Improved Cryptanalysis of Reduced RIPEMD-160

Florian Mendel, Thomas Peyrin, Martin Schläffer, Lei Wang, and Shuang Wu

ASIACRYPT 2013

Cryptographic Hash Function

- Public function
 - > Input: arbitrary long messages
 - Output: short random digests
- A fundamental primitive in cryptography

Security Notions

• Collision attack

Find M and M' such that $M \neq M'$ and $\mathcal{H}(M) = \mathcal{H}(M')$

- Collision resistance
 - Finding a collision takes **no less than 2**^{n/2} computations (n is digest bit size).

$$M \longrightarrow \mathcal{H} \longrightarrow = \longleftarrow \mathcal{H} \longleftarrow M'$$

3

Security Notions

• Second peimage attack

Given M , find M' such that $M \neq M'$ and $\mathcal{H}(M) = \mathcal{H}(M')$

• Second preimage **resistance**

Finding a second preimage takes **no less than 2**ⁿ computations (n is digest bit size).

Security Notions

• Peimage attack

Given h, find a M such that $\mathcal{H}(M) = h$

• Preimage **resistance**

Finding a preimage takes **no less than 2**ⁿ computations (n is digest bit size).

$$M \longrightarrow \mathcal{H} \longrightarrow h$$

Iterative Hash Function Design

- Compression function: public function for which the input and output size is fixed.
- **Domain extension:** an algorithm which iterates the compression function to handle arbitrary long messages.

A security notion on compression function

• Semi-free-start collision attack

Find cv, m and m' such that $m \neq m'$ h(cv,m) = h(cv,m')

• Resistance requirement: no less than 2^{n/2}

MD-SHA Family

- Well-known dedicated hash functions since 1990s
- Merkle-Damgård mode
- Compression function
 - Addition-Rotation-Xor
 - Bitwise Boolean function
 - Unbalanced Feistel Network

MD-SHA Family

- Broken hash functions
 - MD4, MD5, SHA-0, SHA-1, HAVAL, RIPEMD-0, RIPEMD-128

• Unbroken hash functions

RIPEMD-160, SHA-2

Security State of RIPEMD-160

• After **17 years** since 1996

Target	Туре	#Steps	Complexity	Ref.
Compression	Preimage	31	2 ¹⁴⁸	OSS12
Hash	Preimage	31	2 ¹⁵⁵	OSS12
Compression	Non-randomness	48	low	MNSS12
Compression	Non-randomness	52	2 ¹⁵⁸	SW12
Compression	Semi-free-start collision	36	low	MNSS12
Compression	Semi-free-start collision	42	2 ^{75.5}	Ours
Compression	Semi-free-start collision	36*	2 ^{70.4}	Ours

*: Our 36-step attack starts from the first step.

Outline

- RIPEMD-160 specification
- Attack overview
- Find a differential path
- Find a confirming pair
- Conclusion

Outline

- RIPEMD-160 specification
- Attack overview
- Find a differential path
- Find a confirming pair
- Conclusion

RIPEMD-160

- Designed by Dobbertin, Bosselaers and Preneel
- Worldwide ISO/IEC standard
- Double-branch compression function

Compared to RIPEMD-128

- Our attacks are based on recent analysis approach of RIPEMD-128 [LP13]
- Larger digest size: $128 \rightarrow 160$
- Increased number of steps: $64 \rightarrow 80$
- The step function has stronger diffusion and one "free term"

Significant **impact** to **differential path**

> The **reason** that **#attacked steps** is **less**.

