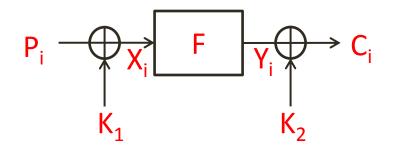
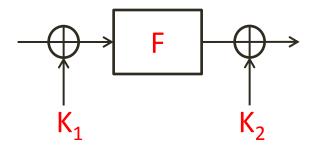
Key Recovery Attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES²

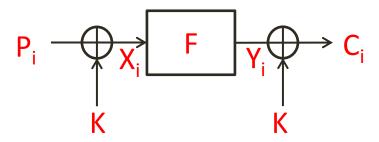

<u>Itai Dinur</u>¹, Orr Dunkelman^{2,4}, Nathan Keller³ and Adi Shamir⁴

¹École normale supérieure, France
²University of Haifa, Israel
³Bar-Ilan University, Israel
⁴The Weizmann Institute, Israel

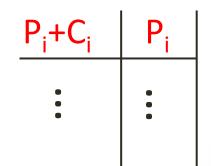
Summary


- The Even-Mansour scheme is simple construction of a block cipher proposed in 1991
- The scheme has been generalized to iterated Even-Mansour schemes
 - Extensively studied in the last few years
- We study the security of iterated Even-Mansour schemes
 - Attack schemes that were previous assumed to be secure
 - Present applications to **concrete** designs

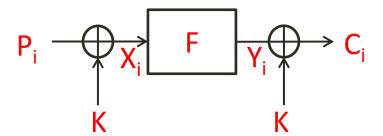
The Even-Mansour Scheme (1991)


- A simple construction of a block cipher using 2 keys of n bits and a public permutation F
- Information-theoretic security lower bound:
 - Assume that F is randomly chosen
 - Assume that we obtain D plaintext-ciphertext pairs (P_i, C_i)
 - Then, any successful key-recovery attack that evaluates F on T inputs X must satisfy TD≥2ⁿ

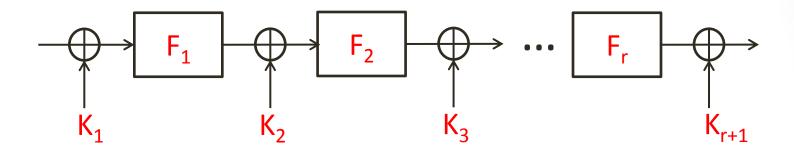
The SlideX Attack [DKS '12]



- Security: TD=2ⁿ using the SlideX attack
 (DKS, Eurocrypt '12)
- Given $D=2^{n/2}$ the scheme can be broken in $T=2^{n/2}$

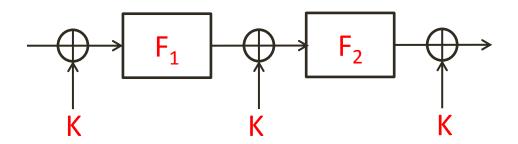

SlideX on EM with 1 Key [DKS '12]

- $P_i + K = X_i$ and $C_i + K = Y_i \rightarrow P_i + C_i = X_i + Y_i$
- For each (P_i,C_i):
 - Calculate P_i+C_i and store it in a sorted table next to P_i
- For arbitrary values X_i:
 - Calculate Y_j=F(X_j) and search X_j+Y_j in the table
 - For each match, test the suggestion for K=P_i+X_j



SlideX on EM with 1 Key: Analysis

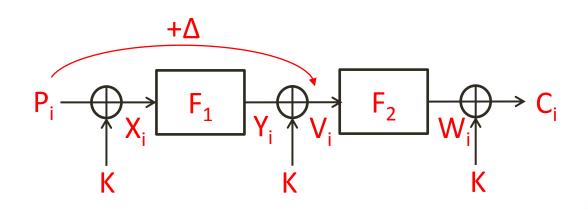
In order to obtain w.h.p a pair (P_i,X_j) such that
 K=P_i+X_i we need about 2ⁿ such pairs, i.e. TD=2ⁿ


