unfortunately, the proof doesn't immediately generalize to other curves with endomorphisms (e.g. GLV with D = -3?)

Security of the "careful way"

- When k_1, k_2 are chosen uniformly at random in $[0, \sqrt{n})$, $k = k_1 + k_2 \lambda$ is statistically close to uniform in $\mathbb{Z}/n\mathbb{Z}$, hence security!
- Proof idea: show that $(k_1, k_2) \mapsto k_1 + k_2 \lambda$ induces an injective map $[0, p-1)^2 \to \mathbb{Z}/n\mathbb{Z}$
 - if $(x, y) \neq (x', y')$ have the same image, the fact that $\lambda^2 = -1 \mod n$ yields $(x x')^2 + (y y')^2 = n$
 - but *n*, as a prime, has only one representation as a sum of two squares: $n = (p-1)^2 + t^2$
 - + therefore, |x x'| or |y y'| must be p 1, which is impossible.
- Good for quadratic GLS. Unfortunately, the proof doesn't immediately generalize to other curves with endomorphisms (e.g. GLV with D = -3?)

Security of the "careful way"

- When k_1, k_2 are chosen uniformly at random in $[0, \sqrt{n})$, $k = k_1 + k_2 \lambda$ is statistically close to uniform in $\mathbb{Z}/n\mathbb{Z}$, hence security!
- Proof idea: show that $(k_1, k_2) \mapsto k_1 + k_2 \lambda$ induces an injective map $[0, p-1)^2 \to \mathbb{Z}/n\mathbb{Z}$
 - if $(x, y) \neq (x', y')$ have the same image, the fact that $\lambda^2 = -1 \mod n$ yields $(x x')^2 + (y y')^2 = n$
 - but *n*, as a prime, has only one representation as a sum of two squares: $n = (p-1)^2 + t^2$
 - + therefore, |x x'| or |y y'| must be p 1, which is impossible.
- Good for quadratic GLS. Unfortunately, the proof doesn't immediately generalize to other curves with endomorphisms (e.g. GLV with D = -3?)

Suppose now that k₁, k₂ are chosen uniformly in [0, T), with T = 2^[¹/₂ log₂ n]. Bleichenbacher does not apply directly, because the bias on k = k₁ + k₂λ is small:

$$B_n(K) = B_n(K_1) \cdot B_n(\lambda K_2) = \underbrace{\frac{1}{T} \left| \frac{\sin(\pi T/n)}{\sin(\pi/n)} \right|}_{\approx 1} \cdot \underbrace{\frac{1}{T} \left| \frac{\sin(\pi \lambda T/n)}{\sin(\pi \lambda/n)} \right|}_{\text{negligible}}$$

But the bias on t · k mod n is significant:

$$B_n(tK) = B_n(tK_1) \cdot B_n((p-1)K_2) \approx \left|\frac{\sin(\pi(p-1)T/n)}{\pi(p-1)T/n}\right|$$

- 0.5 < (p-1)T/n < 1
- ▶ if $(p-1)T/n \approx 0.5$ (i.e $n \approx$ power of 2): maximal bias ⇒ $B_n(tK) = 2/\pi \approx 0.637$

Suppose now that k₁, k₂ are chosen uniformly in [0, T), with T = 2^[¹/₂ log₂ n]. Bleichenbacher does not apply directly, because the bias on k = k₁ + k₂λ is small:

$$B_n(K) = B_n(K_1) \cdot B_n(\lambda K_2) = \underbrace{\frac{1}{T} \left| \frac{\sin(\pi T/n)}{\sin(\pi/n)} \right|}_{\approx 1} \cdot \underbrace{\frac{1}{T} \left| \frac{\sin(\pi \lambda T/n)}{\sin(\pi \lambda/n)} \right|}_{\text{negligible}}$$

But the bias on t · k mod n is significant:

$$B_n(tK) = B_n(tK_1) \cdot B_n((p-1)K_2) \approx \left| \frac{\sin(\pi(p-1)T/n)}{\pi(p-1)T/n} \right|$$

- ▶ 0.5 < (p-1)T/n < 1
- ▶ if $(p-1)T/n \approx 0.5$ (i.e $n \approx$ power of 2): maximal bias $\Rightarrow B_n(tK) = 2/\pi \approx 0.637$

