Lattice-Based Group Signatures with Logarithmic Signature Size

Fabien Laguillaumie¹

¹LIP, Université Lyon 1

 $^2\mathrm{LIP},$ ENS de Lyon

³Technicolor

December 4, 2013

Group Signatures [ChaumVanHeyst91]

Group signatures allow any member of a group to anonymously and accountably sign on behalf of this group.

Security: Anonymity and Traceability Security requirements [BellareMicciancioWarinschi03]

► Anonymity

A given signature does not leak the identity of its originator.

 \rightsquigarrow Two types: weak and full.

	weak	full	
Given	sk_i for all users		
		opening oracle	
Goal	distinguish be	distinguish between two users	

▶ Traceability

No collusion of malicious users can produce a valid signature that cannot be traced to one of them.

Given	msk and sk_i of users in the collusion,	
Goal	create a valid signature that doesn't trace	
	to someone not in the collusion (or nobody).	

Applications

Need for authenticity and anonymity

- ▶ Anonymous credentials: anonymous use of certified attributes
 - E.g.: student card name, picture, date, grade...

 Traffic management (Vehicle Safety Communications project of the U.S. Dept. of Transportation).

▶ Restrictive area access.

Prior works

- ▶ Introduced by [ChaumVanHest91],
- ▶ Generic construction [BellareMicciancioWarinschi03].

		signature size
Realization based on bilinear maps	[BoyenWaters07] and [Groth07]	constant number of elements of a large algebraic group
Lattice-based	[GordonKatz Vaikuntanathan10] [CamenischNeven Rückert10]	linear in N (number of group members)
$\operatorname{constructions}$	Our result	logarithmic in N

Lattice-Based Cryptography

From basic to very advanced primitives

- ▶ Public key encryption [Regev05, ...],
- ► Lyubashevsky signature scheme [Lyubashevsky12],
- ▶ Identity-based encryption [GentryPeikertVaikuntanathan08, ...],
- ▶ Attribute-based encryption [Boyen13, GorbunovVaikuntanathanWee13],
- ► Fully homomorphic encryption [Gentry09, ...].

Advantages of lattice-based primitives

- ► (Asymptotically) efficient,
- ► Security proofs from the hardness of LWE and SIS,
- ▶ Likely to resist quantum attacks.

SIS_{β} and LWE_{α}

Parameters: n dimension, $m \ge n$, q modulus. For $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$:

Lattice-Based Cryptography Toolbox: Trapdoors

 \blacktriangleright TrapGen \rightsquigarrow $({\bf A},{\bf T}_{\bf A})$ such that ${\bf T}_{\bf A}$ is a short basis of the lattice

 $\Lambda_q^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot \mathbf{A} = \mathbf{0} \pmod{q} \}.$

 $\left\{ \begin{array}{l} \mathbf{A} \text{ public description of the lattice} \\ \mathbf{T}_{\mathbf{A}} \text{ short basis, kept secret} \end{array} \right.$

► Note that:

- 1. Computing $\mathbf{T}_{\mathbf{A}}$ given \mathbf{A} is hard,
- 2. Constructing **A** together with $\mathbf{T}_{\mathbf{A}}$ is easy.

• With $\mathbf{T}_{\mathbf{A}}$, we can sample short vectors in $\Lambda_a^{\perp}(\mathbf{A})$.

► Can add constraints: find **B** such that $\mathbf{B}^T \cdot \mathbf{A} = \mathbf{0}$ (with trapdoor for **A** and **B**).

Group Signatures

A generic construction [BellareMicciancioWarinschi03]

Ingredients:

- ▶ Signature & Encryption schemes.
- ▶ Non-Interactive Zero Knowledge proof system.

Scheme:

- **Public key**: pk of Enc (pk_e) and Sign (pk_s) .
- **Opening key**: secret key of Enc sk_e .
- ▶ User sk: signing key sk_i and Sign_{sk_s}(i) from group manager.
- To sign a message m by a member i:
 - $1. \ c = \mathrm{Enc}_{\mathsf{pk}_{e}}(i, \mathrm{Sign}_{\mathsf{sk}_{s}}(i), \mathrm{Sign}_{\mathsf{sk}_{i}}(m)),$
 - 2. π : ZKPoK of valid plaintext.
 - 3. Output $\Sigma = (c, \Pi)$.

