
GLV/GLS Decomposition, Power Analysis, and
Attacks on ECDSA Signatures

With Single-Bit Nonce Bias

Diego F. Aranha Pierre-Alain Fouque Benoît Gerard
Jean-Gabriel Kammerer Mehdi Tibouchi

Jean-Christophe Zapalowicz

NTT Secure Platform Laboratories

Asiacrypt, 2014–12–08

1/27 ©2014 NTT Secure Platform Laboratories

Overview

§ Apology: although we have “power analysis” in the title and
this is a side-channel session, SCA is not our main focus.

§ Twofold motivation:
§ Break the 2-bit bias barrier of HNP lattice attacks on (EC)DSA
§ Consider how such attacks apply to elliptic curves with fast

endomorphisms

2/27 ©2014 NTT Secure Platform Laboratories

Overview

§ Apology: although we have “power analysis” in the title and
this is a side-channel session, SCA is not our main focus.

§ Twofold motivation:
§ Break the 2-bit bias barrier of HNP lattice attacks on (EC)DSA
§ Consider how such attacks apply to elliptic curves with fast

endomorphisms

2/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

3/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

4/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

5/27 ©2014 NTT Secure Platform Laboratories

ECDSA

§ Most commonly used elliptic curve-based signature scheme
§ Slightly contrived variant of Schnorr signatures (all results in

this talk also apply to actual Schnorr and similar schemes)
§ Description

§ Public params: elliptic curve E/Fq, point P generating a
subgroup of large known prime order n

§ Key pair: private key x random in Z/nZ, public key Q = [x]P
§ Signature on m: pair (r, s) computed as

k $
Ð (Z/nZ)˚

(u, v) Ð [k]P
r Ð u mod n
s Ð k´1(H(m) + rx) mod n

§ Randomness k usually called the nonce; indeed, it must not
be reused, otherwise:

x = (sh1 ´ s1h)/(s1r ´ sr1) mod n
but a bit of a misnomer, because non-repetition is not enough.

6/27 ©2014 NTT Secure Platform Laboratories

ECDSA

§ Most commonly used elliptic curve-based signature scheme
§ Slightly contrived variant of Schnorr signatures (all results in

this talk also apply to actual Schnorr and similar schemes)
§ Description

§ Public params: elliptic curve E/Fq, point P generating a
subgroup of large known prime order n

§ Key pair: private key x random in Z/nZ, public key Q = [x]P
§ Signature on m: pair (r, s) computed as

k $
Ð (Z/nZ)˚

(u, v) Ð [k]P
r Ð u mod n
s Ð k´1(H(m) + rx) mod n

§ Randomness k usually called the nonce; indeed, it must not
be reused, otherwise:

x = (sh1 ´ s1h)/(s1r ´ sr1) mod n
but a bit of a misnomer, because non-repetition is not enough.

6/27 ©2014 NTT Secure Platform Laboratories

ECDSA

§ Most commonly used elliptic curve-based signature scheme
§ Slightly contrived variant of Schnorr signatures (all results in

this talk also apply to actual Schnorr and similar schemes)
§ Description

§ Public params: elliptic curve E/Fq, point P generating a
subgroup of large known prime order n

§ Key pair: private key x random in Z/nZ, public key Q = [x]P
§ Signature on m: pair (r, s) computed as

k $
Ð (Z/nZ)˚

(u, v) Ð [k]P
r Ð u mod n
s Ð k´1(H(m) + rx) mod n

§ Randomness k usually called the nonce; indeed, it must not
be reused, otherwise:

x = (sh1 ´ s1h)/(s1r ´ sr1) mod n
but a bit of a misnomer, because non-repetition is not enough.

6/27 ©2014 NTT Secure Platform Laboratories

ECDSA

§ Most commonly used elliptic curve-based signature scheme
§ Slightly contrived variant of Schnorr signatures (all results in

this talk also apply to actual Schnorr and similar schemes)
§ Description

§ Public params: elliptic curve E/Fq, point P generating a
subgroup of large known prime order n

§ Key pair: private key x random in Z/nZ, public key Q = [x]P
§ Signature on m: pair (r, s) computed as

k $
Ð (Z/nZ)˚

(u, v) Ð [k]P
r Ð u mod n
s Ð k´1(H(m) + rx) mod n

§ Randomness k usually called the nonce; indeed, it must not
be reused, otherwise:

x = (sh1 ´ s1h)/(s1r ´ sr1) mod n
but a bit of a misnomer, because non-repetition is not enough.

6/27 ©2014 NTT Secure Platform Laboratories

The risk of leaky nonces

§ Rewrite the relation satisfied by ECDSA signatures as:

k = H(m)s´1
looomooon

h

+ rs´1
loomoon

c
x mod n

§ We know pairs (h, c) such that h + cx = k mod n. If we know
“something” about k (such as its MSBs), it should translate
to information about the private key x! Essentially the hidden
number problem.

§ Main attack due to Howgrave-Graham & Smart using lattice
reduction (reduces HNP to CVP in a suitable lattice)

§ carried out for 2-bit leaks on 160-bit curves (Liu–Nguyen 2013)
§ currently out of reach for for 2-bit leaks on 256-bit curves
§ currently out of reach for for 3-bit leaks on 384-bit curves
§ hard limit: impossible for 1-bit leaks (the hidden vector in the

lattice is not short enough to recover, even with a CVP oracle)

7/27 ©2014 NTT Secure Platform Laboratories

The risk of leaky nonces

§ Rewrite the relation satisfied by ECDSA signatures as:

k = H(m)s´1
looomooon

h

+ rs´1
loomoon

c
x mod n

§ We know pairs (h, c) such that h + cx = k mod n. If we know
“something” about k (such as its MSBs), it should translate
to information about the private key x! Essentially the hidden
number problem.

