Pseudorandom Generators from Regular One-way Functions: New Constructions with Improved Parameters

Joint work with Xiangxue Li and Jian Weng

Asiacrypt 2013

One-way Functions

One-way functions are an ensemble of functions $\{f_n: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}\}_{n \in \mathbb{N}}$

that are

- Simplifying notation : $f: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$
- Definition: f is a (t, ε) -one-way function (OWF) if for all adversaries A of running time t, $\Pr_{y \leftarrow f(U_n)} [A(y) \in f^{-1}(y)] \le \varepsilon$
- Standard OWF: $t \in$ super-poly, $\varepsilon \in$ negl
- Folklore: OWFs can be assumed to be length-preserving, i.e., l(n)=n.

Regular Functions

• f is a regular function if for any n the preimage size $\alpha = |f^{-1}(y)|$ is fixed (independent of y). domain

- Known-regular function: a regular function f whose regularity α is polynomial-time computable from security parameter n.
- Unknown-regular function: a regular function f whose regularity α is inefficient to approximate from security parameter n.

Note: one-way permutation is a special known-regular function.

Pseudorandom Generators

 $g: \{0,1\}^n \to \{0,1\}^{n+s}$ is a (t,ε) -pseudorandom generator (PRG) with stretch s if for all distinguishers *D* of running time *t*,

$$|\Pr[D(g(U_n))=1] - \Pr[D(U_{n+s})=1]| \le \varepsilon$$

 $t \in$ super-poly, $\varepsilon \in$ negl, U_n is uniform distribution over $\{0,1\}^n$

Entropies, computational and statistical distance

collision entropy $\mathbf{H}_2(X) \stackrel{\text{def}}{=} -\log \sum_x \Pr[X = x]^2$ min-entropy $\mathbf{H}_\infty(X) \stackrel{\text{def}}{=} -\log(\max_x \Pr[X = x])$

conditional collision entropy $\mathbf{H}_2(X|Z) \stackrel{\text{def}}{=} -\log\left(\mathbb{E}_{z \leftarrow Z} \left[\sum_x \Pr[X = x|Z = z]^2\right]\right)$ conditional min-entropy $\mathbf{H}_{\infty}(X|Z) \stackrel{\text{def}}{=} -\log\left(\mathbb{E}_{z \leftarrow Z} \left[\max_x \Pr[X = x|Z = z]\right]\right)$

computational distance between X and Y

X and Y are (t, ε) -close, denoted by $\mathsf{CD}_t(X, Y) \leq \varepsilon$,

if for every probabilistic distinguisher D of running time up to t it holds that

$$\Pr[\mathsf{D}(X) = 1] - \Pr[\mathsf{D}(Y) = 1] \mid \le \varepsilon$$

statistical distance between X and Y, denoted by SD(X, Y), is defined by

$$\mathsf{SD}(X,Y) \stackrel{\mathsf{def}}{=} \frac{1}{2} \sum_{x} |\Pr[X=x] - \Pr[Y=x]| = \mathsf{CD}_{\infty}(X,Y)$$

shorthand: SD(X, Y|Z) = SD((X, Z), (Y, Z)) $CD_t(X, Y|Z) = CD_t((X, Z), (Y, Z))$

Leftover Hash Lemma

leftover hash lemma For any integers $d < k \le n$, there exists a (polynomial-time computable) universal hash function family $\mathcal{H} \stackrel{\mathsf{def}}{=} \{h : \{0,1\}^n \to \{0,1\}^{k-d}\}$ such that for any joint distribution (X,Z) where $X \in \{0,1\}^n$ and $\mathbf{H}_2(X|Z) \ge k$, we have

 ${\sf SD}(H(X), \ U_{k-d} \mid H, Z) \ \le \ 2^{-rac{d}{2}}$

where H is uniformly distributed over the members of \mathcal{H} , the description size of H is called seed length, and d is called entropy loss, i.e., the difference between the entropy of X (given Z) and the number of bits that were extracted from X.

