
Pseudorandom Generators from Regular One-way

Functions: New Constructions with Improved Parameters

Yu Yu

Joint work with Xiangxue Li and Jian Weng

Asiacrypt 2013

One-way Functions

One-way functions are an ensemble of functions

that are

 Simplifying notation :

 Definition: f is a -one-way function (OWF) if for all

adversaries A of running time t,

 Standard OWF:

 Folklore: OWFs can be assumed to be length-preserving, i.e., l(n)=n.

(,)t
1

()
Pr [() ()]

ny f U
A y f y

(){ :{0,1} {0,1} }n l n

n n Nf

():{0,1} {0,1}n l nf

super-poly , neglt

Regular Functions

 f is a regular function if for any n the preimage size

 α= is fixed (independent of y).

 Known-regular function: a regular function f whose regularity α is

polynomial-time computable from security parameter n.

 Unknown-regular function: a regular function f whose regularity α is

inefficient to approximate from security parameter n.

Note: one-way permutation is a special known-regular function.

1| () |f y

Pseudorandom Generators

 is a -pseudorandom generator (PRG)

with stretch s if for all distinguishers D of running time t,
:{0,1} {0,1} (,)n n sg t

| Pr[(()) 1] Pr[() 1] |n n sD g U D U
n

n super-poly , negl, U is uniform distribution over {0,1}t

Distinguisher D

Entropies, computational and statistical distance

Leftover Hash Lemma

Informally: universal hash functions are good randomness extractors

Unpredictability Pseudoentropy (UP)

Goldreich-Levin Theorem

A Key Oberservation about Unpredictability Pseudoentropy

 Unpredictability Pseudoentropy (UP) : X has m bits of UP

given f(X) for t-time adversaries if every A of running time t

wins the following game with probability no greater than 2-m

 Question: what’s the UP of X given f(X) if f is a - regular

OWF with ?

 Observation: X given f(X) has bits of UP.

 Rationale:

Challenger C Adversary A

; : ()x X y f x
y

' ()x A y
'x wins iff 'A x x

(,)t
1| () | 2kf y

log(1/)k

1Pr[(()) (())]A f X f f X Pr[(())] 2 kA f X X

The FIRST CONSTRUCTION

 (from known-regular OWF)

 g (X, h1, h2, hc) =(h1(f(X1)), h2(X1), hc(X1), h1, h2, hc)

A complicated proof by Goldreich in Section 3.5.2 of

PRGs from Known-Regular OWFs by

three extractions (a three-line proof)

 Assumption: f is -one-way and 2k-regular, i.e.

 Construction and Proof.

1. extract () bits using h1

2. extract k bits using h2

3. chain rule:

 extract bits using hard-core function hc

 This completes the proof for the folklore construction, i.e.

 g (X, h1, h2, hc) =(h1(f(X1)), h2(X1), hc(X1), h1, h2, hc) is a PRG.

 Parameters: seed length linear in n, and a single call to f .

(,)t
1| () | 2kf y

H (())f X n k n k

H (| ())X f X k

upH (| ()) log(1/)t X f X k up 2H (| (), ()) log(1/)t X f X h X

(log(1/))O

Tightening the security bounds

 g (x, h1, h2, hc) =(h1(f(x)), h2(x), hc(x), h1, h2, hc)

The proof for 3rd extraction: consider f ‘(x,h2)=(f(x), h2(x), h2)

 A tighter approach (use the tight version of Goldreich-Levin)?

1.

2.

2 2

1/3

2

 is -hard to predict given '(,) , i.e. H (| '(,)) log(1/)

by Goldreich-Levin Thm, () is 2 () -close to U given '(,)

t

up

m

c m

x f x h X f X H

h x n f x h

2if ' is an '-hard OWF, then () is (2 ') -close to U given '(,)m

c mf h x f x h
1/5Goldreich show ' () in [Gol01,vol-1]O

We show ' 3 against -time adversariest

2 2 2the idea: show ' is almost 1-to-1, i.e. H ('(,) |) 1f f X H H n

The Second Construction

(NEW, improving the Randomized Iterate)

 The Randomized Iterate

 Goldreich, Krawczyk and Luby (SICOMP 93) :

 PRGs from known regular OWFs with seed length O(n3)

 Haitner, Harnik and Reingold (CRYPTO 2006):

PRGs from unknown regular OWFs with seed length O(n ·log n)

f

x
1 ()y f x

h1

1 1 1()x h y
f

2 1()y f x
h2

2 2 2()x h y
f

output ()ch x 1()ch x

3 2()y f x

2()ch x

h1, h2, … are random pairwise independent hash, hc is hard-core function

Lower bounds by Holenstein and Sinha

(FOCS12)

 Asymptotic setting: Any black-box construction of PRG

must make calls to an arbitrary (including

unknown regular) OWF.

 Concrete setting : Any black-box construction of PRG must

make calls to an arbitrary (including unknown

regular) -secure OWF.

(/ log)n n

(/ log(1/))n
1(,)

PRGs from unknown-regular OWFs:

a new construction
 Assumption: f is -one-way and 2k-regular (k is unknown).

 The goal: a PRG construction oblivious of k.

 The idea: transform f into a known-regular OWF

1. is also a -one-way function

2. is a 2n-regular function, i.e.

(,)t

define : {0,1}

 (,) ()

where : "bitwise XOR", (), '

n

n n

f

f y r f y r

y f U r U

Y Y

:{0,1} , where {0,1}n nf Y Y

f

f

f

(,)t
1

| (,) | 2 regardless of nf y r k

PRGs from unknown-regular OWFs:

a new construction (cont’d)
 Given a one-way function with known pre-image size 2n

 Similarly, has bits of UP given .

 We get a special PRG

 Done?

No, n bits needed to sample from (i.e.)

stretch :

To make it positive: iterate

 In summary: a PRG from unknown regular OWF with linear seed

length (hybrid argument) and OWF calls.

 Tight (Holenstein and Sinha, FOCS 2012): BB construction of PRG

requires OWF calls, and calls in general.

: {0,1}nf Y Y
(,)f Y R(,)Y R log(1/)n

(log(1/)): {0,1} {0,1}n ng Y Y

Y ()nf U

(log(1/))n

g

(log(1/)) (log(1/))

(/ log(1/))n

(/ log(1/))n (/ log)n n

Summary
 PRG from any known-regular :

seed length and to the underlying OWF

 PRG from any unknown-regular :

seed length and OWF calls

Question: remove the dependency on ?

Yes, by paying a factor in seed length and number of calls.

Why? Due to the entropy loss of the Leftover Hash Lemma.

Given (without knowing)

Run q= copies of f , extracting 2logn hardcore bits per copy,

followed by a single extraction with entropy loss set to q · logn .

(/ log(1/))n

(1)

-hard OWF

-hard OWF

()n

()n

()O n

()O n

OWF

OWF

a single call(1) callsO

(/ log) callsO n n

11-to-1 OWF :{0,1} {0,1}n nf

(1)

More details

Full version at eprint http://eprint.iacr.org/2013/270

http://eprint.iacr.org/2013/270

Thank you!