§ Main attack due to Howgrave-Graham & Smart using lattice
reduction (reduces HNP to CVP in a suitable lattice)

§ carried out for 2-bit leaks on 160-bit curves (Liu–Nguyen 2013)
§ currently out of reach for for 2-bit leaks on 256-bit curves
§ currently out of reach for for 3-bit leaks on 384-bit curves
§ hard limit: impossible for 1-bit leaks (the hidden vector in the

lattice is not short enough to recover, even with a CVP oracle)

7/27 ©2014 NTT Secure Platform Laboratories

The risk of leaky nonces

§ Rewrite the relation satisfied by ECDSA signatures as:

k = H(m)s´1
looomooon

h

+ rs´1
loomoon

c
x mod n

§ We know pairs (h, c) such that h + cx = k mod n. If we know
“something” about k (such as its MSBs), it should translate
to information about the private key x! Essentially the hidden
number problem.

§ Main attack due to Howgrave-Graham & Smart using lattice
reduction (reduces HNP to CVP in a suitable lattice)

§ carried out for 2-bit leaks on 160-bit curves (Liu–Nguyen 2013)
§ currently out of reach for for 2-bit leaks on 256-bit curves
§ currently out of reach for for 3-bit leaks on 384-bit curves
§ hard limit: impossible for 1-bit leaks (the hidden vector in the

lattice is not short enough to recover, even with a CVP oracle)

7/27 ©2014 NTT Secure Platform Laboratories

Bleichenbacher’s attack

§ Before even the lattice attack was proposed, Bleichenbacher
suggested a different approach to HNP (in the context of
DSA), based on a Fourier notion of bias

§ Requires many more signatures than the lattice attack for the
same parameters, but applies in principle to arbitrarily small
biases

§ Presented at an IEEE P1363 meeting in 2000, but never
formally published. Reintroduced in a paper by De Mulder et
al. at CHES 2013.

8/27 ©2014 NTT Secure Platform Laboratories

Bleichenbacher’s attack

§ Before even the lattice attack was proposed, Bleichenbacher
suggested a different approach to HNP (in the context of
DSA), based on a Fourier notion of bias

§ Requires many more signatures than the lattice attack for the
same parameters, but applies in principle to arbitrarily small
biases

§ Presented at an IEEE P1363 meeting in 2000, but never
formally published. Reintroduced in a paper by De Mulder et
al. at CHES 2013.

8/27 ©2014 NTT Secure Platform Laboratories

Bleichenbacher’s attack

§ Before even the lattice attack was proposed, Bleichenbacher
suggested a different approach to HNP (in the context of
DSA), based on a Fourier notion of bias

§ Requires many more signatures than the lattice attack for the
same parameters, but applies in principle to arbitrarily small
biases

§ Presented at an IEEE P1363 meeting in 2000, but never
formally published. Reintroduced in a paper by De Mulder et
al. at CHES 2013.

8/27 ©2014 NTT Secure Platform Laboratories

Overview of Bleicherbacher’s technique

§ The HNP problem reduces to the following: we are given
samples (hj, cj) such that, for the hidden secret x, the MSBs
of the values kj = hj + cjx vanish.

§ The sampled bias of a set of points V = (v0, ¨ ¨ ¨ , vL´1) in
Z/nZ defined as Bn(V) = 1

L
řL´1

j=0 e2πi¨vj/n

§ Given the (hj, cj), consider the vector
V = (vj) given by vj = hj + cj ¨ w for
some w P Z/nZ. One can check that:

§ if w ‰ x, Bn(V) « 1/
?

L is negligible
§ if w = x, Bn(V) is close to 1
§ hence a distinguisher, but not

useable because n choices for w
§ Bleichenbacher idea: broaden the

peak in bias by reducing the cj’s.

w

|Bn(V)|

1?
L

x

w

|Bn(V)|

1?
L

x

9/27 ©2014 NTT Secure Platform Laboratories

Overview of Bleicherbacher’s technique

§ The HNP problem reduces to the following: we are given
samples (hj, cj) such that, for the hidden secret x, the MSBs
of the values kj = hj + cjx vanish.

§ The sampled bias of a set of points V = (v0, ¨ ¨ ¨ , vL´1) in
Z/nZ defined as Bn(V) = 1

L
řL´1

j=0 e2πi¨vj/n

§ Given the (hj, cj), consider the vector
V = (vj) given by vj = hj + cj ¨ w for
some w P Z/nZ. One can check that:

§ if w ‰ x, Bn(V) « 1/
?

L is negligible
§ if w = x, Bn(V) is close to 1
§ hence a distinguisher, but not

useable because n choices for w
§ Bleichenbacher idea: broaden the

peak in bias by reducing the cj’s.

w

|Bn(V)|

1?
L

x

w

|Bn(V)|

1?
L

x

9/27 ©2014 NTT Secure Platform Laboratories

Overview of Bleicherbacher’s technique

§ The HNP problem reduces to the following: we are given
samples (hj, cj) such that, for the hidden secret x, the MSBs
of the values kj = hj + cjx vanish.

§ The sampled bias of a set of points V = (v0, ¨ ¨ ¨ , vL´1) in
Z/nZ defined as Bn(V) = 1

L
řL´1

j=0 e2πi¨vj/n

§ Given the (hj, cj), consider the vector
V = (vj) given by vj = hj + cj ¨ w for
some w P Z/nZ. One can check that:

§ if w ‰ x, Bn(V) « 1/
?

