Fully Homomorphic Message Authenticators

Rosario Gennaro¹ Daniel Wichs²

 $^1 {\rm The}\ {\rm City}\ {\rm College}\ {\rm of}\ {\rm CUNY}$

 $^2 {\sf Northeastern} \ {\sf University}$

Asiacrypt 2013

Our Results

Fully Homomorphic MACs

A way to authenticate data so that the result of any function F can also be authenticated as the correct evaluation of F over the authenticated data

What does it mean

A *client* stores some data with a *server* D and a MAC T_D on D computed using a *short* secret key sk. When queried on a function F, the server returns y = F(D) and a *short* tag T_y which can be verified as correct using sk.

Our Results

Fully Homomorphic MACs

A way to authenticate data so that the result of any function F can also be authenticated as the correct evaluation of F over the authenticated data

What does it mean

A *client* stores some data with a *server* D and a MAC T_D on D computed using a *short* secret key sk. When queried on a function F, the server returns y = F(D) and a *short* tag T_y which can be verified as correct using sk.

 To differentiate data (and the computations performed on it) we rely on *labels*;

- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Chink of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.
 - Given a labeled program P on n inputs whose labels are $n_{1,n-1}$ r_{n-1} and Data D_1, \ldots, D_n with authentication tags D_1, \ldots, D_n Any body can homomorphically compute a short part hentication tag T_n
 - that authenticates the output $y = P(D_1, \dots, D_n)$.

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.
 - Given a labeled program P on n inputs whose labels are τ_1, \ldots, τ_n , and
 - Anybody can homomorphically compute a short authentication tag T_0 that authenticates the output $x = P(D_{1,0,0,0}, D_0)$

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.
 - Given a labeled program P on n inputs whose labels are τ_1, \ldots, τ_n , and
 - Data D_1, \ldots, D_n with authentication tags T_1, \ldots, T_n
 - Anybody can homomorphically compute a short authentication tag T_y that authenticates the output $y = P(D_1, \ldots, D_n)$.

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.
 - Given a labeled program P on n inputs whose labels are τ_1,\ldots,τ_n , and
 - Data D_1, \ldots, D_n with authentication tags T_1, \ldots, T_n
 - Anybody can homomorphically compute a short authentication tag T_y that authenticates the output $y = P(D_1, \ldots, D_n)$.

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.
 - Given a labeled program P on n inputs whose labels are τ_1, \ldots, τ_n , and
 - Data D_1, \ldots, D_n with authentication tags T_1, \ldots, T_n
 - Anybody can homomorphically compute a short authentication tag T_y that authenticates the output $y = P(D_1, \ldots, D_n)$.

- To differentiate data (and the computations performed on it) we rely on *labels*;
- When the client authenticates D, she chooses a label τ for it, which is given as input to the authentication algorithm;
- Correspondingly we consider *labeled programs* P, where each input of the program has an associated label τ indicating which data it should be evaluated on.
 - Think of labels as a filenames, e.g. "Class Grades"
 - Later the query is "Please return the average of Class Grades"
- Homomorphic authenticators allow to authenticate the output of a labeled program, given authentication tags for correspondingly labeled input data.
 - Given a labeled program P on n inputs whose labels are τ_1, \ldots, τ_n , and
 - Data D_1, \ldots, D_n with authentication tags T_1, \ldots, T_n
 - Anybody can homomorphically compute a short authentication tag T_y that authenticates the output $y = P(D_1, \ldots, D_n)$.

Composition

- We construct homomorphic authenticators that are *composable* i.e. the result y and its computed tag T_y can be used as input to another homomorphic evaluation.
 - Assume that the tags T_1, \ldots, T_n authenticate some data y_1, \ldots, y_n as the outputs of some labeled programs P_1, \ldots, P_n
 - Let P^* be an *n*-input labeled program then anybody can compute T^* that authenticates $y^* = P^*(y_1, \ldots, y_n)$ using only the pairs (y_i, T_i) .

