
Hiding the Input Size

in Secure Two-Party Computation

Yehuda Lindell, Kobbi Nissim, Claudio Orlandi

Privacy on
(or a more privacy

sensitive social network)

My friends

should only see

our common

friends

Secure Computation

 Privacy

 Correctness

 Input Independence

 “The protocol is as secure as the ideal world”

Or is it?

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

Cryptographic Protocol

f(x,y)

x y

z1

z2

Trusted Party

PSI

Friend list Friend list

Intersection

Privacy on
(or a more privacy

sensitive social network)

Friend list Friend list

+ size of friend list!

Yao’s protocol

Intersection

Privacy on
(or a more privacy

sensitive social network)

Friend list Friend list

+ size of friend list!

Yao’s protocol

Intersection

You learned more

than you were

supposed to!

Don’t worry, it’s

only metadata!

Privacy on
(or a more privacy

sensitive social network)

Padding?

𝑋 ∩ 𝑌

X=x1……xn Y=y1..ym

Z Z

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

Z , m Z , n

X=x1……xn Y=y1..ym …xB ….…yB

B
B

 Just add a lot of “fake entries” to your DB

 Requires an upper bound

 Inherent inefficiency

Impossibility of Size-Hiding:

Proof by Authority

[G04] “…making no restriction on the relationship among the

lengths of the two inputs disallows the existence of secure

protocols for computing any nondegenerate functionality…”

[IP07] “…hiding the size of both inputs is impossible for

interesting functions…”

[HL10]“…We remark that some restriction on the input lengths is

unavoidable because, as in the case of encryption, to some extent

such information is always leaked…”

Impossibility of Size-Hiding:

Proof by Authority

[G04] “…making no restriction on the relationship among the

lengths of the two inputs disallows the existence of secure

protocols for computing any nondegenerate functionality…”

[IP07] “…hiding the size of both inputs is impossible for

interesting functions…”

[HL10]“…We remark that some restriction on the input lengths is

unavoidable because, as in the case of encryption, to some extent

such information is always leaked…”

Impossibility

 Is it impossible for

 Any nondegenerate functionality?

 What is nondegenerate?

 What does no restriction mean?

 All interesting functions?

 What is interesting?

 What about hiding one party’s input?

 Is it really like encryption? Is length information

always leaked?

This Work

 Part of a general research effort to revisit the

foundations of secure computation

 Do we have any proof that it’s impossible?

 If yes, where and for what functions?

 Is it impossible always or sometimes?

 If sometimes, can we characterize when?

 How do we define size hiding?

 Compare to recent work on fairness…

Input Size Can be Hidden Sometimes

 MicaliRabinKilian’03 (and many subsequent work…):

Zero Knowledge Sets (check membership without revealing the
size of the set)

 IshaiPaskin’07:

 Branching programs (reveal length of the branching
program but nothing else about input size)

 Implies set intersection, server input size is hidden

 AtenieseDeCristofaroTsudik’11:

 Specific protocol for set intersection, client input size is
hidden; efficient, in random oracle model

 Note: all these are for specific problems/restricted
class, and all hide only one party’s input

A Test Case: Standard Definition

 Standard definition, e.g. [Gol04]

 Need to know other party’s size in advance

 Introduces problem of input size dependence

 One party can choose its input after knowing the size of the
other party’s input (outside the scope of the protocol)

if |x|=|y|
z=f(x,y)

else
z = fail

x y

z

z

Defining Non-Input-Size Hiding

 Formulation [G04]:

 Our formulation:

 Security guarantees incomparable

if |x|=|y|
z=f(x,y)

Else
z = fail

x y

z

z

z=f(x,y)

x y

z,|y|

z,|x|

Defining Non-Input-Size Hiding

 Formulation [G04]:

 Our formulation:

 Security guarantees incomparable

if |x|=|y|
z=f(x,y)

Else
z = fail

x y

z

z

z=f(x,y)

x y

z,|y|

z,|x|

Standard protocols are

not secure for either

formulation!

Ideal Model - Classes

 Classes

 0: both input-sizes are leaked

 1: Bob learns |𝑥|, Alice does not learn 𝑦

 2: both input-sizes are not revealed

 Subclasses

 Who gets output?

 Is the output size leaked?