L is negligible
§ if w = x, Bn(V) is close to 1
§ hence a distinguisher, but not

useable because n choices for w
§ Bleichenbacher idea: broaden the

peak in bias by reducing the cj’s.

w

|Bn(V)|

1?
L

x

w

|Bn(V)|

1?
L

x

9/27 ©2014 NTT Secure Platform Laboratories

Overview of Bleicherbacher’s technique

§ The HNP problem reduces to the following: we are given
samples (hj, cj) such that, for the hidden secret x, the MSBs
of the values kj = hj + cjx vanish.

§ The sampled bias of a set of points V = (v0, ¨ ¨ ¨ , vL´1) in
Z/nZ defined as Bn(V) = 1

L
řL´1

j=0 e2πi¨vj/n

§ Given the (hj, cj), consider the vector
V = (vj) given by vj = hj + cj ¨ w for
some w P Z/nZ. One can check that:

§ if w ‰ x, Bn(V) « 1/
?

L is negligible
§ if w = x, Bn(V) is close to 1
§ hence a distinguisher, but not

useable because n choices for w
§ Bleichenbacher idea: broaden the

peak in bias by reducing the cj’s.

w

|Bn(V)|

1?
L

x

w

|Bn(V)|

1?
L

x
9/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

10/27 ©2014 NTT Secure Platform Laboratories

Implementing Bleichenbacher’s algorithm (I)

§ Key step of Bleicheinbacher’s algorithm: reducing the cj’s by
finding small linear combinations between them

§ De Mulder et al. use lattice reduction
§ How Bleichenbacher suggested doing it is not completely clear

(iterative collision search on MSBs?)
§ We take a straightforward sort-and-difference approach:

§ sort the (cj, hj) list according to cj
§ substract each cj from the next largest one
§ (repeat)

§ Starting from a list of L = 2ℓ samples, we reduce the size of
the cj’s by roughly ℓ bits per iteration (justified by order
statistic arguments)

11/27 ©2014 NTT Secure Platform Laboratories

Implementing Bleichenbacher’s algorithm (I)

§ Key step of Bleicheinbacher’s algorithm: reducing the cj’s by
finding small linear combinations between them

§ De Mulder et al. use lattice reduction
§ How Bleichenbacher suggested doing it is not completely clear

(iterative collision search on MSBs?)
§ We take a straightforward sort-and-difference approach:

§ sort the (cj, hj) list according to cj
§ substract each cj from the next largest one
§ (repeat)

§ Starting from a list of L = 2ℓ samples, we reduce the size of
the cj’s by roughly ℓ bits per iteration (justified by order
statistic arguments)

11/27 ©2014 NTT Secure Platform Laboratories

Implementing Bleichenbacher’s algorithm (I)

§ Key step of Bleicheinbacher’s algorithm: reducing the cj’s by
finding small linear combinations between them

§ De Mulder et al. use lattice reduction
§ How Bleichenbacher suggested doing it is not completely clear

(iterative collision search on MSBs?)
§ We take a straightforward sort-and-difference approach:

§ sort the (cj, hj) list according to cj
§ substract each cj from the next largest one
§ (repeat)

§ Starting from a list of L = 2ℓ samples, we reduce the size of
the cj’s by roughly ℓ bits per iteration (justified by order
statistic arguments)

11/27 ©2014 NTT Secure Platform Laboratories

Implementing Bleichenbacher’s algorithm (I)

§ Key step of Bleicheinbacher’s algorithm: reducing the cj’s by
finding small linear combinations between them

§ De Mulder et al. use lattice reduction
§ How Bleichenbacher suggested doing it is not completely clear

(iterative collision search on MSBs?)
§ We take a straightforward sort-and-difference approach:

§ sort the (cj, hj) list according to cj
§ substract each cj from the next largest one
§ (repeat)

§ Starting from a list of L = 2ℓ samples, we reduce the size of
the cj’s by roughly ℓ bits per iteration (justified by order
statistic arguments)

11/27 ©2014 NTT Secure Platform Laboratories

Implementing Bleichenbacher’s algorithm (I)

§ Key step of Bleicheinbacher’s algorithm: reducing the cj’s by
finding small linear combinations between them

§ De Mulder et al. use lattice reduction
§ How Bleichenbacher suggested doing it is not completely clear

(iterative collision search on MSBs?)
§ We take a straightforward sort-and-difference approach:

§ sort the (cj, hj) list according to cj
§ substract each cj from the next largest one
§ (repeat)

§ Starting from a list of L = 2ℓ samples, we reduce the size of
the cj’s by roughly ℓ bits per iteration (justified by order
statistic arguments)

11/27 ©2014 NTT Secure Platform Laboratories

Implementing Bleichenbacher’s algorithm (II)

§ Rest of the algorithm (as in De Mulder et al.):
§ Once the cj’s are short enough, carry out an FFT computation

to find the peak
§ Rank the candidate peaks to reveal the MSBs of x, and iterate

the attack to find the remaining bits
§ Main difficulties:

§ Every reduction step squares the bias
§ The correct guess of x not always the highest ranked
§ On 1-bit bias, non-trivial engineering project: very costly in

data, memory and CPU

12/27 ©2014 NTT Secure Platform Laboratories

Implementing Bleichenbacher’s algorithm (II)

§ Rest of the algorithm (as in De Mulder et al.):
§ Once the cj’s are short enough, carry out an FFT computation

to find the peak
§ Rank the candidate peaks to reveal the MSBs of x, and iterate

the attack to find the remaining bits
§ Main difficulties:

