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One-way Functions 

One-way functions are an ensemble of functions 

that are 

 

 

 

 Simplifying notation : 

 Definition:  f  is a         -one-way function (OWF) if  for all 

adversaries  A of running time t,   

 Standard OWF:  

 Folklore: OWFs can be assumed to be length-preserving, i.e., l(n)=n.   
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Regular Functions 

    f is a regular function if for any n  the preimage size                                   

 α=                  is  fixed (independent of y). 

 

 

 

 

 Known-regular function: a regular function f whose regularity α is 

polynomial-time computable from security parameter n. 

 Unknown-regular function: a regular function f whose regularity α is 

inefficient to approximate from security parameter n. 

Note: one-way permutation is a special known-regular function. 
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Pseudorandom Generators 

                                   is a           -pseudorandom generator (PRG) 

with stretch s if for all distinguishers D of running time t,                  
:{0,1} {0,1} ( , )n n sg t 

| Pr[ ( ( )) 1] Pr[ ( ) 1] |n n sD g U D U    
n

n super-poly , negl, U is uniform distribution over {0,1}t  

Distinguisher D 



Entropies, computational and statistical  distance 

 

 

 



Leftover Hash Lemma 

Informally: universal hash functions are good randomness extractors 



Unpredictability Pseudoentropy (UP) 

 



Goldreich-Levin Theorem 

 



A Key Oberservation about  Unpredictability Pseudoentropy 

 Unpredictability Pseudoentropy (UP) :  X has m bits of UP 

given f(X) for t-time adversaries if every A of running time t 

wins the following game with probability no greater than 2-m  

 

 

 

 

 Question: what’s the UP of X given f(X) if f is a          - regular 

OWF with                     ? 

 Observation: X given f(X) has                    bits of UP. 

 Rationale:   

Challenger C Adversary A 
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The FIRST CONSTRUCTION 

 (from known-regular OWF) 

 g (X, h1, h2, hc) =(h1(f(X1)), h2(X1), hc(X1), h1, h2, hc) 

 

A complicated proof by Goldreich in Section 3.5.2 of  



PRGs from Known-Regular OWFs by 

three extractions (a three-line proof) 

 Assumption: f  is        -one-way and 2k-regular, i.e.  

 Construction and Proof. 

1.                                                   extract (       ) bits using h1 

2.                                                                              extract k bits using h2 

3. chain rule:  

 

 extract                     bits using hard-core function hc 

 This completes the proof for the folklore construction, i.e. 

       g (X, h1, h2, hc) =(h1(f(X1)), h2(X1), hc(X1), h1, h2, hc) is a PRG. 

 Parameters: seed length linear in n, and a single call to f  .  
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Tightening the security bounds 

  g (x, h1, h2, hc) =(h1(f(x)), h2(x), hc(x), h1, h2, hc) 

The proof for 3rd extraction: consider  f ‘(x,h2)=(f(x), h2(x), h2) 

 

 

 

 A tighter approach (use the tight version of Goldreich-Levin)? 
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The Second Construction  

(NEW, improving the Randomized Iterate) 
 



          The Randomized Iterate 
 

 Goldreich, Krawczyk and Luby (SICOMP 93) : 

    PRGs from known regular OWFs with seed length O(n3) 

 

 Haitner, Harnik and Reingold (CRYPTO 2006):  

PRGs from unknown regular OWFs with seed length O(n ·log n) 
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Lower bounds by Holenstein and Sinha 

(FOCS12) 

 Asymptotic setting:  Any black-box construction of PRG 

must make                  calls to an arbitrary (including 

unknown regular) OWF.   

 Concrete setting :  Any black-box construction of PRG must 

make                        calls to an arbitrary (including unknown 

regular)               -secure OWF.  
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PRGs from unknown-regular OWFs:  

a new construction 
 Assumption: f  is        -one-way and 2k-regular  ( k is unknown).  

  The goal: a PRG construction oblivious of k. 

 The idea: transform f into a known-regular OWF  

 

 

 

 

 

 

1.   is also a         -one-way function  

2. is a 2n-regular function, i.e.  
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PRGs from unknown-regular OWFs:  

a new construction (cont’d) 
 Given a one-way function with known pre-image size 2n 

 

 Similarly,              has                       bits of UP given                . 

 We get a special PRG 

 Done?   

No,  n bits needed to sample from         (i.e.            )       

stretch :  

To make it positive: iterate  

 In summary: a PRG from unknown regular OWF with linear seed 

length (hybrid argument) and                           OWF calls. 

 Tight (Holenstein and Sinha, FOCS 2012): BB construction of PRG 

requires                         OWF calls, and                    calls in general.  
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Summary 
 PRG from any known-regular                    :  

seed length          and                   to the underlying OWF 

 PRG from any unknown-regular                      : 

seed length           and                        OWF calls 

 

Question: remove the dependency on     ? 

Yes, by paying a factor          in seed length and number of calls. 

Why? Due to the entropy loss of the Leftover Hash Lemma. 

Given                                              (without knowing       ) 

Run  q=       copies of f , extracting 2logn hardcore bits per copy, 

followed by a single extraction with entropy loss set to q · logn . 
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More details 

 

Full version at eprint http://eprint.iacr.org/2013/270 
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Thank you! 