The Iterated EM Scheme

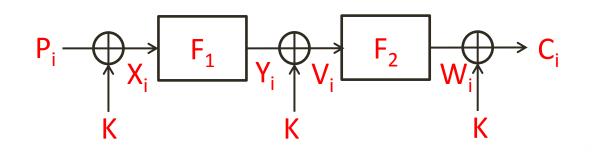
- EM-based schemes are a **very hot** research area
 - Over 10 papers in major crypto conferences since 2011
- There are many possible key schedules

2-Round Iterated EM with 1 Key

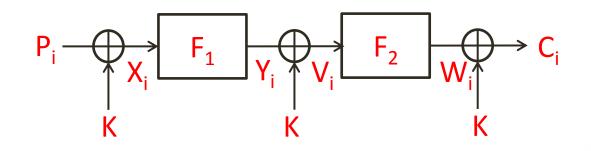
 Does not provide n-bit security as shown at FSE 2013 [NWW '13]

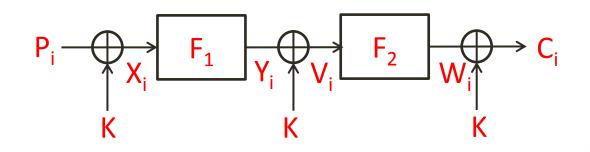

A Variant of the Previous Attack [NWW '13] : Main Idea

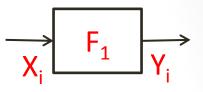
- $P_i + V_i = X_i + Y_i \rightarrow X_1 + Y_1 = X_2 + Y_2 = ... = X_t + Y_t = \Delta$ then $P_1 + V_1 = P_2 + V_2 = ... = P_t + V_t = \Delta$
- A t-way collision on the public F'₁(X)=X+F₁(X) gives a t-way collision on P_i+V_i with the same value Δ
- Given ∆ and a random P_i, then V_i = P_i+∆ with probability t/2ⁿ>1/2ⁿ



A Variant of the Previous Attack [NWW '13]


- Preprocessing: Evaluate F₁ on arbitrary inputs X, find a t-way collision on F'₁(X)=X+F₁(X) and denote the colliding value by Δ
- Online: For each (P_i, C_i):
 - Assume that $V_i = P_i + \Delta$ and compute $W_i = F_2(V_i)$
 - Compute a suggestion for K=W_i+C_i and test it


- The data complexity is D=2ⁿ/t
 - in order to find a P_i such that $V_i = P_i + \Delta$ and recover K
- The online time complexity is also 2ⁿ/t
- What is the complexity of the preprocessing?

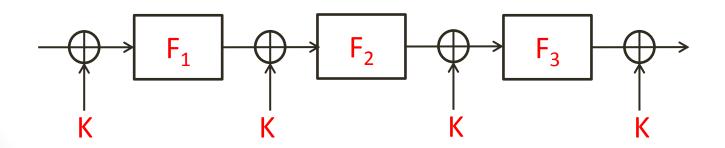

- If we evaluate F[']₁ on all 2ⁿ inputs, the attack will not be faster than exhaustive search
- We evaluate F'_1 on a $\lambda < 1$ fraction of the inputs
- The **preprocessing** time complexity is $\lambda 2^n$
 - in which we find a t-way collision

- The **total** time complexity is $\lambda 2^{n}+2^{n}/t$
- To calculate the **optimal** time complexity, we need to understand the **tradeoff** between λ and t
- What is the largest t-way collision we expect when evaluating a λ fraction of inputs for F'₁?

- F'₁(X)=X+F₁(X) is a function from n bits to n bits
- If we evaluate F'₁(X) on a λ fraction of the inputs the expected number of tway collisions is (2ⁿλ^te^{-λ})/t!
 - Assuming standard randomness assumptions on F₁

