
Improved Cryptanalysis of Reduced RIPEMD-160

Florian Mendel, Thomas Peyrin, Martin Schläffer,

Lei Wang, and Shuang Wu

ASIACRYPT 2013

1

Cryptographic Hash Function

• Public function

 Input: arbitrary long messages

 Output: short random digests

This document

has to be stored

without any

modification for

a long time. So

we should get a

hash digest.

AC376EB

2

• A fundamental primitive in cryptography

Security Notions

• Collision attack

Find and such that and

• Collision resistance

Finding a collision takes no less than 2n/2

computations (n is digest bit size).

3

Security Notions

• Second peimage attack

• Second preimage resistance

Finding a second preimage takes no less than 2n

computations (n is digest bit size).

4

Given , find such that and

Security Notions

• Peimage attack

Given , find a such that

• Preimage resistance

Finding a preimage takes no less than 2n

computations (n is digest bit size).

5

Iterative Hash Function Design

 e.g., Merkle-Damgård mode

6

• Compression function: public function for which

 the input and output size is fixed.

• Domain extension: an algorithm which iterates the

 compression function to handle arbitrary long messages.

Initial

value

7

A security notion on compression function

• Semi-free-start collision attack

Find , and such that

• Resistance requirement: no less than 2n/2

MD-SHA Family

• Well-known dedicated hash functions since 1990s

• Merkle-Damgård mode

• Compression function

 Addition-Rotation-Xor

 Bitwise Boolean function

 Unbalanced Feistel Network

8

MD-SHA Family

• Broken hash functions

 MD4, MD5, SHA-0, SHA-1, HAVAL, RIPEMD-0,

 RIPEMD-128

• Unbroken hash functions

 RIPEMD-160, SHA-2

9

10

Security State of RIPEMD-160

• After 17 years since 1996

Target Type #Steps Complexity Ref.

Compression Preimage 31 2148 OSS12

Hash Preimage 31 2155 OSS12

Compression Non-randomness 48 low MNSS12

Compression Non-randomness 52 2158 SW12

Compression Semi-free-start collision 36 low MNSS12

Compression Semi-free-start collision 42 275.5 Ours

Compression Semi-free-start collision 36* 270.4 Ours

*: Our 36-step attack starts from the first step.

11

Outline

• RIPEMD-160 specification

• Find a differential path

• Find a confirming pair

• Conclusion

• Attack overview

12

Outline

• RIPEMD-160 specification

• Find a differential path

• Find a confirming pair

• Conclusion

• Attack overview

13

RIPEMD-160

• Designed by Dobbertin, Bosselaers and Preneel

• Worldwide ISO/IEC standard

• Double-branch compression function

14

Compared to RIPEMD-128

• Our attacks are based on recent analysis approach

 of RIPEMD-128 [LP13]

• Larger digest size: 128 → 160

• Increased number of steps: 64 → 80

• The step function has stronger diffusion and

 oŶe ͞free terŵ͟
 Significant impact to differential path

 The reason that #attacked steps is less.

15

RIPEMD-128

RIPEMD-160

 : modular addition

 : left cyclic rotation , : constants

 : Boolean function

16

Outline

• RIPEMD-160 specification

• Find a differential path

• Find a confirming pair

• Conclusion

• Attack overview

17

Attack Overview

• The same with the attacks on RIPEMD-128 [LP13]

0

0

Non-linear

Non-linear linear

linear

18

Rationale of Our Attack Strategy

• 80 steps are re-grouped into 5 rounds

• Each round has a distinct Boolean function

• The Boolean function has significant impact to

 non-linear differential path search

XOR

ONX

IFX

IFZ

ONZ

ONZ

IFZ

IFX

ONX

XOR

XOR:

IFX:

IFZ:

ONX:

ONZ:

round 1 round 2 round 3 round 4 round 5

19

Rationale of Our Attack Strategy

 Strong absorption: IFX, IFZ

XOR

ONX

IFX

IFZ

ONZ

ONZ

IFZ

IFX

ONX

XOR

 Weak absorption: ONX, ONZ

 No absorption: XOR

• Absorption: an input bit difference does not

 necessarily propagate to the output bit

round 1 round 2 round 3 round 4 round 5

20

Rationale of Our Attack Strategy

XOR

ONX

IFX

IFZ

ONZ

ONZ

IFZ

IFX

ONX

XOR

• Non-linear differential path should locate in

 rounds with a strong absorption Boolean function.

 Easier to search non-linear path

 Sparser non-linear paths

round 1 round 2 round 3 round 4 round 5

21

Rationale of Our Attack Strategy

XOR

ONX

IFX

IFZ

ONZ

ONZ

IFZ

IFX

ONX

XOR

• Attack starts from the second round

round 1 round 2 round 3 round 4 round 5

• Discuss attacks starting from the first round later.