Composition

- We construct homomorphic authenticators that are *composable* i.e. the result y and its computed tag T_y can be used as input to another homomorphic evaluation.
 - Assume that the tags T_1, \ldots, T_n authenticate some data y_1, \ldots, y_n as the outputs of some labeled programs P_1, \ldots, P_n
 - Let P^* be an *n*-input labeled program then anybody can compute T^* that authenticates $y^* = P^*(y_1, \ldots, y_n)$ using only the pairs (y_i, T_i) .

Composition

- We construct homomorphic authenticators that are *composable* i.e. the result y and its computed tag T_y can be used as input to another homomorphic evaluation.
 - Assume that the tags T_1, \ldots, T_n authenticate some data y_1, \ldots, y_n as the outputs of some labeled programs P_1, \ldots, P_n
 - Let P^* be an *n*-input labeled program then anybody can compute T^* that authenticates $y^* = P^*(y_1, \ldots, y_n)$ using only the pairs (y_i, T_i) .

- Homomorphic authenticators (and signatures) for *linear* functions were constructed for the application of *network coding* (starting from [JMSW02])
- Homomorphic signatures for *polynomials* were presented in [BF11]
- We were the first to consider *arbitrary* functions
- Following our work, [CF13] shows a very nice and simple approach for functions F described by shallow arithmetic circuits.

- Homomorphic authenticators (and signatures) for *linear* functions were constructed for the application of *network coding* (starting from [JMSW02])
- Homomorphic signatures for *polynomials* were presented in [BF11]
- We were the first to consider *arbitrary* functions
- Following our work, [CF13] shows a very nice and simple approach for functions F described by shallow arithmetic circuits.

- Homomorphic authenticators (and signatures) for *linear* functions were constructed for the application of *network coding* (starting from [JMSW02])
- Homomorphic signatures for *polynomials* were presented in [BF11]
- We were the first to consider *arbitrary* functions
- Following our work, [CF13] shows a very nice and simple approach for functions F described by shallow arithmetic circuits.

- Homomorphic authenticators (and signatures) for *linear* functions were constructed for the application of *network coding* (starting from [JMSW02])
- Homomorphic signatures for *polynomials* were presented in [BF11]
- We were the first to consider *arbitrary* functions
- Following our work, [CF13] shows a very nice and simple approach for functions *F* described by *shallow* arithmetic circuits.

Related Work: SNARGs

Succint Non-interactive Arguments [M94] can be used to produce *short* proofs that a certain computation is correct.

Unfortunately SNARGs must rely on non-standard assumption (e.g. random oracle, or knowledge assumptions) [GW11], while our construction relies only on FHE and PRF security.

Delegation of Computation: The *dual* problem in which the client authenticates the *function* F to the server, and then queries it on the input D to get an authenticated result y = F(D) [GGP10]. Can be used by outsourcing a *universal* circuit C_D which has the data D hard-wired in it and the function F is the input. While this approach yields efficient verification, it also:

- requires interaction: client must create a challenge for F;
- bounds the size of the function *F*;
- does not yield a composable scheme;
- requires the data D to be authenticated in one-shot.

Delegation of Computation: The *dual* problem in which the client authenticates the *function* F to the server, and then queries it on the input D to get an authenticated result y = F(D) [GGP10]. Can be used by outsourcing a *universal* circuit C_D which has the data D hard-wired in it and the function F is the input. While this approach yields efficient verification, it also:

- requires interaction: client must create a challenge for F;
- bounds the size of the function F;
- does not yield a composable scheme;
- requires the data D to be authenticated in one-shot.

Delegation of Computation: The *dual* problem in which the client authenticates the *function* F to the server, and then queries it on the input D to get an authenticated result y = F(D) [GGP10]. Can be used by outsourcing a *universal* circuit C_D which has the data D hard-wired in it and the function F is the input. While this approach yields efficient verification, it also:

- requires interaction: client must create a challenge for F;
- bounds the size of the function F;
- does not yield a composable scheme;
- requires the data D to be authenticated in one-shot.