Informally: universal hash functions are good randomness extractors

Unpredictability Pseudoentropy (UP)

Definition 2.5 (unpredictability pseudo-entropy) For distribution ensemble (X, Z), we say that X has k bits of pseudo-entropy conditioned on Z for all t-time adversaries, denoted by $\mathbf{H}_t(X|Z) \ge k$, if for any $n \in \mathbb{N}$ and any probabilistic adversary A of running time t

$$\Pr_{(x,z)\leftarrow(X,Z)} [\mathsf{A}(z) = x] \le 2^{-k}$$

Alternatively, we say that X is 2^{-k} -hard to predict given Z for all t-time adversaries.

Challenger C		Adversary A
$x \leftarrow U_n; y := f(x)$	\xrightarrow{y}	, , , , , ,
	x'	x' := A(y)
A wins iff $x' = x$	<u>,</u>	

The interactive game between A and C that defines unpredictability pseudo-entropy, where $x \leftarrow U_n$ denotes sampling a random $x \in \{0, 1\}^n$.

Goldreich-Levin Theorem

Goldreich-Levin Theorem : For $(X, Y) \in \{0, 1\}^n \times \{0, 1\}^*$, and for any integer $m \leq n$, there exists a function family $\mathcal{H}_C \stackrel{\mathsf{def}}{=} \{h_c : \{0, 1\}^n \to \{0, 1\}^m\}$ of description size $\Theta(n)$, such that

• If Y = f(X) for any (t,ε) -OWF f and X uniform over $\{0,1\}^n$, then we have

 $\mathsf{CD}_{t'}(H_C(X), U_m \mid Y, H_C) \in O(2^m \cdot \varepsilon)$ (1)

• If X is ε -hard to predict given Y for all t-time adversaries, namely, $\mathbf{H}_t(X|Y) \ge \log(1/\varepsilon)$, then we have $\mathsf{CD}_{t'}(H_C(X), U_m \mid Y, H_C) \in O(2^m \cdot (n \cdot \varepsilon)^{\frac{1}{3}})$. (2)

where $t' = t \cdot (\varepsilon/n)^{O(1)}$ and function H_C is uniformly distributed over the members of \mathcal{H}_C .

A Key Oberservation about Unpredictability Pseudoentropy

Unpredictability Pseudoentropy (UP) : X has m bits of UP given f(X) for t-time adversaries if every A of running time t wins the following game with probability no greater than 2^{-m}

- Question: what's the UP of X given f(X) if f is a (t, ε) regular OWF with $|f^{-1}(y)|=2^k$?
- Observation: X given f(X) has $k + \log(1/\varepsilon)$ bits of UP.
- Rationale: $\Pr[A(f(X)) \in f^{-1}(f(X))] \le \varepsilon \implies \Pr[A(f(X)) = X] \le 2^{-k} \cdot \varepsilon$

The FIRST CONSTRUCTION (from known-regular OWF)

• $g(X, h_1, h_2, h_c) = (h_1(f(X_1)), h_2(X_1), h_c(X_1), h_1, h_2, h_c)$

A complicated proof by Goldreich in Section 3.5.2 of

PRGs from Known-Regular OWFs by three extractions (a three-line proof)

- Assumption: f is (t, ε) -one-way and 2^k -regular, i.e. $|f^{-1}(y)| = 2^k$
- Construction and Proof.
- 1. $H_{\infty}(f(X)) = n k$ extract (n k) bits using h_1
- 2. $H_{\infty}(X | f(X)) = k$ extract k bits using h_2
- 3. chain rule:

extract $O(\log(1/\varepsilon))$ bits using hard-core function h_c

- This completes the proof for the folklore construction, i.e. $g(X, h_1, h_2, h_c) = (h_1(f(X_1)), h_2(X_1), h_c(X_1), h_1, h_2, h_c)$ is a PRG.
- Parameters: seed length linear in n, and a single call to f.

Tightening the security bounds

• $g(x, h_1, h_2, h_c) = (h_1(f(x)), h_2(x), h_c(x), h_1, h_2, h_c)$

The proof for 3^{rd} extraction: consider $f'(x,h_2)=(f(x), h_2(x), h_2)$

: x is ε -hard to predict given $f'(x, h_2)$, i.e. $H_{up}^t(X|f'(X, H_2)) \ge \log(1/\varepsilon)$

: by Goldreich-Levin Thm, $h_c(x)$ is $2^m (n \cdot \varepsilon)^{1/3}$ -close to U_m given $f'(x, h_2)$