22

Rationale of Our Attack Strategy

• Message words locate in different steps between

 the two branches

IFX

IFZ

ONZ

ONZ

round 2 round 3

23

Rationale of Our Attack Strategy

• A waste of message word freedom exists if the

 search starts from the beginning step.

24

Rationale of Our Attack Strategy

• : two subsets of the message words in the

 dense part of the two differential paths

• A waste of message word freedom exists if the

 search starts from the beginning step.

25

Rationale of Our Attack Strategy

• Satisfy dense parts firstly by using the freedom

 of internal state and the message words.

 Use the independency between and

 Start-from-the-middle procedures

26

Wrapping up

IFZ ONZ IFX

round 2 round 3 round 4 round 1

IFZ ONZ IFX

ONX

XOR

27

Outline

• RIPEMD-160 specification

• Find a differential path

• Find a confirming pair

• Conclusion

• Attack overview

 Choose message difference

 Search non-linear path

28

The Choice of Message Word

• Single message word difference

• Examine the potential #attacked steps for each

 messages word with respect to

 short non-linear paths in both branch

 early step of the two non-linear path are near

 sparse later steps of non-linear path

 output difference cancellation of the two

 branches by the feed-forward operation

29

The Choice of Message Word

Message word

#attacked steps 51 46 52 48

Message word

#attacked steps 42 50 39 56

Message word

#attacked steps 36 39 37 38

Message word

#attacked steps 38 34 58 43

30

The Choice of Message Word

Message word

#attacked steps 51 46 52 48

Message word

#attacked steps 42 50 39 56

Message word

#attacked steps 36 39 37 38

Message word

#attacked steps 38 34 58 43

31

Automatic Non-Linear Path Search

• Bit-slices for all operations including modular

 addition in the step function developed in [CR06]

• Generalized conditions for two bits and

32

Automatic Non-Linear Path Search

• Bit-slices for all operations including modular

 addition in the step function developed in [CR06]

• Generalized conditions for two bits and

 Initialize each bit as ?

33

Automatic Non-Linear Path Search

• Bit-slices for all operations including modular

 addition in the step function developed in [CR06]

• Generalized conditions for two bits and

 Initialize each bit as ?

 Finalize each bit as one of {-, u, n, 0, 1}

34

Automatic Non-Linear Path Search

• Use the algorithm developed in [MNS11, MNS12]

35

Specific Configuration for RIPEMD-160

carry1

carry2

• Two carries to handle in one step function

 Computed and stored together as a 3-bit condition

36

Resulted Differential Path

• Use message word • 48 steps (16-64)

37

Resulted Differential Path

• Use message word • 48 steps (16-64)

Dense parts

38

Outline

• RIPEMD-160 specification

• Find a differential path

• Find a confirming pair

• Conclusion

• Attack overview

 Merge two branches

 Evaluate complexity

39

Merge Two Branches

Phase 1. fix some free bits to fulfill in advance

 some conditions in differential path

• Refer to the paper for detailed procedure

Phase 2. start-from-the-middle adaptively choose

 free bits sequentially to fulfill conditions

 in dense part of differential path

Phase 3. use remaining free bits to merge the

 internal states of both branches to a

 freely chosen

40

Merge Two Branches

41

Merge Two Branches

Fix these internal state words

42

Merge Two Branches

Adaptively choose message

words forward and backward

to fulfill the conditions

43

A ͞Starting Point͟ after Phase 2

44

Merge Two Branches

Use these remaining free bits to

merge the two branches

45

Evaluate Complexity

• The uncontrolled probability of merging is 2-77.4

 #necessary starting points: 277.4

• One starting point is generated by 4 step functions,

 which is 2-4.4 (=4/42*2)

• The merging for each starting point costs 2-1.9

 Overall complexity:

46

Evaluate Complexity

• The uncontrolled probability of merging is 2-77.4

 #necessary starting points: 277.4

• One starting point is generated by 4 step functions,

 which is 2-4.4 (=4/42*2)

• The merging for each starting point costs 2-1.9

 Overall complexity:

We cannot afford the probabilities for steps 58 to 64.

#attacked step is 42, while differential path has 48 steps.

47

Attack from the First Round

XOR

ONX

IFX

IFZ

round 1 round 2

• The non-linear path in XOR round should be

 as short as possible

48

Outline

• RIPEMD-160 specification

• Find a differential path

• Find a confirming pair

• Conclusion

• Attack overview

49

Conclusion

• Semi-free-start collision attack on 42 steps

 6 steps more compared with [MNSS12]

• Semi-free-start collision attack on first 36 steps

Open question:

Can the merging complexity be reduced in order to

extend the attack to 48 steps?

Thank you for your attention!

50