RIPEMD-128

RIPEMD-160

 \boxplus : modular addition

: left cyclic rotation

 Φ : Boolean function K_i , s_i : constants

Outline

- RIPEMD-160 specification
- Attack overview
- Find a differential path
- Find a confirming pair
- Conclusion

Attack Overview

• The same with the attacks on RIPEMD-128 [LP13]

- 80 steps are re-grouped into 5 rounds
- Each round has a distinct Boolean function
- The Boolean function has significant impact to non-linear differential path search

$$cv_{i} \rightarrow \begin{bmatrix} ONX & IFZ & ONZ & IFX & XOR \\ round 1 & round 2 & round 3 & round 4 & round 5 & \oplus & cv_{i+1} \\ \hline XOR & IFX & ONZ & IFZ & ONX \end{bmatrix}$$

XOR: $x \oplus y \oplus z$ IFZ: $(x \wedge z) \oplus (y \wedge \overline{z})$ ONZ: $(x \vee \overline{y}) \oplus z$ IFX: $(x \wedge y) \oplus (\overline{x} \wedge z)$ ONX: $x \oplus (y \vee \overline{z})$ 18

- Absorption: an input bit difference does not necessarily propagate to the output bit
 - Strong absorption: IFX, IFZ
 - Weak absorption: ONX, ONZ
 - **No** absorption: XOR

- Non-linear differential path should locate in rounds with a strong absorption Boolean function.
 - **Easier** to **search** non-linear path
 - Sparser non-linear paths

- Attack starts from the **second round**
- Discuss attacks starting from the first round later.

 Message words locate in different steps between the two branches

• A waste of message word freedom exists if the search starts from the beginning step.

- A waste of message word freedom exists if the search starts from the beginning step.
- W₁, W₂: two subsets of the message words in the **dense part** of the two **differential paths**

- Satisfy **dense parts** firstly by **using** the **freedom** of **internal state** and the **message words**.
 - \succ Use the independency between W_1 and W_2
 - Start-from-the-middle procedures

Outline

- RIPEMD-160 specification
- Attack overview
- Find a differential path
 - Choose message difference
 - Search non-linear path
- Find a confirming pair
- Conclusion

The Choice of Message Word

- Single message word difference
- Examine the **potential #attacked steps** for each messages word with respect to
 - short non-linear paths in both branch
 - early step of the two non-linear path are near
 - sparse later steps of non-linear path
 - output difference cancellation of the two branches by the feed-forward operation

The Choice of Message Word

Message word	W_0	W_1	W_2	W_3
#attacked steps	51	46	52	48
Message word	W_4	W_5	W_6	W_7
#attacked steps	42	50	39	56
Message word	W_8	W_9	W_{10}	W_{11}
Message word #attacked steps	W ₈ 36	W ₉ 39	<i>W</i> ₁₀ 37	W ₁₁ 38
Message word #attacked steps Message word	W ₈ 36 W ₁₂	W9 39 W13	W ₁₀ 37 W ₁₄	W ₁₁ 38 W ₁₅

The Choice of Message Word

Message word	W_0	W_1	W_2	W_3
#attacked steps	51	46	52	48
Message word	W_4	W_5	W_6	W_7
#attacked steps	42	50	39	56
Message word	W_8	W_9	W_{10}	W_{11}
Message word #attacked steps	W ₈ 36	W ₉ 39	<i>W</i> ₁₀ 37	W ₁₁ 38
Message word #attacked steps Message word	W ₈ 36 W ₁₂	W9 39 W13	W ₁₀ 37 W ₁₄	W ₁₁ 38 W ₁₅

- **Bit-slices** for all operations including **modular addition** in the **step function** developed in [CR06]
- \bullet Generalized conditions for two bits $x\;$ and x*

(x, x^*)	(0,0)	(1, 0)	(0,1)	(1, 1)	(x, x^*)	(0,0)	(1, 0)	(0,1)	(1, 1)
?	\checkmark	\checkmark	\checkmark	\checkmark	3	\checkmark	\checkmark	-	-
-	\checkmark	-	-	\checkmark	5	\checkmark	-	\checkmark	-
x	-	\checkmark	\checkmark	-	7	\checkmark	\checkmark	\checkmark	-
0	\checkmark	-	-	-	А	-	\checkmark	-	\checkmark
u	-	\checkmark	-	-	В	\checkmark	\checkmark	-	\checkmark
n	-	-	\checkmark	-	С	-	-	\checkmark	\checkmark
1	-	-	-	\checkmark	D	\checkmark	-	\checkmark	\checkmark
#	-	-	-	-	E	-	\checkmark	\checkmark	V

- Bit-slices for all operations including modular addition in the step function developed in [CR06]
- \bullet Generalized conditions for two bits $x\;$ and x*

Initialize each bit as ?