Construction not efficient (Generic ZKPoK). First attempt with lattices [GKV10]: size of signature = O(N).

Ingredients

- $\blacktriangleright \quad \text{Certificate of users} \rightsquigarrow \text{key to produce temporary certificate},$
- ▶ [Boyen2010]'s signature (standard model),
- ▶ [GenPeiVai2008] variant of Dual-Regev encryption,
- ▶ ZKPoK adapted from Lyubashevsky's signature.

KeyGen

- $N = 2^{\ell}$ group members,
- ▶ ℓ public matrices **A**, **A**_{*i*}'s and **B**_{*i*}'s such that **B**^{*T*}_{*i*} · **A**_{*i*} = 0 mod *q*.
- Each user is given a *short* basis T_{id} of a public lattice associated to its identity (using T_A):

$$\mathbf{A}_{\mathsf{id}} = \left(\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} \mathsf{id}[i]\mathbf{A}_i}\right)$$

• Group manager secret key is $\{\mathbf{T}_{\mathbf{B}_i}\}_i$.

► Create a temporary membership certificate: Boyen's signature of id (using T_{id}).

• Encrypt this certificate: $\{\mathbf{c}_i\}_{0 \le i \le \ell}$.

► Prove that the ciphertext encrypts a valid certificate belonging to a group member: π₀, {π_{OR,i}}_{1≤i≤ℓ}, π_K.

► Message?

$$\Sigma = \left(\{ \mathbf{c}_i \}_{0 \le i \le \ell}, \pi_0, \{ \pi_{\mathrm{OR},i} \}_{1 \le i \le \ell}, \pi_K \right)$$

Laguillaumie et al.

► Produce $(\mathbf{x}_1 || \mathbf{x}_2)^T$ short such that: $\mathbf{x}_1^T \cdot \mathbf{A} + \mathbf{x}_2^T \cdot (\mathbf{A}_0 + \sum_{i=1}^{\ell} \mathsf{id}[i] \cdot \mathbf{A}_i) = 0 \pmod{q}$

• Encrypt this certificate: $\{c_i\}_{0 \le i \le \ell}$.

► Prove that the ciphertext encrypts a valid certificate belonging to a group member: π₀, {π_{OR,i}}_{1≤i≤ℓ}, π_K.

► Message?

$$\Sigma = \left(\{ \mathbf{c}_i \}_{0 \le i \le \ell}, \pi_0, \{ \pi_{\mathrm{OR},i} \}_{1 \le i \le \ell}, \pi_K \right)$$

Laguillaumie et al.

> Produce
$$(\mathbf{x}_1 || \mathbf{x}_2)^T$$
 short such that:
 $\mathbf{x}_1^T \cdot \mathbf{A} + \mathbf{x}_2^T \cdot (\mathbf{A}_0 + \sum_{i=1}^{\ell} \mathsf{id}[i] \cdot \mathbf{A}_i) = 0 \pmod{q}$

▶ Prove that the ciphertext encrypts a valid certificate belonging to a group member: $\pi_0, \{\pi_{\text{OR},i}\}_{1 \le i \le \ell}, \pi_K$.

► Message?

$$\Sigma = \left(\{ \mathbf{c}_i \}_{0 \le i \le \ell}, \pi_0, \{ \pi_{\mathrm{OR},i} \}_{1 \le i \le \ell}, \pi_K \right)$$

Laguillaumie et al.

> Produce
$$(\mathbf{x}_1 || \mathbf{x}_2)^T$$
 short such that:
 $\mathbf{x}_1^T \cdot \mathbf{A} + \mathbf{x}_2^T \cdot (\mathbf{A}_0 + \sum_{i=1}^{\ell} \mathsf{id}[i] \cdot \mathbf{A}_i) = 0 \pmod{q}$

► Generate a proof π_0 : \mathbf{c}_0 close to a point in the \mathbb{Z}_q -span of \mathbf{B}_0 . We have that $\begin{cases} \mathbf{c}_i \text{ and } \mathbf{c}_0 \text{ encrypt the same } \mathbf{x}_2 & (\mathsf{id}_i = 1) \\ \text{or } \mathbf{c}_i \text{ encrypts } \mathbf{0} & (\mathsf{id}_i = 0) \end{cases}$

Generate a proof $\pi_{OR,i}$ of these relations (disjunctions).