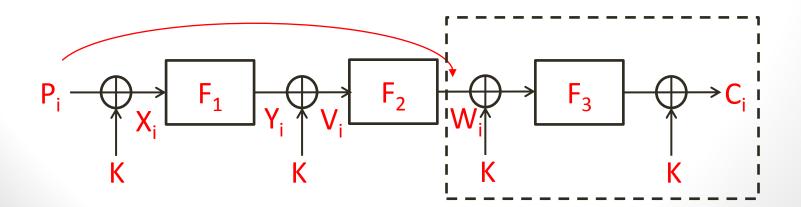
- The **tradeoff** between λ and t is enforced by $(2^n\lambda^t e^{-\lambda})/t! \ge 1$
- Taking λ≈1/n gives t≈1/λ≈n and minimizes
 T≈2ⁿ/n
 - This is faster than exhaustive search by a factor of about n, which grows to infinity with n
- For n=64 \rightarrow T \approx 2⁶⁴/64 \approx 2⁶⁰ and also D \approx 2⁶⁰, M \approx 2⁶⁰

Our First Optimization: Reducing the Data Complexity - Main Idea

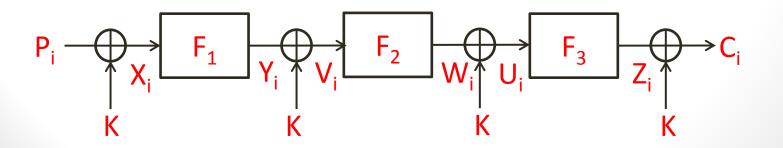

 Once we take λ and t for which (2ⁿλ^te^{-λ})/t!≥1, and slightly reduce t, the number of t-way collisions grows rapidly

Our First Optimization: Reducing the Data Complexity - Analysis

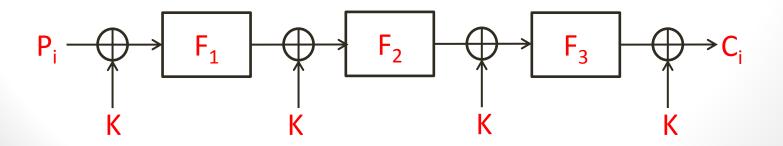
- For n=64 and 2⁶⁰ inputs we expect:
 - **4** 10-way collisions
 - 95 9-way collisions
 - Over 100,000 8-way collisions
- We can exploit all these in the attack
- For n=64 we greatly reduce the data complexity from 2⁶⁰ to 2⁴⁵
 - by taking all collisions with t≥8 rather than t≥10
 - The time and memory complexities slightly increase but remain about 2⁶⁰


3-Round Iterated EM with 1 Key

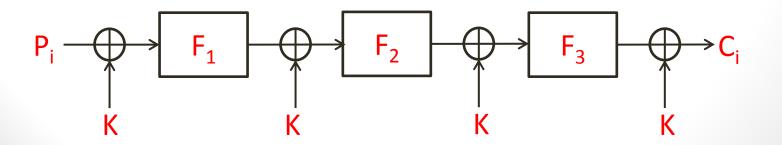
- The attack on 2-round EM was already somewhat marginal
- We show that 3-round EM does not provide n-bit security as well!


The Main Idea of our New Attack

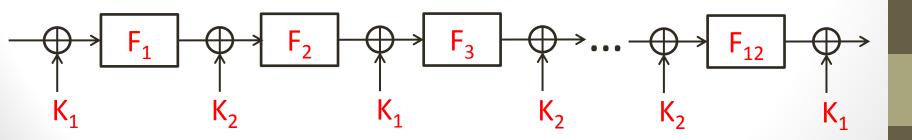
- We know how to predict W_i with a higher probability than a random guess
- Given W_i and C_i we remain with a 1-round EM with 1 key and can apply the SlideX attack
- The time complexity increases to T≈2ⁿ/√n
 - Faster than exhaustive search only by a factor of vn


Optimizing our 3-Round Attack

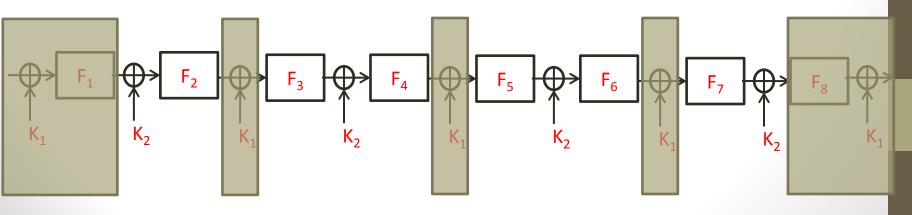
- Apply the same optimization as in the 2-round attack to reduce the data complexity
- Use the freedom to choose the inputs on which we evaluate F₁ and F₃ in order to immediately filter most uninteresting (P_i,C_i)
- The optimization gives us T≈2ⁿ/n
- This is about the same time complexity as the 2-round attack!