(x, x^*)	(0, 0)	(1, 0)	(0, 1)	(1, 1)	(x, x^*)	(0, 0)	(1, 0)	(0, 1)	(1, 1)
?	\checkmark	\checkmark	\checkmark	\checkmark	3	\checkmark	\checkmark	-	-
-	\checkmark	-	-	\checkmark	5	\checkmark	-	\checkmark	-
x	-	\checkmark	\checkmark	-	7	\checkmark	\checkmark	\checkmark	-
0	\checkmark	-	-	-	A	-	\checkmark	-	\checkmark
u	-	\checkmark	-	-	В	\checkmark	\checkmark	-	\checkmark
n	-	-	\checkmark	-	С	-	-	\checkmark	\checkmark
1	-	-	-	\checkmark	D	\checkmark	-	\checkmark	\checkmark
#	-	-	-	-	E	-	\checkmark	\checkmark	~

- Bit-slices for all operations including modular addition in the step function developed in [CR06]
- \bullet Generalized conditions for two bits $x\;$ and x*

Initialize each bit as ?

Finalize each bit as one of {-, u, n, 0, 1}

• Use the algorithm developed in [MNS11, MNS12]

Decision (Guessing)

- 1. Pick randomly an unrestricted decision bit.
- 2. Impose new constraints on this decision bit.

Deduction (Propagation)

- 3. Propagate the new information to other variables and equations
- 4. If an inconsistency is detected start backtracking, else continue with step 1.

Backtracking (Correction)

- 5. Try a different choice for the decision bit.
- 6. If all choices result in an inconsistency, mark the bit as critical.
- 7. Jump back until the critical bit can be resolved.
- 8. Continue with step 1.

Specific Configuration for RIPEMD-160

• Two carries to handle in one step function

Computed and stored together as a 3-bit condition

35

Resulted Differential Path

• Use message word M_7 • 48 steps (16-64) X.

Step	X_i							Step	Y_i			
12								12				
13								13				
14								14				
15					W_i^l		Π_{i}^{l}	15				
16					x	 	 7	16				
17				-n		 	 4	17				
18				-0		 	 13	18	01	01		
19		1		-1		 	 1	19	1		1	
20		0				 	 10	20	11	100	1	-u001
21		n				 	 6	21	11-01	u10	111	1111
22		0				 	 15	22	unn	01-1	0nuuuu	010u
23	1	0				 	 3	23	00un-	011-uuu-	0	-un0
24	11					 	 12	24	u11n1	11-1	1-0-u	-1nn0010
25	n	11-	0-			 	 0	25	0-u110	n-01	11u10-	-1-0n1nu
26	001-00	un	nnnnnu	u10		 	 9	26	1	-111-	00-n1nnn	-nnnu
27	-nn-un	-u0100	000011	1010		 	 5	27	11u	0-uu1n	100	0-unn
28	1010001-	00nu	n0-nu-	u-un0110		 	 2	28	u	n100	0011	n0n1
29	0-nun-0-	11-u0u	-1010101	1-u0nnu-		 	 14	29		u1-	0u-11u	00
30	-000-111	uu010n10	1u-1nu1n	-00nn000		 	 11	30	-0n	n	11	
31	-n1-u	0uu1-0-1	000011n0	0001n		 	 8	31	-1	1	u	1
32	-100	-010u	-11u10	01		 	 3	32		u	1	0
33	-nu	u1	1	10		 	 10	33				
34	-110	0	1	u		 	 14	34				
35	n	n		11		 	 4	35				
36	1	0	0	u1		 	 9	36				
37		n1-		10		 	 15	37				
38		00-				 	 8	38				
39						 	 1	39				
40						 	 2	40				
41					x	 	 7	41				
42						 	 0	42				
43						 	 6	43				
44						 	 13	44				
45						 	 11	45				
46						 	 5	46				
47						 	 12	47				
48						 	 1	48				
49						 	 9	49				
50						 	 11	50				
51						 	 10	51				
52						 	 0	52				
53						 	 8	53				
54						 	 12	54				
55						 	 4	55				
56						 	 13	56				
57	0					 	 3	57				
58	1				x	 	 7	58				
59				n		 	 15	59				
60						 	 14	60				
61				01		 	 5	61				
62						 	 6	62				u
63			nu			 	 2	63				0
64							_	64				