§ Every reduction step squares the bias
§ The correct guess of x not always the highest ranked
§ On 1-bit bias, non-trivial engineering project: very costly in

data, memory and CPU

12/27 ©2014 NTT Secure Platform Laboratories

Implementation results

b 1 2 3 4 5
Bn(K) 0.6366198 0.9003163 0.9744954 0.9935869 0.9983944

α Fraction of cj’s reduced by ℓ ´ β bits in a list of 2ℓ

β = ´2 β = ´1 β = 0 β = 1 β = 2

1st iteration 0.22 0.39 0.63 0.86 0.98
2nd iteration 0.031 0.12 0.36 0.75 0.94
3rd iteration 3.2 10´3 0.025 0.17 0.64 0.89
4th iteration 3.0 10´4 4.6 10´3 0.069 0.53 0.84
5th iteration 2.0 10´5 6.7 10´4 0.022 0.40 0.79

Successfully implemented: SECG P160 R1 curve (C++, RELIC, FFTW)
§ 233 signatures
§ 4 sort-and-difference

(remove 4 ˆ 32 bits)
§ 52.5% reduced signatures
§ 0.00072792 final bias

§ FFT on 32 bits

§ 30 MSB retrieved

§ 1 terabyte

§ 1150 CPU-hours

13/27 ©2014 NTT Secure Platform Laboratories

Implementation results

b 1 2 3 4 5
Bn(K) 0.6366198 0.9003163 0.9744954 0.9935869 0.9983944

α Fraction of cj’s reduced by ℓ ´ β bits in a list of 2ℓ

β = ´2 β = ´1 β = 0 β = 1 β = 2

1st iteration 0.22 0.39 0.63 0.86 0.98
2nd iteration 0.031 0.12 0.36 0.75 0.94
3rd iteration 3.2 10´3 0.025 0.17 0.64 0.89
4th iteration 3.0 10´4 4.6 10´3 0.069 0.53 0.84
5th iteration 2.0 10´5 6.7 10´4 0.022 0.40 0.79

Successfully implemented: SECG P160 R1 curve (C++, RELIC, FFTW)
§ 233 signatures
§ 4 sort-and-difference

(remove 4 ˆ 32 bits)
§ 52.5% reduced signatures
§ 0.00072792 final bias

§ FFT on 32 bits

§ 30 MSB retrieved

§ 1 terabyte

§ 1150 CPU-hours

13/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

14/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

15/27 ©2014 NTT Secure Platform Laboratories

Curves with fast endomorphisms

§ The most costly operation in conventional elliptic curve crypto
is elliptic curve scalar multiplication; e.g. in ECDSA signature
generation, the computation [k]P

§ Special curves can be used to increase the efficiency of such
schemes: curves endowed with some fast endomorphism ψ

§ This technique is used in almost all recent record-breaking
implementations of ECC

§ Example special curves:
§ (Koblitz curves over binary fields)
§ Gallant–Lambert–Vanstone (GLV) curves over prime fields
§ Galbraith–Lin–Scott (GLS) curves over quadratic extensions
§ more recent work (Ben Smith’s Q-curves…)

16/27 ©2014 NTT Secure Platform Laboratories

Curves with fast endomorphisms

§ The most costly operation in conventional elliptic curve crypto
is elliptic curve scalar multiplication; e.g. in ECDSA signature
generation, the computation [k]P

§ Special curves can be used to increase the efficiency of such
schemes: curves endowed with some fast endomorphism ψ

§ on a prime order subgroup, ψ is the multiplication by some
explicit (usually full size) constant λ

§ to carry out scalar multiplication by k, write k = k1 + k2λ
(k1, k2 of half size); then [k]P = [k1]P + [k2]ψ(P)

§ double exponentiation: « 1.7-fold speed-up
§ This technique is used in almost all recent record-breaking

implementations of ECC
§ Example special curves:

§ (Koblitz curves over binary fields)
§ Gallant–Lambert–Vanstone (GLV) curves over prime fields
§ Galbraith–Lin–Scott (GLS) curves over quadratic extensions
§ more recent work (Ben Smith’s Q-curves…)

16/27 ©2014 NTT Secure Platform Laboratories

Curves with fast endomorphisms

§ The most costly operation in conventional elliptic curve crypto
is elliptic curve scalar multiplication; e.g. in ECDSA signature
generation, the computation [k]P

§ Special curves can be used to increase the efficiency of such
schemes: curves endowed with some fast endomorphism ψ

§ This technique is used in almost all recent record-breaking
implementations of ECC

§ Example special curves:
§ (Koblitz curves over binary fields)
§ Gallant–Lambert–Vanstone (GLV) curves over prime fields
§ Galbraith–Lin–Scott (GLS) curves over quadratic extensions
§ more recent work (Ben Smith’s Q-curves…)

16/27 ©2014 NTT Secure Platform Laboratories

Curves with fast endomorphisms

§ The most costly operation in conventional elliptic curve crypto
is elliptic curve scalar multiplication; e.g. in ECDSA signature
generation, the computation [k]P

§ Special curves can be used to increase the efficiency of such
schemes: curves endowed with some fast endomorphism ψ

§ This technique is used in almost all recent record-breaking
implementations of ECC

§ Example special curves:
§ (Koblitz curves over binary fields)
§ Gallant–Lambert–Vanstone (GLV) curves over prime fields
§ Galbraith–Lin–Scott (GLS) curves over quadratic extensions
§ more recent work (Ben Smith’s Q-curves…)