Delegation of Computation: The *dual* problem in which the client authenticates the *function* F to the server, and then queries it on the input D to get an authenticated result y = F(D) [GGP10]. Can be used by outsourcing a *universal* circuit C_D which has the data D hard-wired in it and the function F is the input. While this approach yields efficient verification, it also:

- requires interaction: client must create a challenge for F;
- bounds the size of the function F;
- does not yield a composable scheme;
- \blacksquare requires the data D to be authenticated in one-shot.

Delegation of Computation: The *dual* problem in which the client authenticates the *function* F to the server, and then queries it on the input D to get an authenticated result y = F(D) [GGP10]. Can be used by outsourcing a *universal* circuit C_D which has the data D hard-wired in it and the function F is the input. While this approach yields efficient verification, it also:

- requires interaction: client must create a challenge for F;
- bounds the size of the function F;
- does not yield a composable scheme;
- \blacksquare requires the data D to be authenticated in one-shot.

Delegation of Computation: The *dual* problem in which the client authenticates the *function* F to the server, and then queries it on the input D to get an authenticated result y = F(D) [GGP10]. Can be used by outsourcing a *universal* circuit C_D which has the data D hard-wired in it and the function F is the input. While this approach yields efficient verification, it also:

- requires interaction: client must create a challenge for F;
- bounds the size of the function F;
- does not yield a composable scheme;
- \blacksquare requires the data D to be authenticated in one-shot.

Introduction

Birds-eye View Of Our Construction

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - pk an FHE public key;
 - *K* a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:
- When queried on a function F the server returns y = F(D) and k ciphertexts \(\gamma_1, \ldots, \gamma_k\) computed by evaluating F over the ciphertexts c₁, \ldots, c_n:
- To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:

roduction	Construction
	00

Int

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - pk an FHE public key;
 - *K* a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:
- When queried on a function F the server returns y = F(D) and k ciphertexts γ₁,..., γ_k computed by evaluating F over the ciphertexts c₁,..., c_n:
- To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:

duction	Construction
	•0

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - pk an FHE public key;
 - *K* a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:
- If i ∈ S then c_i = PHB_{pk}(D_ir_i) otherwise c_i = PHB(0, PRD_i(i)).
 When queried on a function F the server returns y = F(D) and k ciphertexts γ₁,..., γ_k computed by evaluating F over the ciphertexts c₁,..., c_n:
- To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:

oduction	Construction
	0

Inti

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - *pk* an FHE public key;
 - K a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:
 - If $i \in S$ then $c_i = FHE_{pk}(D;r_i)$ otherwise $c_i = FHE(0,PRF_K(i));$
- When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :
- To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:

tion	Construction
	•0

Introduc

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - *pk* an FHE public key;
 - K a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:

If $i \in S$ then $c_i = FHE_{pk}(D; r_i)$ otherwise $c_i = FHE(0, PRF_K(i))$;

When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :

which compute γ_{t} by applying the FHE evaluation procedure for P to c_{0}

• To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:

0	tion			Constr
				0

Introduc

 Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose

uction

- *pk* an FHE public key;
- *K* a PRF secret key;
- and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:

If $i \in S$ then $c_i = FHE_{pk}(D; r_i)$ otherwise $c_i = FHE(0, PRF_K(i))$;

• When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :

i.e. compute γ_i by applying the FHE evaluation procedure for F to c_i ;

• To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:

ction			

Introd

Birds-eye View Of Our Construction

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - *pk* an FHE public key;
 - K a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:

If $i \in S$ then $c_i = FHE_{pk}(D; r_i)$ otherwise $c_i = FHE(0, PRF_K(i))$;

• When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :

i.e. compute γ_i by applying the FHE evaluation procedure for F to c_i;
 To verify y, γ₁,..., γ_k the client checks:

If $g \in S$, the client can recompute g_i (does not depend on data, only on short PRE key K) and apply the FHE evaluation procedure and check if it outputs γ_i .

ction			

Introdu

Birds-eye View Of Our Construction

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - *pk* an FHE public key;
 - *K* a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:

If $i \in S$ then $c_i = FHE_{pk}(D; r_i)$ otherwise $c_i = FHE(0, PRF_K(i))$;