 Our classification is complete for symmetric functions

𝑓 𝑥, 𝑦 = 𝑓(𝑦, 𝑥)

Class 0

Class 0

𝑥

1 𝑦 , 𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

Class 1

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥

1 𝑥 , 1 𝑓 𝑥,𝑦
Class
1.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Class
1.d

𝑥 𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.e

𝑥

1 𝑓 𝑥,𝑦

𝑦

Essentially equivalent classes

(outputs have same length)

Class 2

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)
Class
2.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑓(𝑥,𝑦)
Class
2.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Positive Results

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

1 𝑥 , 1 𝑓 𝑥,𝑦
Class
1.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.e

𝑥

1 𝑓 𝑥,𝑦

𝑦

Tools

 Fully Homomorphic Encryption

 𝐺, 𝐸, 𝐷, 𝐸𝑣𝑎𝑙

 Correctness:

𝐷𝑠𝑘(𝐸𝑣𝑎𝑙𝑝𝑘 𝑓, 𝐸𝑝𝑘 𝑥 = 𝑓(𝑥)

 Circuit privacy:

𝐸𝑣𝑎𝑙𝑝𝑘 𝑓, 𝐸𝑝𝑘 𝑥 ≈ 𝐸𝑝𝑘(𝑓 𝑥)

Class 1.a

𝑝𝑘, 𝑐𝑥

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝑓(⋅, 𝑦), 𝑐) 𝑐𝑧

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑧)

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘)

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥)

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

𝑧

Class 1.a

 The devil is in the details

 In order to compute 𝑐𝑧, a circuit computing 𝑓(⋅, 𝑦) must

be known, but this involves knowing the output length

 Solution: 𝑃2 computes an upper bound (it can do this

since it knows |𝑥| and 𝑦

Computing an Upper Bound

 Example: set union

 𝑧 = 𝑥 ∪ 𝑦

 Clear that 𝑧 ≤ 𝑥 + |𝑦|

 But how long exactly?

Any upper bound reveals

information about |𝑦|

𝐸(𝑥)

𝑓(⋅, 𝑦)

𝐸(𝑧)

The Solution

𝐸(𝑥)

𝐸(|𝑧|)

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓 ⋅, 𝑦)

𝐸(𝑥)

𝑓(⋅, 𝑦)

𝐸(𝑧) 𝐸(𝑧)

Alice opens ℓ = |𝑧|

Send

to Alice

𝑓ℓ(⋅, 𝑦)

ℓ

 Thm: FHE ⇒ ∀𝑓 can be securely computed in Classes 1.a/c/e

𝑝𝑘, 𝑐𝑥

𝑐ℓ

ℓ ℓ = 𝐷𝑒𝑐𝑠𝑘 (𝑐ℓ)

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒇ℓ(⋅, 𝑦), 𝑐)

𝑐ℓ = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒔𝒊𝒛𝒆𝒐𝒇(𝑓 ⋅, 𝑦), 𝑐)

𝑐𝑧

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑧)

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘)

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥)

𝑧

Class 1.a
Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

The circuit for output of length

exactly ℓ

Positive Results

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)
Class
2.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑓(𝑥,𝑦)
Class
2.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Two-Size Hiding Protocols

 Theorem: If FHE exists, then the following

functions can be securely computed in class 2

(semi-honest)

Greater than (Millionaire’s problem)

And other functions:

 Equality

Mean

 Variance

Median

Two-Size Hiding Protocols

 Theorem: If FHE exists, then the following

functions can be securely computed in class 2

(semi-honest)

Greater than (Millionaire’s problem)

And other functions:

 Equality

Mean

 Variance

Median

First example of protocols for

interesting functions

where the size of the input of

both parties is protected

Size Independent Protocols

 𝜋 is size independent for 𝑓 if

 Correct (except for 𝑛𝑒𝑔𝑙(𝑘))

 Computation efficient (runtime 𝑝𝑜𝑙𝑦(𝑖𝑛𝑝𝑢𝑡+𝑘))

 Communication efficient (bounded by 𝑝𝑜𝑙𝑦(𝑘))

 Construction idea: “compile” these insecure protocols
using FHE.

 (Concrete protocol for “greater than” in the paper)

Negative Results

Lower Bounds

 Theorem: There exist functions that cannot be

computed while hiding both parties’ input size

 Not everything can be computed in Class 2

 Examples: Inner product, Set Intersection, Hamming

distance, etc.

 Any protocol with “high” communication complexity

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)

Class 1.b

 Theorem: There exist functions that cannot be

securely computed in class 1.b

 Proof: size-hiding OT

 𝑥 = selection bit

 𝑦 = (𝑦0, 𝑦1) two strings of different length

 𝑓 𝑥, 𝑦 = 𝑦𝑥

Class
1.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥

OT

𝑦0

𝑦1

𝑥

𝑦𝑥

Conclusions and Open Problems

Conclusions and Open Problems

 Open Problems

 (More) efficient protocols for specific tasks?

 Malicious security?

 Dealing with side-channel attacks (timing)?

 Hiding the input size is (sometimes) possible.

 Don’t give up!

 Landscape of size-hiding 2PC is very rich

 Many positive and negative results.

Summary of Feasibility