16/27 ©2014 NTT Secure Platform Laboratories

Decomposition vs. recomposition

§ In many algorithms (including ECDSA), we want to compute
a random scalar multiplication

§ With endomorphisms, two natural approaches considered in
the literature:

§ Decomposition: pick k at random, and then use an algorithm
(lattice reduction, continued fractions, etc.) to find k1, k2 of
half size such that k = k1 + k2λ mod n

§ Recomposition: pick k1 and k2 at random, implicitly choosing
k = k1 + k2λ mod n

§ We are interested in the implications of these two approaches
on vulnerability to HNP-type attacks

17/27 ©2014 NTT Secure Platform Laboratories

Decomposition vs. recomposition

§ In many algorithms (including ECDSA), we want to compute
a random scalar multiplication

§ With endomorphisms, two natural approaches considered in
the literature:

§ Decomposition: pick k at random, and then use an algorithm
(lattice reduction, continued fractions, etc.) to find k1, k2 of
half size such that k = k1 + k2λ mod n

§ Recomposition: pick k1 and k2 at random, implicitly choosing
k = k1 + k2λ mod n

§ We are interested in the implications of these two approaches
on vulnerability to HNP-type attacks

17/27 ©2014 NTT Secure Platform Laboratories

Decomposition vs. recomposition

§ In many algorithms (including ECDSA), we want to compute
a random scalar multiplication

§ With endomorphisms, two natural approaches considered in
the literature:

§ Decomposition: pick k at random, and then use an algorithm
(lattice reduction, continued fractions, etc.) to find k1, k2 of
half size such that k = k1 + k2λ mod n

§ Recomposition: pick k1 and k2 at random, implicitly choosing
k = k1 + k2λ mod n

§ We are interested in the implications of these two approaches
on vulnerability to HNP-type attacks

17/27 ©2014 NTT Secure Platform Laboratories

Decomposition vs. recomposition

§ In many algorithms (including ECDSA), we want to compute
a random scalar multiplication

§ With endomorphisms, two natural approaches considered in
the literature:

§ Decomposition: pick k at random, and then use an algorithm
(lattice reduction, continued fractions, etc.) to find k1, k2 of
half size such that k = k1 + k2λ mod n

§ Recomposition: pick k1 and k2 at random, implicitly choosing
k = k1 + k2λ mod n

§ We are interested in the implications of these two approaches
on vulnerability to HNP-type attacks

17/27 ©2014 NTT Secure Platform Laboratories

Decomposition vs. recomposition

§ In many algorithms (including ECDSA), we want to compute
a random scalar multiplication

§ With endomorphisms, two natural approaches considered in
the literature:

§ Decomposition: pick k at random, and then use an algorithm
(lattice reduction, continued fractions, etc.) to find k1, k2 of
half size such that k = k1 + k2λ mod n

§ Recomposition: pick k1 and k2 at random, implicitly choosing
k = k1 + k2λ mod n

§ We are interested in the implications of these two approaches
on vulnerability to HNP-type attacks

17/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

18/27 ©2014 NTT Secure Platform Laboratories

Recomposition with GLS

§ Recomposition certainly presents more interesting theoretical
challenges

§ We look at the specific case of curves generated with the
quadratic GLS method:

§ E0 over a prime field Fp; order: p + 1 ´ t, |t| ď 2
?p

§ E quadratic twist of E0 over Fp2

§ we assume further that E(Fp2) is of prime order n; then:
n = (p ´ 1)2 + t2 and λ =

?
´1 = t´1(p ´ 1) mod n

§ In this setting, two possible ways of carrying out
recomposition:

§ Careful way: pick k1, k2 uniformly at random in [0,
?

n). This
is secure!

§ Careless way: pick k1, k2 uniformly at random in [0, 2m) with
m = t12 log2 nu. Can be broken with Bleichebacher’s attack!

19/27 ©2014 NTT Secure Platform Laboratories

Recomposition with GLS

§ Recomposition certainly presents more interesting theoretical
challenges

§ We look at the specific case of curves generated with the
quadratic GLS method:

§ E0 over a prime field Fp; order: p + 1 ´ t, |t| ď 2
?p

§ E quadratic twist of E0 over Fp2

§ we assume further that E(Fp2) is of prime order n; then:
n = (p ´ 1)2 + t2 and λ =

?
´1 = t´1(p ´ 1) mod n

§ In this setting, two possible ways of carrying out
recomposition:

§ Careful way: pick k1, k2 uniformly at random in [0,
?

n). This
is secure!

§ Careless way: pick k1, k2 uniformly at random in [0, 2m) with
m = t12 log2 nu. Can be broken with Bleichebacher’s attack!

19/27 ©2014 NTT Secure Platform Laboratories

Recomposition with GLS

§ Recomposition certainly presents more interesting theoretical
challenges

§ We look at the specific case of curves generated with the
quadratic GLS method:

§ E0 over a prime field Fp; order: p + 1 ´ t, |t| ď 2
?p

§ E quadratic twist of E0 over Fp2

§ we assume further that E(Fp2) is of prime order n; then:
n = (p ´ 1)2 + t2 and λ =

?
´1 = t´1(p ´ 1) mod n

§ In this setting, two possible ways of carrying out
recomposition:

§ Careful way: pick k1, k2 uniformly at random in [0,
?

n). This
is secure!

§ Careless way: pick k1, k2 uniformly at random in [0, 2m) with
m = t12 log2 nu. Can be broken with Bleichebacher’s attack!