	W_i^r			Π_{i}^{2}
	·	 		i
		 		1
		 		:
	x	 		
-u001		 		(
1111		 		13
010u		 		ļ
-un0		 		10
-1nn0010		 		14
-1-0n1nu		 		1
-nnnu		 		-
0-unn		 		1
n0n1		 		
00		 		9
1		 		
0		 		1
		 		-
	x	 		
		 		14
		 		-
		 		,
		 		1
		 		-
		 		1
		 		1.
		 		1
		 		1
		 		1.
		 		1
		 		18
		 		12
		 		1
	x	 	20	
u		 	30	10
0		 		14

Resulted Differential Path

Step Y_i

• Use message word M_7 • 48 steps (16-64)

Step		X_i				
12						
13						
14						
15						
16						
17						
10					-0	
10			1		-0	
19			1		-1	
20			0			
21			n			
22			0			
23		1	0			
24		11				
25	-	n	11-	0-		_
26		001-00	un	nnnnnu	u10	
27		-nnun	-u0100	000011	1010	
28		1010001-	00nu	n0-nu-	u-un0110	
29		0-nun-0-	11-11011	-1010101	1–110nn11–	
30		-000-111	uu010n10	$1_{11} - 1_{11} + 1_{11}$	-00nn000	
21			01_0_1	000011-0	0001	
31		-n1-u	010	1 1 10	00011	
32		-100	-010	-11010	01	
33		-nu	u1	1	10	
34		-110	0	1	u	
35		n	n		11	
36		1	0	0	u1	
37						
0.			n1-		10	
38			n1- 00-		10	
38 39			n1- 00-		10 	
38 39 40			n1- 00- 	 	10 	
38 39 40 41		 	n1- 00- 	 	10 	
38 39 40 41 42			n1- 00- 		10 	
38 39 40 41 42 43			n1- 00- 		10 	
38 39 40 41 42 43 44			n1- 00- 		10 	
38 39 40 41 42 43 44			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 22			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54			n1- 00- 0- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56			n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57		0	n1- 00- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58			1- 0- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59			1- 0- 		10 	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59 60			1- 		10 	
38 39 40 41 42 44 45 46 47 48 50 51 52 53 54 55 57 58 50 60 61		0 0 1	1- 0- 0- 		10 	
38 39 40 41 42 44 45 46 47 48 49 50 512 53 54 55 57 58 59 60 61 62		0 1	1- 0- 		10 	
$\begin{array}{c} 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 55\\ 56\\ 55\\ 56\\ 57\\ 8\\ 59\\ 60\\ 61\\ 2\\ 63\\ 2\end{array}$		0 1 	1- 0- 		10 	
$\begin{array}{c} 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 44\\ 45\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 55\\ 56\\ 61\\ 62\\ 63\\ 4\end{array}$			1- 0- 0- 		10 	