Suppose now that k₁, k₂ are chosen uniformly in [0, T), with T = 2^[¹/₂ log₂ n]. Bleichenbacher does not apply directly, because the bias on k = k₁ + k₂λ is small:

$$B_n(K) = B_n(K_1) \cdot B_n(\lambda K_2) = \underbrace{\frac{1}{T} \left| \frac{\sin(\pi T/n)}{\sin(\pi/n)} \right|}_{\approx 1} \cdot \underbrace{\frac{1}{T} \left| \frac{\sin(\pi \lambda T/n)}{\sin(\pi \lambda/n)} \right|}_{\text{negligible}}$$

But the bias on t · k mod n is significant:

$$B_n(tK) = B_n(tK_1) \cdot B_n((p-1)K_2) \approx \left| \frac{\sin(\pi(p-1)T/n)}{\pi(p-1)T/n} \right|$$

- ▶ 0.5 < (p-1)T/n < 1
- ▶ if $(p-1)T/n \approx 0.5$ (i.e $n \approx$ power of 2): maximal bias ⇒ $B_n(tK) = 2/\pi \approx 0.637$

Suppose now that k₁, k₂ are chosen uniformly in [0, T), with T = 2^[¹/₂ log₂ n]. Bleichenbacher does not apply directly, because the bias on k = k₁ + k₂λ is small:

$$B_n(K) = B_n(K_1) \cdot B_n(\lambda K_2) = \underbrace{\frac{1}{T} \left| \frac{\sin(\pi T/n)}{\sin(\pi/n)} \right|}_{\approx 1} \cdot \underbrace{\frac{1}{T} \left| \frac{\sin(\pi \lambda T/n)}{\sin(\pi \lambda/n)} \right|}_{\text{negligible}}$$

But the bias on t · k mod n is significant:

$$B_n(tK) = B_n(tK_1) \cdot B_n((p-1)K_2) \approx \left| \frac{\sin(\pi(p-1)T/n)}{\pi(p-1)T/n} \right|$$

•
$$0.5 < (p-1)T/n < 1$$

• if $(p-1)T/n \approx 0.5$ (i.e $n \approx$ power of 2): maximal bias $\Rightarrow B_n(tK) = 2/\pi \approx 0.637$

- We successfully applied this variant of Bleichenbacher on a 160-bit GLS curve
- $E_0: y^2 = x^3 3x/23 + 104$ minimal choice over the OPF field $\mathbb{F}_p, \ p = 255 \cdot 2^{72} + 1$
- $E: y^2 = x^3 3x + 104 \cdot \sqrt{23}^3$ over $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{23})$
- Timings and resource consumption similar to the SECG curve case, except for signature generation itself.

- We successfully applied this variant of Bleichenbacher on a 160-bit GLS curve
- $E_0: y^2 = x^3 3x/23 + 104$ minimal choice over the OPF field \mathbb{F}_p , $p = 255 \cdot 2^{72} + 1$
- $E: y^2 = x^3 3x + 104 \cdot \sqrt{23}^3$ over $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{23})$
- Timings and resource consumption similar to the SECG curve case, except for signature generation itself.

- We successfully applied this variant of Bleichenbacher on a 160-bit GLS curve
- $E_0: y^2 = x^3 3x/23 + 104$ minimal choice over the OPF field \mathbb{F}_p , $p = 255 \cdot 2^{72} + 1$
- $E: y^2 = x^3 3x + 104 \cdot \sqrt{23}^3$ over $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{23})$
- Timings and resource consumption similar to the SECG curve case, except for signature generation itself.

- We successfully applied this variant of Bleichenbacher on a 160-bit GLS curve
- $E_0: y^2 = x^3 3x/23 + 104$ minimal choice over the OPF field \mathbb{F}_p , $p = 255 \cdot 2^{72} + 1$
- $E: y^2 = x^3 3x + 104 \cdot \sqrt{23}^3$ over $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{23})$
- Timings and resource consumption similar to the SECG curve case, except for signature generation itself.