19/27 ©2014 NTT Secure Platform Laboratories

Recomposition with GLS

§ Recomposition certainly presents more interesting theoretical
challenges

§ We look at the specific case of curves generated with the
quadratic GLS method:

§ E0 over a prime field Fp; order: p + 1 ´ t, |t| ď 2
?p

§ E quadratic twist of E0 over Fp2

§ we assume further that E(Fp2) is of prime order n; then:
n = (p ´ 1)2 + t2 and λ =

?
´1 = t´1(p ´ 1) mod n

§ In this setting, two possible ways of carrying out
recomposition:

§ Careful way: pick k1, k2 uniformly at random in [0,
?

n). This
is secure!

§ Careless way: pick k1, k2 uniformly at random in [0, 2m) with
m = t12 log2 nu. Can be broken with Bleichebacher’s attack!

19/27 ©2014 NTT Secure Platform Laboratories

Recomposition with GLS

§ Recomposition certainly presents more interesting theoretical
challenges

§ We look at the specific case of curves generated with the
quadratic GLS method:

§ E0 over a prime field Fp; order: p + 1 ´ t, |t| ď 2
?p

§ E quadratic twist of E0 over Fp2

§ we assume further that E(Fp2) is of prime order n; then:
n = (p ´ 1)2 + t2 and λ =

?
´1 = t´1(p ´ 1) mod n

§ In this setting, two possible ways of carrying out
recomposition:

§ Careful way: pick k1, k2 uniformly at random in [0,
?

n). This
is secure!

§ Careless way: pick k1, k2 uniformly at random in [0, 2m) with
m = t12 log2 nu. Can be broken with Bleichebacher’s attack!

19/27 ©2014 NTT Secure Platform Laboratories

Security of the “careful way”

§ When k1, k2 are chosen uniformly at random in [0,
?

n),
k = k1 + k2λ is statistically close to uniform in Z/nZ, hence
security!

§ Proof idea: show that (k1, k2) ÞÑ k1 + k2λ induces an injective
map [0, p ´ 1)2 Ñ Z/nZ

§ if (x, y) ‰ (x1, y1) have the same image, the fact that
λ2 = ´1 mod n yields (x ´ x1)2 + (y ´ y1)2 = n

§ but n, as a prime, has only one representation as a sum of two
squares: n = (p ´ 1)2 + t2

§ therefore, |x ´ x1| or |y ´ y1| must be p ´ 1, which is impossible.
§ Good for quadratic GLS. Unfortunately, the proof doesn’t

immediately generalize to other curves with endomorphisms
(e.g. GLV with D = ´3?)

20/27 ©2014 NTT Secure Platform Laboratories

Security of the “careful way”

§ When k1, k2 are chosen uniformly at random in [0,
?

n),
k = k1 + k2λ is statistically close to uniform in Z/nZ, hence
security!

§ Proof idea: show that (k1, k2) ÞÑ k1 + k2λ induces an injective
map [0, p ´ 1)2 Ñ Z/nZ

§ if (x, y) ‰ (x1, y1) have the same image, the fact that
λ2 = ´1 mod n yields (x ´ x1)2 + (y ´ y1)2 = n

§ but n, as a prime, has only one representation as a sum of two
squares: n = (p ´ 1)2 + t2

§ therefore, |x ´ x1| or |y ´ y1| must be p ´ 1, which is impossible.
§ Good for quadratic GLS. Unfortunately, the proof doesn’t

immediately generalize to other curves with endomorphisms
(e.g. GLV with D = ´3?)

20/27 ©2014 NTT Secure Platform Laboratories

Security of the “careful way”

§ When k1, k2 are chosen uniformly at random in [0,
?

n),
k = k1 + k2λ is statistically close to uniform in Z/nZ, hence
security!

§ Proof idea: show that (k1, k2) ÞÑ k1 + k2λ induces an injective
map [0, p ´ 1)2 Ñ Z/nZ

§ if (x, y) ‰ (x1, y1) have the same image, the fact that
λ2 = ´1 mod n yields (x ´ x1)2 + (y ´ y1)2 = n

§ but n, as a prime, has only one representation as a sum of two
squares: n = (p ´ 1)2 + t2

§ therefore, |x ´ x1| or |y ´ y1| must be p ´ 1, which is impossible.
§ Good for quadratic GLS. Unfortunately, the proof doesn’t

immediately generalize to other curves with endomorphisms
(e.g. GLV with D = ´3?)

20/27 ©2014 NTT Secure Platform Laboratories

Insecurity of the “careless way”

§ Suppose now that k1, k2 are chosen uniformly in [0,T), with
T = 2t 1

2
log2 nu. Bleichenbacher does not apply directly,

because the bias on k = k1 + k2λ is small:

Bn(K) = Bn(K1) ¨ Bn(λK2) =
1

T

ˇ

ˇ

ˇ

sin(πT/n)
sin(π/n)

ˇ

ˇ

ˇ

looooooomooooooon

«1

¨
1

T

ˇ

ˇ

ˇ

sin(πλT/n)
sin(πλ/n)

ˇ

ˇ

ˇ

loooooooomoooooooon

negligible

§ But the bias on t ¨ k mod n is significant:

Bn(tK) = Bn(tK1) ¨ Bn
(
(p ´ 1)K2

)
«

ˇ

ˇ

ˇ

sin(π(p ´ 1)T/n)
π(p ´ 1)T/n

ˇ

ˇ

ˇ

§ 0.5 ă (p ´ 1)T/n ă 1

§ if (p ´ 1)T/n « 0.5 (i.e n « power of 2): maximal bias
ñ Bn(tK) = 2/π « 0.637

21/27 ©2014 NTT Secure Platform Laboratories

Insecurity of the “careless way”

