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Cryptographic Hash Function 

• Public function 

 Input: arbitrary long messages 

 Output: short random digests 

This document 

has to be stored 

without any 

modification for 

a long time. So 

we should get a 

hash digest.  

AC376EB 
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• A fundamental primitive in cryptography 



Security Notions 

• Collision attack 

Find      and       such that                   and 

 

• Collision resistance 

Finding a collision takes no less than 2n/2 

computations (n is digest bit size). 
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Security Notions 

• Second peimage attack 

  

• Second preimage resistance 

Finding a second preimage takes no less than 2n 

computations (n is digest bit size). 
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Given      , find        such that                   and 



Security Notions 

• Peimage attack 

Given    , find a       such that  

• Preimage resistance 

Finding a preimage takes no less than 2n 

computations (n is digest bit size). 
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Iterative Hash Function Design 

  e.g., Merkle-Damgård mode 
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• Compression function: public function for which 

   the input and output size is fixed. 

• Domain extension: an algorithm which iterates the 

   compression function to handle arbitrary long messages.  

Initial 

value 
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A security notion on compression function 

• Semi-free-start collision attack 

Find      ,        and        such that  

• Resistance requirement: no less than 2n/2 



MD-SHA Family 

• Well-known dedicated hash functions since 1990s 

• Merkle-Damgård mode 

• Compression function 

 Addition-Rotation-Xor  

 Bitwise Boolean function 

 Unbalanced Feistel Network 
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MD-SHA Family 

• Broken hash functions 

 MD4, MD5, SHA-0, SHA-1, HAVAL, RIPEMD-0, 

     RIPEMD-128 

• Unbroken hash functions 

 RIPEMD-160, SHA-2 
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Security State of RIPEMD-160 

•  After 17 years since 1996 

Target Type #Steps Complexity Ref. 

Compression Preimage 31 2148 OSS12 

Hash Preimage 31 2155 OSS12 

Compression Non-randomness 48 low MNSS12 

Compression Non-randomness 52 2158 SW12 

Compression  Semi-free-start collision 36 low MNSS12 

Compression Semi-free-start collision 42 275.5 Ours 

Compression Semi-free-start collision 36* 270.4 Ours 

*: Our 36-step attack starts from the first step. 
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Outline 

• RIPEMD-160 specification 

• Find a differential path 

• Find a confirming pair 

• Conclusion 

• Attack overview 
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RIPEMD-160  

• Designed by Dobbertin, Bosselaers and Preneel 

• Worldwide ISO/IEC standard 

• Double-branch compression function 
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Compared to RIPEMD-128  

• Our attacks are based on recent analysis approach  

   of RIPEMD-128 [LP13] 

• Larger digest size: 128 → 160 

• Increased number of steps: 64 → 80 

• The step function has stronger diffusion and  

   oŶe ͞free terŵ͟  
 Significant impact to differential path   

 The reason that #attacked steps is less. 
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RIPEMD-128  

            

RIPEMD-160  

      : modular addition 

       : left cyclic rotation        ,     : constants 

      : Boolean function 
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Outline 

• RIPEMD-160 specification 

• Find a differential path 

• Find a confirming pair 

• Conclusion 

• Attack overview 



17 

Attack Overview 

• The same with the attacks on RIPEMD-128 [LP13] 

0 

0 

Non-linear 

Non-linear linear 

linear 
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Rationale of Our Attack Strategy 

• 80 steps are re-grouped into 5 rounds 

• Each round has a distinct Boolean function 

• The Boolean function has significant impact to  

   non-linear differential path search 

XOR 

ONX 

IFX 

IFZ 

ONZ 

ONZ 

IFZ 

IFX 

ONX 

XOR 

XOR: 

IFX: 

IFZ: 

ONX: 

ONZ: 

round 1 round 2 round 3 round 4 round 5 
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Rationale of Our Attack Strategy 

 Strong absorption: IFX, IFZ 

XOR 

ONX 

IFX 

IFZ 

ONZ 

ONZ 

IFZ 

IFX 

ONX 

XOR 

 Weak absorption:   ONX, ONZ 

 No absorption:        XOR 

• Absorption: an input bit difference does not  

   necessarily propagate to the output bit 

round 1 round 2 round 3 round 4 round 5 
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Rationale of Our Attack Strategy 

XOR 

ONX 

IFX 

IFZ 

ONZ 

ONZ 

IFZ 

IFX 

ONX 

XOR 

• Non-linear differential path should locate in 

   rounds with a strong absorption Boolean function. 