Generate a proof π_K of knowledge of the \mathbf{e}_i 's and $\mathrm{id}_i \cdot \mathbf{x}_2$'s with their corresponding relation.

Message?

$$\Sigma = \left(\{ \mathbf{c}_i \}_{0 \le i \le \ell}, \pi_0, \{ \pi_{\mathrm{OR},i} \}_{1 \le i \le \ell}, \pi_K \right)$$

Laguillaumie et al.

• Produce
$$(\mathbf{x}_1 || \mathbf{x}_2)^T$$
 short such that:
 $\mathbf{x}_1^T \cdot \mathbf{A} + \mathbf{x}_2^T \cdot (\mathbf{A}_0 + \sum_{i=1}^{\ell} \mathsf{id}[i] \cdot \mathbf{A}_i) = 0 \pmod{q}$

► Generate a proof π_0 : \mathbf{c}_0 close to a point in the \mathbb{Z}_q -span of \mathbf{B}_0 . We have that $\begin{cases} \mathbf{c}_i \text{ and } \mathbf{c}_0 \text{ encrypt the same } \mathbf{x}_2 & (\mathsf{id}_i = 1) \\ \text{or } \mathbf{c}_i \text{ encrypts } \mathbf{0} & (\mathsf{id}_i = 0) \end{cases}$

Generate a proof $\pi_{OR,i}$ of these relations (disjunctions).

Generate a proof π_K of knowledge of the \mathbf{e}_i 's and $\mathrm{id}_i \cdot \mathbf{x}_2$'s with their corresponding relation.

► ZKPoK \rightsquigarrow made non-interactive ZKPoK *via* Fiat-Shamir, (incorporating the message in π_K).

$$\Sigma = \left(\{\mathbf{c}_i\}_{0 \le i \le \ell}, \pi_0, \{\pi_{\mathrm{OR},i}\}_{1 \le i \le \ell}, \pi_K\right)$$

Laguillaumie et al.

Verify:

▶ Check the proofs.

Open:

▶ Decrypt $\mathbf{c}_0 (\rightsquigarrow \mathbf{x}_2)$ and check whether $p^{-1}\mathbf{c}_i$ or $p^{-1}(\mathbf{c}_i - \mathbf{x}_2)$ is close to the \mathbb{Z}_q -span of \mathbf{B}_i .

Verify:

▶ Check the proofs.

Open:

▶ Decrypt $\mathbf{c}_0 (\rightsquigarrow \mathbf{x}_2)$ and check whether $p^{-1}\mathbf{c}_i$ or $p^{-1}(\mathbf{c}_i - \mathbf{x}_2)$ is close to the \mathbb{Z}_q -span of \mathbf{B}_i .

- Size of the signatures: $\tilde{\mathcal{O}}(\lambda \cdot \log(N))$.
- Size of the key of member $i: \tilde{\mathcal{O}}(\lambda^2)$.
- $\lambda = \Theta(n)$ is the security parameter.

Anonymity and Traceability

In the random oracle model

Anonymity

Weak anonymity under LWE, and the simulation of the ZKPoK.

Traceability

Traceability under SIS, and extraction of information in the ZKPoK.

► We also provide a variant with full-anonymity, ⇒ the adversary has an opening oracle.

► Find a way to open adversarially chosen signatures, ⇒ using IND-CCA encryption.

Conclusion

Our result

- ▶ We give the first lattice-based signature with logarithmic signature and public key sizes.
- ▶ Weak and full anonymity (LWE), traceability (SIS).

Open problems

- ▶ Practice,
- ▶ Ring variants of LWE and SIS,
- ▶ Improving the sizes of the signature and public key,
- ▶ Removing the random oracle model.