• A tighter approach (use the tight version of Goldreich-Levin)? if f' is an ε' -hard OWF, then $h_c(x)$ is $(2^m \cdot \varepsilon')$ -close to U_m given $f'(x, h_2)$ 1. Goldreich show $\varepsilon' = O(\varepsilon^{1/5})$ in [Gol01,vol-1]

2. We show $\varepsilon' = 3\sqrt{\varepsilon}$ against *t*-time adversaries

the idea: show f' is almost 1-to-1, i.e. $H_2(f'(X, H_2) | H_2) \ge n-1$

The Second Construction (NEW, improving the Randomized Iterate)

The Randomized Iterate

- Goldreich, Krawczyk and Luby (SICOMP 93) : PRGs from known regular OWFs with seed length $O(n^3)$
- Haitner, Harnik and Reingold (CRYPTO 2006):
 PRGs from unknown regular OWFs with seed length O(n ·log n)

 h_1, h_2, \dots are random pairwise independent hash, h_c is hard-core function

Lower bounds by Holenstein and Sinha (FOCS12)

- Asymptotic setting: Any black-box construction of PRG must make $\Omega(n/\log n)$ calls to an arbitrary (including unknown regular) OWF.
- Concrete setting : Any black-box construction of PRG must make $\Omega(n/\log(1/\varepsilon))$ calls to an arbitrary (including unknown regular) ($\varepsilon^{-1}, \varepsilon$) -secure OWF.

PRGs from unknown-regular OWFs: a new construction

- Assumption: f is (t, ε) -one-way and 2^k -regular (k is unknown).
- The goal: a PRG construction oblivious of k.
- The idea: transform f into a known-regular OWF \overline{f}

 $f: \{0,1\}^n \to \mathcal{Y}, \text{ where } \mathcal{Y} \subseteq \{0,1\}^n$

define
$$\overline{f}: \mathcal{Y} \times \{0,1\}^n \to \mathcal{Y}$$

 $\overline{f}(y,r) = f(y \oplus r)$

where \oplus : "bitwise XOR", $y \leftarrow f(U_n)$, $r \leftarrow U'_n$

1.
$$f$$
 is also a (t, ε) -one-way function
2. \overline{f} is a 2ⁿ-regular function, i.e. $|\overline{f}^{-1}(y, r)| = 2^n$ regardless of k

PRGs from unknown-regular OWFs: a new construction (cont'd)

- Given a one-way function with known pre-image size 2^n $\overline{f}: \mathcal{Y} \times \{0,1\}^n \to \mathcal{Y}$
- Similarly, (Y, R) has $n + \log(1/\varepsilon)$ bits of UP given f(Y, R).
- We get a special PRG $\overline{g}: \mathcal{Y} \times \{0,1\}^n \to \mathcal{Y} \times \{0,1\}^{n+\Theta(\log(1/\varepsilon))}$
- Done?

No, *n* bits needed to sample from \mathcal{Y} (i.e. $f(U_n)$) stretch : $-n + \Theta(\log(1/\varepsilon)) + \Theta(\log(1/\varepsilon)) + \Theta(\log(1/\varepsilon)) + \Theta(\log(1/\varepsilon))$ To make it positive: iterate \overline{g}

- In summary: a PRG from unknown regular OWF with linear seed length (hybrid argument) and $\Theta(n/\log(1/\varepsilon))$ OWF calls.
- Tight (Holenstein and Sinha, FOCS 2012): BB construction of PRG requires Ω(n/log(1/ε)) OWF calls, and Ω(n/log n) calls in general.

Summary

PRG from any known-regular @Ward OWF: seed length Õ(m) and a Õimgdaltsallto the underlying OWF
PRG from any unknown-regular ØWard OWF :

seed length $\tilde{\Theta}(n)$ and $\tilde{\Theta}(n' \log \mathfrak{g}(1 \operatorname{deg}))$ OWF calls

Question: remove the dependency on ε ?

Yes, by paying a factor $\omega(1)$ in seed length and number of calls. Why? Due to the entropy loss of the Leftover Hash Lemma. Given 1-to-1 OWF $f: \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ (without knowing \mathcal{E}) Run $q = \omega(1)$ copies of f, extracting 2logn hardcore bits per copy, followed by a single extraction with entropy loss set to $q \cdot \log n$.

More details

Full version at eprint <u>http://eprint.iacr.org/2013/270</u>

Thank you!