 Easier to search non-linear path  

 Sparser non-linear paths 

round 1 round 2 round 3 round 4 round 5 
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Rationale of Our Attack Strategy 

XOR 

ONX 

IFX 

IFZ 

ONZ 

ONZ 

IFZ 

IFX 

ONX 

XOR 

• Attack starts from the second round 

round 1 round 2 round 3 round 4 round 5 

• Discuss attacks starting from the first round later. 
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Rationale of Our Attack Strategy 

•  Message words locate in different steps between    

    the two branches 

IFX 

IFZ 

ONZ 

ONZ 

round 2 round 3 
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Rationale of Our Attack Strategy 

• A waste of message word freedom exists if the  

  search starts from the beginning step. 
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Rationale of Our Attack Strategy 

•             : two subsets of the message words in the  

   dense part of the two differential paths 

  

• A waste of message word freedom exists if the  

  search starts from the beginning step. 
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Rationale of Our Attack Strategy 

• Satisfy dense parts firstly by using the freedom  

  of internal state and the message words.  

  Use the independency between        and  

  Start-from-the-middle procedures 
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Wrapping up 

IFZ ONZ IFX 

round 2 round 3 round 4 round 1 

IFZ ONZ IFX 

ONX 

XOR 
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Outline 

• RIPEMD-160 specification 

• Find a differential path 

• Find a confirming pair 

• Conclusion 

• Attack overview 

 Choose message difference 

 Search non-linear path 
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The Choice of Message Word 

•  Single message word difference 

•  Examine the potential #attacked steps for each   

    messages word with respect to   

  short non-linear paths in both branch 

  early step of the two non-linear path are near 

  sparse later steps of non-linear path  

  output difference cancellation of  the two  

      branches by the feed-forward operation 
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The Choice of Message Word 

Message word 

#attacked steps 51  46  52  48  

Message word 

#attacked steps 42  50  39  56  

Message word 

#attacked steps 36  39  37  38  

Message word 

#attacked steps 38 34  58  43  
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Automatic Non-Linear Path Search  

• Bit-slices for all operations including modular  

   addition in the step function developed in [CR06] 

• Generalized conditions for two bits      and   
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Automatic Non-Linear Path Search  

• Bit-slices for all operations including modular  

   addition in the step function developed in [CR06] 

• Generalized conditions for two bits      and   

 Initialize each bit as ? 

 Finalize each bit as one of  {-, u, n, 0, 1}  
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Automatic Non-Linear Path Search  

• Use the algorithm developed in [MNS11, MNS12] 
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Specific Configuration for RIPEMD-160 

        

carry1 

carry2 

• Two carries to handle in one step function 

 Computed and stored together as a 3-bit condition 
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Resulted Differential Path 

• Use message word  • 48 steps (16-64) 
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Resulted Differential Path 

• Use message word  • 48 steps (16-64) 

Dense parts 



38 

Outline 

• RIPEMD-160 specification 

• Find a differential path 

• Find a confirming pair 

• Conclusion 

• Attack overview 

 Merge two branches 

 Evaluate complexity 
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Merge Two Branches 

Phase 1. fix some free bits to fulfill in advance  

                 some conditions in differential path    

• Refer to the paper for detailed procedure 

Phase 2. start-from-the-middle adaptively choose   

                 free bits sequentially to fulfill conditions  

                 in dense part of differential path 

Phase 3. use remaining free bits to merge the  

                 internal states of both branches to a  

                 freely chosen  
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Merge Two Branches 
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Merge Two Branches 

Fix these internal state words  



42 

Merge Two Branches 

Adaptively choose message 

words forward and backward 

to fulfill the conditions 
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A ͞Starting Point͟ after Phase 2 
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Merge Two Branches 

Use these remaining free bits to 

merge the two branches 
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Evaluate Complexity 

• The uncontrolled probability of merging is 2-77.4 

 #necessary starting points: 277.4   

• One starting point is generated by 4 step functions,  

   which is 2-4.4  (=4/42*2) 

• The merging for each starting point costs 2-1.9   

 Overall complexity:  
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Evaluate Complexity 

• The uncontrolled probability of merging is 2-77.4 

 #necessary starting points: 277.4   

• One starting point is generated by 4 step functions,  

   which is 2-4.4  (=4/42*2) 

• The merging for each starting point costs 2-1.9   

 Overall complexity:  

We cannot afford the probabilities for steps 58 to 64. 

#attacked step is 42, while differential path has 48 steps. 
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Attack from the First Round 

XOR 

ONX 

IFX 

IFZ 

round 1 round 2 

• The non-linear path in XOR round should be  

   as short as possible 
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Outline 

• RIPEMD-160 specification 

• Find a differential path 

• Find a confirming pair 

• Conclusion 

• Attack overview 
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Conclusion 

• Semi-free-start collision attack on 42 steps  

 6 steps more compared with [MNSS12] 

• Semi-free-start collision attack on first 36 steps  

Open question: 

Can the merging complexity be reduced in order to 

extend the attack to 48 steps? 



Thank you for your attention! 
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