				12					
				13					
				14					
W^l			Π^l	15					
x		 	7	16					
		 	4	17					
		 	13	18	01-		01		
		 	1	10	1-			1	
				19	11		100	1	001
	nc			20	11.0	1		1 11	1 111
		JOI		21	11-0.	L		0	01 01
			15	22	ur	nn	01-1	0nuuuu	010u
		 	3	23	00	Jun-	011-uuu-	0	-un0
		 	12	24	u11n1	1	11-1	1-0-u	-1nn0010
		 	0	25	0-u1:	10	n-01	11u10-	-1-0n1nu
		 	9	26	:	11	-111-	00-n1nnn	-nnnu
		 	5	27	1:	1u	0-uu1n	100	0-unn
		 	2	28	1	1	n100	0011	n0n1
		 	14	29			u1-	0u-11u	00
		 	11	30	-01	n	n	11	
		 	8	31	-1		1	u	1
		 	3	32			11	1	0
		 	10	33					
		 	14	34					
		 	14	35					
		 	4	36					
		 	9	30					
		 	15	31					
		 	8	38					
		 	1	39					
		 	2	40					
x		 	7	41					
		 	0	42					
		 	6	43					
		 	13	44					
		 	11	45					
		 	5	46					
		 	12	47					
		 	1	48					
		 	9	49					
		 	11	50					
		 	10	51					
		 	0	52					
		 	8	53					
			10	50 E /					
		 	12	54					
		 	4	55					
		 	13	56					
		 	3	57					
x		 	7	58					
		 	15	59					
		 	14	60					
		 	5	61					
		 	6	62					u
		 	2	63					0
				64					

	W_i^r		Π_i^r
		 	 6
		 	 11
		 	 3
	x	 	 7
		 	 0
٦		 	 13
		 	 5
		 	 10
		 	 14
		 	 15
		 	 8
		 	 12
		 	 4
		 	 9
		 	 1
		 	 2
		 	 15
		 	 5
		 	 1
		 	 3
	x	 	 7
		 	 14
		 	 6
		 	 9
		 	 11
		 	 8
		 	 12
		 	 2
		 	 10
		 	 0
		 	 4
		 	 13
		 	 8
		 	 6
		 	 4
		 	 1
		 	 3
		 	 11
		 	 15
		 	 0
		 	 5
		 	 12
		 	 2
		 	 13
		 	 9
	x	 	 7
		 	 10
		 	 14

Outline

- RIPEMD-160 specification
- Attack overview
- Find a differential path
- Find a confirming pair
 - Merge two branches
 - Evaluate complexity
- Conclusion

• Refer to the paper for detailed procedure

Phase 1. fix some free bits to **fulfill in advance** some **conditions** in differential path

Phase 2. start-from-the-middle adaptively choose free bits sequentially to fulfill conditions in dense part of differential path

Phase 3. use remaining free bits to merge the internal states of both branches to a freely chosen cv

				-		
Step	X_i			Step	Y_i	
12				12		
13				13		
14				14		
15		W_i^l	Π_i^l	15		W_i^r
16		x	7	16		
17	n		4	17		
18	0		13	18	01 01	
19	11		1	19	111	x
20	0		10	20	111001 -u001	
21	n		6	21	11-01u10 111 1111	
22	0		15	22	unn01-1 0nuuuu 01Ou	
23	10		3	23	00un- 011-uuu0un0	
24	11		12	24	u11n111-1 1-0-u1nn0010	
25	n110		0	25	0-u110 n-01 11u101-On1nu	
26	001-00un nnnnnu u10		9	26	11 -111- 00-n1nnn -nnnu	
27	-nn-un -u0100 000011 1010		5	27	11u 0-uu1n 1000-unn	
28	101000100nun0-nu- u-un0110		2	28	un100 0011n0n1	
29	0-nun-0- 11-u0u -1010101 1-u0nnu-		14	29	u1- 0u-11u00	
30	-000-111 uu010n10 1u-1nu1n -00nn000		11	30	-0nn 11	
31	-n1-u 0uu1-0-1 000011n0 0001n		8	31	-11u1	
32	-100 -010u -11u1001		3	32	u10	
33	-nuu11 10		10	33		
34	-11001 u		14	34		
35	nn 11		4	35		
36	100 u1		9	36		x
37			15	37		
38			8	38		
39			1	39		
40			2	40		
1 V			-	1 V		