• When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :

• i.e. compute γ_i by applying the FHE evaluation procedure for F to c_i ;

- To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:
 - If $i \in S$ that c_i decrypts to y;

If i ∉ S, the client can recompute c_i (does not depend on data, only on short PRF key K) and apply the FHE evaluation procedure and check if it outputs γ_i.

tion			

Introdu

Birds-eye View Of Our Construction

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - *pk* an FHE public key;
 - K a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:

If $i \in S$ then $c_i = FHE_{pk}(D; r_i)$ otherwise $c_i = FHE(0, PRF_K(i))$;

• When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :

• i.e. compute γ_i by applying the FHE evaluation procedure for F to c_i ;

• To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:

- If $i \in S$ that c_i decrypts to y;
- If $i \notin S$, the client can recompute c_i (does not depend on data, only on short PRF key K) and apply the FHE evaluation procedure and check if it outputs γ_i .

tion			

Introdu

Birds-eye View Of Our Construction

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - *pk* an FHE public key;
 - *K* a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:

If $i \in S$ then $c_i = FHE_{pk}(D; r_i)$ otherwise $c_i = FHE(0, PRF_K(i))$;

• When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :

• i.e. compute γ_i by applying the FHE evaluation procedure for F to c_i ;

- To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:
 - If $i \in S$ that c_i decrypts to y;

If $i \notin S$, the client can recompute c_i (does not depend on data, only on short PRF key K) and apply the FHE evaluation procedure and check if it outputs γ_i .

ction			

Introd

Birds-eye View Of Our Construction

- Our construction uses Fully Homomorphic Encryption (FHE) and Pseudo-Random Functions (PRF). For security parameter k, to generate a key the client will choose
 - *pk* an FHE public key;
 - *K* a PRF secret key;
 - and a subset S of $[1 \dots k]$ of size k/2;
- To authenticate data D, the client will produce as a tag k ciphertexts c_1, \ldots, c_n as follows:

If $i \in S$ then $c_i = FHE_{pk}(D; r_i)$ otherwise $c_i = FHE(0, PRF_K(i))$;

• When queried on a function F the server returns y = F(D) and k ciphertexts $\gamma_1, \ldots, \gamma_k$ computed by evaluating F over the ciphertexts c_1, \ldots, c_n :

• i.e. compute γ_i by applying the FHE evaluation procedure for F to c_i ;

- To verify $y, \gamma_1, \ldots, \gamma_k$ the client checks:
 - If $i \in S$ that c_i decrypts to y;
 - If i ∉ S, the client can recompute c_i (does not depend on data, only on short PRF key K) and apply the FHE evaluation procedure and check if it outputs γ_i.

- Intuitively, the only way that an attacker can lie about the output y = F(D) is by producing a tag $(\hat{\gamma}_1, \ldots, \hat{\gamma}_k)$ where the ciphertexts $\hat{\gamma}_i$ for $i \notin S$ are computed correctly but for $i \in S$ they are all modified so as to encrypt the wrong output.
- This should be hard due to
 - the semantic security of the FHE (hard to tell which ciphertexts encrypt the data and which ones encrypt 0)
 - the security of the PRFs (the ciphertexts creating using pseudo-random coins should be indistinguishable from regular ciphertexts).

- Intuitively, the only way that an attacker can lie about the output y = F(D) is by producing a tag $(\hat{\gamma}_1, \ldots, \hat{\gamma}_k)$ where the ciphertexts $\hat{\gamma}_i$ for $i \notin S$ are computed correctly but for $i \in S$ they are all modified so as to encrypt the wrong output.
- This should be hard due to
 - the semantic security of the FHE (hard to tell which ciphertexts encrypt the data and which ones encrypt 0)
 - the security of the PRFs (the ciphertexts creating using pseudo-random coins should be indistinguishable from regular ciphertexts).

