The Fiat-Shamir Transformation in a Quantum World

Özgür Dagdelen Marc Fischlin Tommaso Gagliardoni

CASED and EC-SPRIDE and TU Darmstadt

Asiacrypt'13, December 4th, 2013 Bengaluru, India

Signature scheme

Security:

no efficient adversary can successfully forge a valid signature without knowing the secret key

Signature scheme

Identification scheme

Security:

no efficient adversary can successfully prove identity without valid witness

Classical VS Quantum

Classical VS Quantum

Classical VS Quantum

Problem: in the QROM* many of the techniques we use for security proofs do not usually work:

*[Boneh,Dagdelen,Fischlin,Lehmann,Schaffner,Zhandry, 'Random Oracles in a Quantum World',2010]

Problem: in the QROM* many of the techniques we use for security proofs do not usually work:

• 'let us perform operation U over two copies of the variable...'

- 'let us perform operation U over two copies of the variable...'
- 'query after query, let's build a table with all the outcomes...'

- 'let us perform operation U over two copies of the variable...'
- 'query after query, let's build a table with all the outcomes...'
- machine state snapshots

- 'let us perform operation U over two copies of the variable...'
- 'query after query, let's build a table with all the outcomes...'
- machine state snapshots
- 'normal' rewinding

- 'let us perform operation U over two copies of the variable...'
- 'query after query, let's build a table with all the outcomes...'
- machine state snapshots
- 'normal' rewinding
- Forking Lemma (used to prove security of Fiat-Shamir)

Problem: in the QROM* many of the techniques we use for security proofs do not usually work:

- 'let us perform operation U over two copies of the variable...'
- 'query after query, let's build a table with all the outcomes...'
- machine state snapshots
- 'normal' rewinding
- Forking Lemma (used to prove security of Fiat-Shamir)

All these things do not work!

Problem: in the QROM* many of the techniques we use for security proofs do not usually work:

- 'let us perform operation U over two copies of the variable...'
- 'query after query, let's build a table with all the outcomes...'
- machine state snapshots
- 'normal' rewinding
- Forking Lemma (used to prove security of Fiat-Shamir)

All these things do not work!

Open question

Is the Fiat-Transformation secure in the QROM?

*[Boneh,Dagdelen,Fischlin,Lehmann,Schaffner,Zhandry, 'Random Oracles in a Quantum World',2010]

Impossibility result

For certain schemes, we use a **meta-reduction** to rule out the existence of (a large class of) possible security proofs.

Positive result

For other schemes, we give a proof of security by defining and using **oblivious commitments**.

Secure instantiation

We provide a **generic patch** to harden existing schemes with a small overhead, and we give an **example instantiation** based on a recent lattice-based signature scheme.

Identification scheme

Prover

Verifier

Identification scheme

Hash function

Signature scheme

Our Meta-Reduction

Theorem:

No Fiat-Shamir signature scheme admits efficient black-box extractors, provided underlying identification scheme has:

- witness-independent commitments
- active security

Impossibility result

Theorem:

No Fiat-Shamir signature scheme admits efficient black-box extractors, provided underlying identification scheme has:

- witness-independent commitments
- active security

Impossibility result

Theorem:

No Fiat-Shamir signature scheme admits efficient black-box extractors, provided underlying identification scheme has:

- witness-independent commitments
- active security

Notice: **passive security** is enough to obtain secure signature schemes via the Fiat-Shamir transform.

Idea

Remove active security from underlying identification scheme

ldea

Remove active security from underlying identification scheme

Identification schemese with Oblivious Commitments

Idea

Remove active security from underlying identification scheme

Identification schemese with Oblivious Commitments

with normal commitment:

Idea

Remove active security from underlying identification scheme

Identification schemese with Oblivious Commitments

Remove active security from underlying identification scheme

Identification schemese with Oblivious Commitments

Oblivious commitments remove active security!

How to apply Fiat-Shamir with oblivious commitment schemes?

How to apply Fiat-Shamir with oblivious commitment schemes?

Our patch:

How to apply Fiat-Shamir with oblivious commitment schemes?

Our patch:

How to apply Fiat-Shamir with oblivious commitment schemes?

Our patch:

$$(com,ch) = H(r)$$

Theorem:

The Fiat-Shamir transformation of an oblivious commitment identification scheme yields an existentially unforgeable secure signature scheme in the QROM.

Weaker Identification scheme

(no active security)

Stronger Signature scheme

(provably secure in the QROM)

Fiat-Shamir Transformation
Our choice: [Lyu12]

2 Let the prover sample and send a random value r which is ignored by the verifier

Our choice: [Lyu12]

- 2 Let the prover sample and send a random value r which is ignored by the verifier
- 3 Let the verifier choose and send both *com* and *ch*

Our choice: [Lyu12]

- 2 Let the prover sample and send a random value r which is ignored by the verifier
- 3 Let the verifier choose and send both *com* and *ch*
- Prover uses a trapdoor to find preimage for the obtained oblivious commitment and completes protocol

Our choice: [Lyu12]

- 2 Let the prover sample and send a random value r which is ignored by the verifier
- 3 Let the verifier choose and send both *com* and *ch*
- Prover uses a trapdoor to find preimage for the obtained oblivious commitment and completes protocol
- Apply our 'patched' Fiat-Shamir transformation to resulting scheme.

Our patched version of the Lyubashevsky scheme

Similar to [GPV08] with hash-and-sign, also proven secure in [BZ13]

[GPV08]:Gentry, Peikert, Vaikuntanathan, 'Trapdoors for hard lattices and new cryptographic constructions', 2008

[BZ13]:Boneh,Zhandry,'Secure signatures and chosen ciphertext security in a post-quantum world',2013

The Fiat-Shamir Transformation in the QROM

The Fiat-Shamir Transformation in the QROM

Open questions

Thanks for your attention!

tommaso@gagliardoni.net