§ Suppose now that k1, k2 are chosen uniformly in [0,T), with
T = 2t 1

2
log2 nu. Bleichenbacher does not apply directly,

because the bias on k = k1 + k2λ is small:

Bn(K) = Bn(K1) ¨ Bn(λK2) =
1

T

ˇ

ˇ

ˇ

sin(πT/n)
sin(π/n)

ˇ

ˇ

ˇ

looooooomooooooon

«1

¨
1

T

ˇ

ˇ

ˇ

sin(πλT/n)
sin(πλ/n)

ˇ

ˇ

ˇ

loooooooomoooooooon

negligible

§ But the bias on t ¨ k mod n is significant:

Bn(tK) = Bn(tK1) ¨ Bn
(
(p ´ 1)K2

)
«

ˇ

ˇ

ˇ

sin(π(p ´ 1)T/n)
π(p ´ 1)T/n

ˇ

ˇ

ˇ

§ 0.5 ă (p ´ 1)T/n ă 1

§ if (p ´ 1)T/n « 0.5 (i.e n « power of 2): maximal bias
ñ Bn(tK) = 2/π « 0.637

21/27 ©2014 NTT Secure Platform Laboratories

Insecurity of the “careless way”

§ Suppose now that k1, k2 are chosen uniformly in [0,T), with
T = 2t 1

2
log2 nu. Bleichenbacher does not apply directly,

because the bias on k = k1 + k2λ is small:

Bn(K) = Bn(K1) ¨ Bn(λK2) =
1

T

ˇ

ˇ

ˇ

sin(πT/n)
sin(π/n)

ˇ

ˇ

ˇ

looooooomooooooon

«1

¨
1

T

ˇ

ˇ

ˇ

sin(πλT/n)
sin(πλ/n)

ˇ

ˇ

ˇ

loooooooomoooooooon

negligible

§ But the bias on t ¨ k mod n is significant:

Bn(tK) = Bn(tK1) ¨ Bn
(
(p ´ 1)K2

)
«

ˇ

ˇ

ˇ

sin(π(p ´ 1)T/n)
π(p ´ 1)T/n

ˇ

ˇ

ˇ

§ 0.5 ă (p ´ 1)T/n ă 1

§ if (p ´ 1)T/n « 0.5 (i.e n « power of 2): maximal bias
ñ Bn(tK) = 2/π « 0.637

21/27 ©2014 NTT Secure Platform Laboratories

Insecurity of the “careless way”

§ Suppose now that k1, k2 are chosen uniformly in [0,T), with
T = 2t 1

2
log2 nu. Bleichenbacher does not apply directly,

because the bias on k = k1 + k2λ is small:

Bn(K) = Bn(K1) ¨ Bn(λK2) =
1

T

ˇ

ˇ

ˇ

sin(πT/n)
sin(π/n)

ˇ

ˇ

ˇ

looooooomooooooon

«1

¨
1

T

ˇ

ˇ

ˇ

sin(πλT/n)
sin(πλ/n)

ˇ

ˇ

ˇ

loooooooomoooooooon

negligible

§ But the bias on t ¨ k mod n is significant:

Bn(tK) = Bn(tK1) ¨ Bn
(
(p ´ 1)K2

)
«

ˇ

ˇ

ˇ

sin(π(p ´ 1)T/n)
π(p ´ 1)T/n

ˇ

ˇ

ˇ

§ 0.5 ă (p ´ 1)T/n ă 1

§ if (p ´ 1)T/n « 0.5 (i.e n « power of 2): maximal bias
ñ Bn(tK) = 2/π « 0.637

21/27 ©2014 NTT Secure Platform Laboratories

Concrete attack on the “careless way”

§ We successfully applied this variant of Bleichenbacher on a
160-bit GLS curve

§ E0 : y2 = x3 ´ 3x/23 + 104 minimal choice over the OPF field
Fp, p = 255 ¨ 272 + 1

§ E : y2 = x3 ´ 3x + 104 ¨
?
23

3 over Fp2 = Fp(
?
23)

§ Timings and resource consumption similar to the SECG curve
case, except for signature generation itself.

22/27 ©2014 NTT Secure Platform Laboratories

Concrete attack on the “careless way”

§ We successfully applied this variant of Bleichenbacher on a
160-bit GLS curve

§ E0 : y2 = x3 ´ 3x/23 + 104 minimal choice over the OPF field
Fp, p = 255 ¨ 272 + 1

§ E : y2 = x3 ´ 3x + 104 ¨
?
23

3 over Fp2 = Fp(
?
23)

§ Timings and resource consumption similar to the SECG curve
case, except for signature generation itself.

22/27 ©2014 NTT Secure Platform Laboratories

Concrete attack on the “careless way”

§ We successfully applied this variant of Bleichenbacher on a
160-bit GLS curve

§ E0 : y2 = x3 ´ 3x/23 + 104 minimal choice over the OPF field
Fp, p = 255 ¨ 272 + 1

§ E : y2 = x3 ´ 3x + 104 ¨
?
23

3 over Fp2 = Fp(
?
23)

§ Timings and resource consumption similar to the SECG curve
case, except for signature generation itself.

22/27 ©2014 NTT Secure Platform Laboratories

Concrete attack on the “careless way”

§ We successfully applied this variant of Bleichenbacher on a
160-bit GLS curve

§ E0 : y2 = x3 ´ 3x/23 + 104 minimal choice over the OPF field
Fp, p = 255 ¨ 272 + 1

§ E : y2 = x3 ´ 3x + 104 ¨
?
23

3 over Fp2 = Fp(
?
23)

§ Timings and resource consumption similar to the SECG curve
case, except for signature generation itself.