- Intuitively, the only way that an attacker can lie about the output y = F(D) is by producing a tag $(\hat{\gamma}_1, \ldots, \hat{\gamma}_k)$ where the ciphertexts $\hat{\gamma}_i$ for $i \notin S$ are computed correctly but for $i \in S$ they are all modified so as to encrypt the wrong output.
- This should be hard due to
 - the semantic security of the FHE (hard to tell which ciphertexts encrypt the data and which ones encrypt 0)
 - the security of the PRFs (the ciphertexts creating using pseudo-random coins should be indistinguishable from regular ciphertexts).

- Intuitively, the only way that an attacker can lie about the output y = F(D) is by producing a tag $(\hat{\gamma}_1, \ldots, \hat{\gamma}_k)$ where the ciphertexts $\hat{\gamma}_i$ for $i \notin S$ are computed correctly but for $i \in S$ they are all modified so as to encrypt the wrong output.
- This should be hard due to
 - the semantic security of the FHE (hard to tell which ciphertexts encrypt the data and which ones encrypt 0)
 - the security of the PRFs (the ciphertexts creating using pseudo-random coins should be indistinguishable from regular ciphertexts).

Drawback 1: Verification Time

• The size of the key and the tags is *independent* of the size of the data;

• However the client verification time requires time proportional to the computation of F (note that the client has to recompute γ_i from c_i using the FHE evaluation procedure for F).

Drawback 1: Verification Time

- The size of the key and the tags is *independent* of the size of the data;
- However the client verification time requires time proportional to the computation of F (note that the client has to recompute γ_i from c_i using the FHE evaluation procedure for F).

Introduction

Fast Verification Time

If we are willing to add interaction to our scheme we can obtain fast verification (independent of the size of the program) by *outsourcing* the verification task to the server!

Drawback 2: Verification Queries

Our construction is secure in the setting where the attacker cannot make *verification queries* to test whether a maliciously produced tag verifies correctly.

- Similar to *rejection problem* in FHE-based secure delegation: verification queries provide a decryption oracle for the FHE, which kills semantic security
- In practice, this means the client must stop using the scheme whenever she gets the first tag that doesn't verify correctly.

Drawback 2: Verification Queries

- Our construction is secure in the setting where the attacker cannot make *verification queries* to test whether a maliciously produced tag verifies correctly.
 - Similar to *rejection problem* in FHE-based secure delegation: verification queries provide a decryption oracle for the FHE, which kills semantic security
 - In practice, this means the client must stop using the scheme whenever she gets the first tag that doesn't verify correctly.

Drawback 2: Verification Queries

- Our construction is secure in the setting where the attacker cannot make *verification queries* to test whether a maliciously produced tag verifies correctly.
 - Similar to *rejection problem* in FHE-based secure delegation: verification queries provide a decryption oracle for the FHE, which kills semantic security
 - In practice, this means the client must stop using the scheme whenever she gets the first tag that doesn't verify correctly.

Assume that the FHE scheme satisfies an additional randomness homomorphism property:

- Recall that if $c = FHE_{pk}(D; r)$ then there is an algorithm Eval such that for any function $F: Eval(F, c) = FHE(F(D); r^*)$ for some randomness r^* .
- A randomness homomorphic FHE also has a second algorithm REval such that $r^{\ast}=REval(F,r)$

then our scheme remains secure in the presence of verification queries

- Assume that the FHE scheme satisfies an additional randomness homomorphism property:
 - Recall that if $c = FHE_{pk}(D; r)$ then there is an algorithm Eval such that for any function $F: Eval(F, c) = FHE(F(D); r^*)$ for some randomness r^* .
 - A randomness homomorphic FHE also has a second algorithm REval such that $r^{\ast}=REval(F,r)$

then our scheme remains secure in the presence of verification queries

- to the original randomness of the conduction of the condomness can be traced to the original randomness.
- rejection of a verification query now does not provide the attacker with a meaningful decryption oracle for the PHE

- Assume that the FHE scheme satisfies an additional randomness homomorphism property:
 - Recall that if $c = FHE_{pk}(D; r)$ then there is an algorithm Eval such that for any function $F: Eval(F, c) = FHE(F(D); r^*)$ for some randomness r^* .
 - A randomness homomorphic FHE also has a second algorithm REval such that $r^{\ast}=REval(F,r)$

then our scheme remains secure in the presence of verification queries

- the client will accept only queries where the randomness can be traced to the original randomness
- rejection of a verification query now does not provide the attacker with a meaningful decryption oracle for the FHE