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA Our attack on 1-bit bias

$\mathsf{GLV}/\mathsf{GLS}$ decomposition and HNP

Curves with fast endomorphisms The recomposition approach The decomposition approach

- Recall that the decomposition approach consists in choosing k randomly, and computing half-size k_1, k_2 coefficients such that $k = k_1 + k_2 \lambda \mod n$ afterwards
- ▶ If k is chosen uniformly at random in $\mathbb{Z}/n\mathbb{Z}$, no mathematical problem with the distribution
- But the physical implementation of the algorithm computing (k₁, k₂) from k may leak information!
- Concretely, we considered a specific algorithm due to Park et al. for decomposition, and showed that an unprotected implementation of it leaks the LSBs of k
- Template attack on an 8-bit AVR smartcard: possible to recover the least significant byte of k. Then breaking ECDSA is easy with lattices!

- Recall that the decomposition approach consists in choosing k randomly, and computing half-size k_1, k_2 coefficients such that $k = k_1 + k_2 \lambda \mod n$ afterwards
- If k is chosen uniformly at random in $\mathbb{Z}/n\mathbb{Z}$, no mathematical problem with the distribution
- But the physical implementation of the algorithm computing (k₁, k₂) from k may leak information!
- Concretely, we considered a specific algorithm due to Park et al. for decomposition, and showed that an unprotected implementation of it leaks the LSBs of k
- Template attack on an 8-bit AVR smartcard: possible to recover the least significant byte of k. Then breaking ECDSA is easy with lattices!

- Recall that the decomposition approach consists in choosing k randomly, and computing half-size k_1, k_2 coefficients such that $k = k_1 + k_2 \lambda \mod n$ afterwards
- If k is chosen uniformly at random in $\mathbb{Z}/n\mathbb{Z}$, no mathematical problem with the distribution
- But the physical implementation of the algorithm computing (k₁, k₂) from k may leak information!
- Concretely, we considered a specific algorithm due to Park et al. for decomposition, and showed that an unprotected implementation of it leaks the LSBs of k
- Template attack on an 8-bit AVR smartcard: possible to recover the least significant byte of k. Then breaking ECDSA is easy with lattices!

- Recall that the decomposition approach consists in choosing k randomly, and computing half-size k_1, k_2 coefficients such that $k = k_1 + k_2 \lambda \mod n$ afterwards
- If k is chosen uniformly at random in $\mathbb{Z}/n\mathbb{Z}$, no mathematical problem with the distribution
- But the physical implementation of the algorithm computing (k₁, k₂) from k may leak information!
- Concretely, we considered a specific algorithm due to Park et al. for decomposition, and showed that an unprotected implementation of it leaks the LSBs of k
- Template attack on an 8-bit AVR smartcard: possible to recover the least significant byte of k. Then breaking ECDSA is easy with lattices!

- Recall that the decomposition approach consists in choosing k randomly, and computing half-size k_1, k_2 coefficients such that $k = k_1 + k_2 \lambda \mod n$ afterwards
- If k is chosen uniformly at random in $\mathbb{Z}/n\mathbb{Z}$, no mathematical problem with the distribution
- But the physical implementation of the algorithm computing (k₁, k₂) from k may leak information!
- Concretely, we considered a specific algorithm due to Park et al. for decomposition, and showed that an unprotected implementation of it leaks the LSBs of k
- Template attack on an 8-bit AVR smartcard: possible to recover the least significant byte of k. Then breaking ECDSA is easy with lattices!

Attack on ECDSA with 1-bit nonce bias HNP attacks on ECDSA Our attack on 1-bit bias

GLV/GLS decomposition and HNP

Curves with fast endomorphisms The recomposition approach The decomposition approach

- Record of the smallest amount of nonce bias needed to break ECDSA
 - I-bit bias on 160-bit elliptic curves!
 - impossible with lattices, but doable with Bleichenbacher
 - significant computational effort, but a resourceful attacker could go much further (256-bit curves?)
- One should be careful about GLV/GLS decomposition
 - GLV/GLS curves are not safe against nonce attacks
 - When properly carried out, the recomposition technique can be secure
 - When using decomposition, pay attention to side-channels

- Record of the smallest amount of nonce bias needed to break ECDSA
 - I-bit bias on 160-bit elliptic curves!
 - impossible with lattices, but doable with Bleichenbacher
 - significant computational effort, but a resourceful attacker could go much further (256-bit curves?)
- One should be careful about GLV/GLS decomposition
 - GLV/GLS curves are not safe against nonce attacks
 - When properly carried out, the recomposition technique can be secure
 - When using decomposition, pay attention to side-channels

謝謝!

Thank you for your attention