22/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

23/27 ©2014 NTT Secure Platform Laboratories

Decompositon and side-channels

§ Recall that the decomposition approach consists in choosing k
randomly, and computing half-size k1, k2 coefficients such that
k = k1 + k2λ mod n afterwards

§ If k is chosen uniformly at random in Z/nZ, no mathematical
problem with the distribution

§ But the physical implementation of the algorithm computing
(k1, k2) from k may leak information!

§ Concretely, we considered a specific algorithm due to Park et
al. for decomposition, and showed that an unprotected
implementation of it leaks the LSBs of k

§ Template attack on an 8-bit AVR smartcard: possible to
recover the least significant byte of k. Then breaking ECDSA
is easy with lattices!

24/27 ©2014 NTT Secure Platform Laboratories

Decompositon and side-channels

§ Recall that the decomposition approach consists in choosing k
randomly, and computing half-size k1, k2 coefficients such that
k = k1 + k2λ mod n afterwards

§ If k is chosen uniformly at random in Z/nZ, no mathematical
problem with the distribution

§ But the physical implementation of the algorithm computing
(k1, k2) from k may leak information!

§ Concretely, we considered a specific algorithm due to Park et
al. for decomposition, and showed that an unprotected
implementation of it leaks the LSBs of k

§ Template attack on an 8-bit AVR smartcard: possible to
recover the least significant byte of k. Then breaking ECDSA
is easy with lattices!

24/27 ©2014 NTT Secure Platform Laboratories

Decompositon and side-channels

§ Recall that the decomposition approach consists in choosing k
randomly, and computing half-size k1, k2 coefficients such that
k = k1 + k2λ mod n afterwards

§ If k is chosen uniformly at random in Z/nZ, no mathematical
problem with the distribution

§ But the physical implementation of the algorithm computing
(k1, k2) from k may leak information!

§ Concretely, we considered a specific algorithm due to Park et
al. for decomposition, and showed that an unprotected
implementation of it leaks the LSBs of k

§ Template attack on an 8-bit AVR smartcard: possible to
recover the least significant byte of k. Then breaking ECDSA
is easy with lattices!

24/27 ©2014 NTT Secure Platform Laboratories

Decompositon and side-channels

§ Recall that the decomposition approach consists in choosing k
randomly, and computing half-size k1, k2 coefficients such that
k = k1 + k2λ mod n afterwards

§ If k is chosen uniformly at random in Z/nZ, no mathematical
problem with the distribution

§ But the physical implementation of the algorithm computing
(k1, k2) from k may leak information!

§ Concretely, we considered a specific algorithm due to Park et
al. for decomposition, and showed that an unprotected
implementation of it leaks the LSBs of k

§ Template attack on an 8-bit AVR smartcard: possible to
recover the least significant byte of k. Then breaking ECDSA
is easy with lattices!

24/27 ©2014 NTT Secure Platform Laboratories

Decompositon and side-channels

§ Recall that the decomposition approach consists in choosing k
randomly, and computing half-size k1, k2 coefficients such that
k = k1 + k2λ mod n afterwards

§ If k is chosen uniformly at random in Z/nZ, no mathematical
problem with the distribution

§ But the physical implementation of the algorithm computing
(k1, k2) from k may leak information!

§ Concretely, we considered a specific algorithm due to Park et
al. for decomposition, and showed that an unprotected
implementation of it leaks the LSBs of k

§ Template attack on an 8-bit AVR smartcard: possible to
recover the least significant byte of k. Then breaking ECDSA
is easy with lattices!

24/27 ©2014 NTT Secure Platform Laboratories

Outline

Attack on ECDSA with 1-bit nonce bias
HNP attacks on ECDSA
Our attack on 1-bit bias

GLV/GLS decomposition and HNP
Curves with fast endomorphisms
The recomposition approach
The decomposition approach

Conclusion

25/27 ©2014 NTT Secure Platform Laboratories

Conclusion

§ Record of the smallest amount of nonce bias needed to break
ECDSA

§ 1-bit bias on 160-bit elliptic curves!
§ impossible with lattices, but doable with Bleichenbacher
§ significant computational effort, but a resourceful attacker

could go much further (256-bit curves?)
§ One should be careful about GLV/GLS decomposition

§ GLV/GLS curves are not safe against nonce attacks
§ When properly carried out, the recomposition technique can be

secure
§ When using decomposition, pay attention to side-channels

26/27 ©2014 NTT Secure Platform Laboratories

Conclusion

§ Record of the smallest amount of nonce bias needed to break
ECDSA

§ 1-bit bias on 160-bit elliptic curves!
§ impossible with lattices, but doable with Bleichenbacher
§ significant computational effort, but a resourceful attacker

could go much further (256-bit curves?)
§ One should be careful about GLV/GLS decomposition

§ GLV/GLS curves are not safe against nonce attacks
§ When properly carried out, the recomposition technique can be

secure
§ When using decomposition, pay attention to side-channels

26/27 ©2014 NTT Secure Platform Laboratories

謝謝！

Thank you for your attention

27/27 ©2014 NTT Secure Platform Laboratories

	Attack on ECDSA with 1-bit nonce bias
	HNP attacks on ECDSA
	Our attack on 1-bit bias

	GLV/GLS decomposition and HNP
	Curves with fast endomorphisms
	The recomposition approach
	The decomposition approach

	Conclusion