Step	X_i		S	Step	Y_i	
12				12		
13				13		
14				14		
15		W_i^l	Π_i^l	15		W_i^r
16		x	[°] 7	16		¢
17	n		4	17		
18	0		13	18	01 01	
19	11		1	19	111	х
20	0		10	20	111001 -u001	
21	n		6	21	11-01u10 111 1111	
22	0		15	22	unn01-1 0nuuuu 01Ou	
23	10		3	23	00un- 011-uuu0un0	
24	11		12	24	u11n111-1 1-0-u1nn0010	
25	n110		0	25	0-u110 n-01 11u101-On1nu	
26	001-00un nnnnnu u10		9	26	11 -111- 00-n1nnn -nnnu	
27	-nn-un -u0100 000011 1010		5	27	11u 0-uu1n 1000-unn	
28	101000100nun0-nu- u-un0110		2	28	un100 0011n0n1	
29	0-nun-0- 11-u0u -1010101 1-u0nnu-		14	29	u1- 0u-11u00	
30	-000-111 uu010n10 1u-1nu1n -00nn000		11	30	-0nn 11	
31	-n1-u 0uu1-0-1 000011n0 0001n		8	31	-11u1	
32	-100 -010u -11u1001		3	32	10	
33	-nuu11 10					
34	-11001 u	Fix the			tornal state	o wordo
35	nn 11	FIX UNES	e		iternal stat	e words
36	100 u1		y	36		X
37	1		15	37		
38	0		8	38		
39			1	39		
40			2	40		

 Π_i^r

Step	X_i			Step	Y_i	
12				12		
13				13		
14				14		
15		W_i^l	\prod_{i}^{l}	15		W_i^r
16		x	7	16		٠
17	n		4	17		
18	0		13	18	01 01	
19	1		1	19	111	х
20	0		10	20	111 -u001	
21	n		6	21	11-01u10 111 1111	
22	0		15	22	unn01-1 0nuuuu 01Ou	
23	10		3	23	00un- 011-uuu0un0	
24	11		12	24	u11n111-1 1-0-u1nn0010	
25	0 10		0	25	0-u110 n-01 11u101-On1nu	
26	001-00un nnnnnu u10		9	26	11 -111- 00-n1nnn -nnnu	
27	-nn-un -u0100 000011 1010		5	27	11u 0-u <mark>u</mark> 1 <mark>n 1</mark> 000-unn	
28	101000100nun0-nu- u-un0110		2	28	un1 00 0011n0n1	
29	0-nun-0- 11-u0u -1010101 1-u0nnu-		14	29	000	
30	-000-111 uu010n10 1u-1nu1n -00nn000		11	30	-0nn 11	
31	-n1-u 0u.1-0-1 000011n0 0001n					
32	-100 -0 <mark>.</mark> 0-1-u -11u1001	Adaptivel	V	ch	loose mess	age
33	-nu <mark></mark> -11 10		7	•••		
34	-110 u	· worde for			d and had	
35	nn 11	words for	W	dl	a and back	waru
36	100 u1					
37	0 10	to fulfill th	h	ר כ	onditions	
38	00					
39			1	39		
40			2	40		