Application to (Original) Zorro

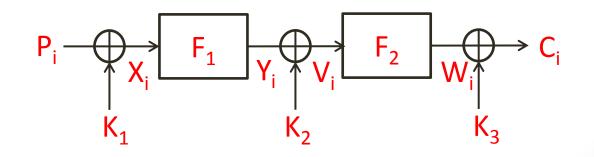
- Zorro is a 128-bit lightweight block cipher presented at CHES 2013 by Gérard et al.
- The original cipher was a 3-round EM scheme with 1 key
- The authors **changed** the design due to our results


Application to LED-64

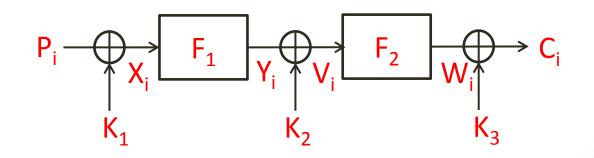
- LED is a 64-bit lightweight block cipher presented at CHES 2011 by Guo et al.
- Two main versions: LED-64 and LED-128
- LED-64 is an 8-round EM scheme with 1 key
- Previous attacks on LED-64 could only attack 2 rounds
- We can directly apply our attack to 3-round LED-64 with T≈2⁶⁰, M≈2⁶⁰ and D=2⁴⁹


Application to LED-128

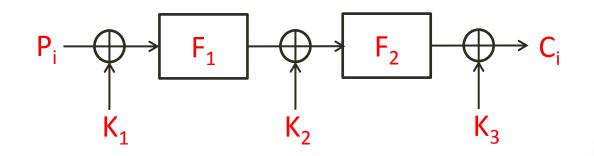
- LED-128 uses 2 alternating keys and has 12 rounds
- The best previous attack [NWW '13] could attack 6 rounds
- We use the new techniques to attack 8 rounds!


Application to LED-128

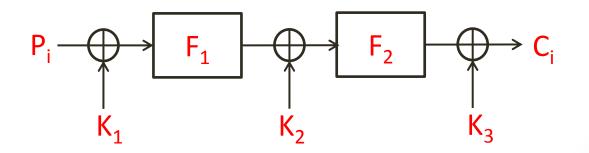
- As several previous attacks we guess K₁ in an outer loop
- We remain with a 3-round EM scheme with 1 key
- We obtain T≈2¹²⁴, M≈2⁶⁰ and D=2⁴⁹
- About the same time and memory complexities as the previous 6-round attack, and the data is reduced by a factor of about 1000!


2-Round EM with Independent Keys

- A simple meet-in-the-middle attack has time and memory complexity of 2ⁿ
- t-way collisions on X_i+Y_i do not seem to help


Our Attack on 2-Round EM with Independent Keys: The Main Idea

- Use the **differential** algorithm of Mendel et al. from ASIACRYPT 2012
- However, we apply attack even when F₁ and F₂ do not have any statistical weakness!
- The attack uses **additional** techniques...


Application to AES²

- AES² is 128-bit block cipher presented at EUROCRYPT 2012 by Bogdanov et al.
- A 2-round EM with independent 128-bit keys

Application to AES²

- Each public permutations is a complete AES-128 fixed-key encryption and is thus very strong
- The designers conjecture that the most efficient attack on AES² is a basic meet-in-the-middle
- Our attack is about 7 times faster
 - uses 7 times less memory (but requires much more data)

Conclusions

- We presented improved attacks on several schemes based on iterated Even-Mansour
- We described the **first** attack on full AES²
- We increased the number of steps that can be attacked for LED-128 from 6 to 8
- The attacks are **unlikely** to be practically significant
- They show that a 1-key EM scheme needs to have at least 4 rounds to provide n-bit security

Thank you for your attention!