- Assume that the FHE scheme satisfies an additional randomness homomorphism property:
 - Recall that if $c = FHE_{pk}(D; r)$ then there is an algorithm Eval such that for any function $F: Eval(F, c) = FHE(F(D); r^*)$ for some randomness r^* .
 - A randomness homomorphic FHE also has a second algorithm REval such that $r^{\ast}=REval(F,r)$

• then our scheme remains secure in the presence of verification queries

- the client will accept only queries where the randomness can be traced to the original randomness
- rejection of a verification query now does not provide the attacker with a meaningful decryption oracle for the FHE

- Assume that the FHE scheme satisfies an additional randomness homomorphism property:
 - Recall that if $c = FHE_{pk}(D;r)$ then there is an algorithm Eval such that for any function $F: Eval(F,c) = FHE(F(D);r^*)$ for some randomness r^* .
 - A randomness homomorphic FHE also has a second algorithm REval such that $r^{\ast}=REval(F,r)$

• then our scheme remains secure in the presence of verification queries

- the client will accept only queries where the randomness can be traced to the original randomness
- rejection of a verification query now does not provide the attacker with a meaningful decryption oracle for the FHE

- Assume that the FHE scheme satisfies an additional *randomness homomorphism* property:
 - Recall that if $c = FHE_{pk}(D; r)$ then there is an algorithm Eval such that for any function $F: Eval(F, c) = FHE(F(D); r^*)$ for some randomness r^* .
 - A randomness homomorphic FHE also has a second algorithm REval such that $r^{\ast}=REval(F,r)$

• then our scheme remains secure in the presence of verification queries

- the client will accept only queries where the randomness can be traced to the original randomness
- rejection of a verification query now does not provide the attacker with a meaningful decryption oracle for the FHE

Do we really need FHE?

Remove the limitation on Verification Queries

Do randomness homomorphic FHE schemes exist?

- Fully Homomorphic Signatures: add public verification to our scheme;
- Can we obtain verification time independent of F? Without interaction and using only standard assumptions?
- Reduce size of tags (right now O(k) where k is the security parameter)

Do we really need FHE?

Remove the limitation on Verification Queries

- Do randomness homomorphic FHE schemes exist?
- Fully Homomorphic Signatures: add public verification to our scheme;
- Can we obtain verification time independent of *F*? Without interaction and using only standard assumptions?
- Reduce size of tags (right now O(k) where k is the security parameter)

- Do we really need FHE?
- Remove the limitation on Verification Queries
 - Do randomness homomorphic FHE schemes exist?
- Fully Homomorphic Signatures: add public verification to our scheme;
- Can we obtain verification time independent of *F*? Without interaction and using only standard assumptions?
- Reduce size of tags (right now O(k) where k is the security parameter)

- Do we really need FHE?
- Remove the limitation on Verification Queries
 - Do randomness homomorphic FHE schemes exist?
- Fully Homomorphic Signatures: add public verification to our scheme;
- Can we obtain verification time independent of *F*? Without interaction and using only standard assumptions?
- Reduce size of tags (right now O(k) where k is the security parameter)

- Do we really need FHE?
- Remove the limitation on Verification Queries
 - Do randomness homomorphic FHE schemes exist?
- Fully Homomorphic Signatures: add public verification to our scheme;
- Can we obtain verification time independent of *F*? Without interaction and using only standard assumptions?
- Reduce size of tags (right now O(k) where k is the security parameter)

- Do we really need FHE?
- Remove the limitation on Verification Queries
 - Do randomness homomorphic FHE schemes exist?
- Fully Homomorphic Signatures: add public verification to our scheme;
- Can we obtain verification time independent of *F*? Without interaction and using only standard assumptions?
- Reduce size of tags (right now O(k) where k is the security parameter)