 Π_i^r 6

11

3

0 13

5

10 14

15 8 12

9

2

15

5

3

7 14

6

9 11

A "Starting Point" after Phase 2

 Π^r_i 6

Step	X_i			Step	Y_i	
12				12		
13				13		
14				14		
15		W_i^l	Π_i^l	15		W_i^r
16		x	7	16		·
17	n		4	17		01100111 01010111 01001110 11101100
18	0		13	18	10011001 01001100 00000011 10111000	01001111 11011100 00000100 11100000
19	1		1	19	10011110 00000100 10101111 00011011	x
20	0	00000011 00100101 10100111 00001111	10	20	11001011 10111100 00011101 1u111001	
21	nn		6	21	11001011 10101u10 11111111 10001111	
22	0 00111100 000	11110110 11100100 10110100 00010001	15	22	001unn01 00011101 011nuuuu 0110010u	01100000 11111110 10100110 01000000
23	01101110 00100100 11111101 10111000	01001111 11011100 00000100 11100000	3	23	00000un0 0110uuu1 01001010 1un01001	00000011 00100101 10100111 00001111
24	11010101 00011001 01001010 10110101	11101100 10100110 10100100 11100111	12	24	u11n1001 11111111 1000u010 11nn0010	11000000 00110011 00110000 01100000
25	11101n11 11110111 01100001 10110000		0	25	00u11000 n1010111 1111u100 1110n1nu	11110110 11100100 10110100 00010001
26	00110001 001001un nnnn00nu u1010001	011 01000010	9	26	01111001 11110111 001n1nnn 0nnnu000	10001110 10111001 11000010 10010100
27	On00n1un 0u110100 00001111 10101010	01100000 11111110 10100110 01000000	5	27	10001u11 01uu011n 11110001 10100unn	11101100 10100110 10100100 11100111
28	10100010 101100nu 00n00nu1 u0un0110	01101100 10101011 01110010 00010011	2	28	1100u001 01n10100 01101101 11n000n1	
29	01nun101 110u110u 11010101 11u0nnu1	11000000 00110011 00110000 01100000	14	29	000u-1uu	011 01000010
30	00001111 uu010n10 1u11nu1n 000nn000	01100111 01010111 01001110 11101100	11	30	00nn100	
31	1n00110u 0uu11001 000011n0 0001n000	10001110 10111001 11000010 10010100	8	31	-1u1	01101100 10101011 01110010 00010011
32	11011010 1010011u 01101u10 00010111	01001111 11011100 00000100 11100000	3	32	111 000	11110110 11100100 10110100 00010001
33	1n01101u 10u01101 11100110 11111001	00000011 00100101 10100111 00001111	10	33		01100000 11111110 10100110 01000000
34	11100110 10010010 01101000 u1100011	11000000 00110011 00110000 01100000	14	34		
35	0111100n 00n00000 11110101 10110010		4	35		01001111 11011100 00000100 11100000
36	10 u1	011 01000010	9	36		x
37	1 11111010	11110110 11100100 10110100 00010001	15	37		11000000 00110011 00110000 01100000
38	000 00000	10001110 10111001 11000010 10010100	8	38		
39			1	39		011 01000010
40		01101100 10101011 01110010 00010011	2	40		01100111 01010111 01001110 11101100 43

11000000	00110011	00110000	01100000	14	34	 	
				4	35	 	
011	01000010			9	36	 	
11110110	11100100	10110100	00010001	15	37	 	
10001110	10111001	11000010	10010100	8	38	 	
				1	39	 	
01101100	10101011	01110010	00010011	2	40	 	

11100110 10010010 01101000 u1100011

0111100n 00n00000 11110101 10110010

-----1 --0----- u----1--

-----1 11111010

01001111 11011100 00000100 11100000

11000000 00110011 00110000 01100000

-----011 01000010 ------

01100111 01010111 01001110 11101100

Evaluate Complexity

• The **uncontrolled** probability of merging is 2^{-77.4}

#necessary starting points: 2^{77.4}

- One starting point is generated by 4 step functions, which is 2^{-4.4} (=4/42*2)
- The merging for each starting point costs 2^{-1.9}

Overall complexity: $2^{77.4-4.4} + 2^{77.4-1.9} \approx 2^{75.5}$

Evaluate Complexity

• The **uncontrolled** probability of merging is 2^{-77.4}

#necessary starting points: 2^{77.4}

- One starting point is generated by 4 step functions, which is 2^{-4.4} (=4/42*2)
- The merging for each starting point costs 2^{-1.9}

Overall complexity: $2^{77.4-4.4} + 2^{77.4-1.9} \approx 2^{75.5}$

We cannot afford the probabilities for steps 58 to 64. #attacked step is 42, while differential path has 48 steps.

Attack from the First Round

• The non-linear path in XOR round should be as short as possible

Outline

- RIPEMD-160 specification
- Attack overview
- Find a differential path
- Find a confirming pair
- Conclusion

Conclusion

• Semi-free-start collision attack on 42 steps

➢ 6 steps more compared with [MNSS12]

• Semi-free-start collision attack on first 36 steps

Open question:

Can the merging complexity be reduced in order to extend the attack to 48 steps?

Thank you for your attention!