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Introduction
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Idealized Models

• problem: cannot prove scheme/protocol secure /

• solution
• construction has oracle access to some primitive
• probabilistic security statement over random choice of the

primitive’s implementation

random-oracle model (ROM, [BR93])

• choice: set of functions

• example: {0, 1}n → {0, 1}n

ideal-cipher model (ICM, [Sha49])

• choice: set of keyed permutations

• example: {0, 1}k × {0, 1}n → {0, 1}n
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Idealized Models

• problem: cannot prove scheme/protocol secure /
• solution (not really. . . )

• construction has oracle access to some primitive
• probabilistic security statement over random choice of the

primitive’s implementation

random-oracle model (ROM, [BR93])

• choice: set of functions

• example: {0, 1}n → {0, 1}n

ideal-cipher model (ICM, [Sha49])

• choice: set of keyed permutations

• example: {0, 1}k × {0, 1}n → {0, 1}n
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ROM
?≡ ICM

[CDMP]

2005

[CPS]

2008

[HKT]

2011

is the random-oracle model equivalent to the ideal-cipher model?

• ideal cipher ⇒ random oracle [CDMP05]

• random oracle ⇒∗ ideal cipher [CPS08]

• random oracle ⇒ ideal cipher [HKT11]

thus, ROM ≡ ICM

but what is “≡”?
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Equivalence Through Indifferentiability

[MRH]

2004

[CDMP]

2005

[CPS]

2008

[HKT]

2011

• composition theorem by
Maurer, Renner, and
Holenstein [MRH04]

• proof in Π model ;
proof in π model, given
indiff. construction Gπ

• e.g., G : constructed “random oracle”; π: ideal cipher;
Π: real random oracle

• ask for simulator S such that (Gπ, π)
c
≈ (Π,SΠ)
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Limitations of Indifferentiability

[MRH]

2004

[CDMP]

2005

[CPS]

2008

[HKT, RSS]

2011

reset indiff.• indifferentiability is not applicable for
multi-stage games with ideal primitives [RSS11]

• . . . , x ← A1, . . . , y ← A2, . . .

• e.g. deterministic/hedged/efficiently-searchable/public-key
encryption, KDM/RKA security, non-malleable hashing,
proof-of-storage security, anything with leakage. . .

• problem (roughly): distinct stages result in distinct simulators,
distinct simulators are inconsistent

• allow the distinguisher to reset the simulator, reset
indifferentiability [RSS11]
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ROM
?≡ ICM
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ROM
?≡ ICM, Revisited

• ROM ≡ ICM for single-stage games
• constructions in [CDMP05, CPS08, HKT11] are not reset

indifferentiable
• i.e., do not apply to multi-stage games

• reset-indifferentiable constructions cannot be domain
extending [LAMP12, DGHM13]
• assuming that ROs have infinite domain, ICM 6⇒ ROM
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In This Work

• a different notion to characterize reset indifferentiability —
multi-stage indifferentiability

1. under reset indifferentiability, ROM 6≡ ICM
• i.e., ICM 6⇒ ROM and ROM 6⇒ ICM

• (no result for length-preserving constructions)

2. “Duality Lemma”: two primitives are either equivalent or
incomparable

3. n-reset indifferentiability ≡ 1-reset indifferentiability
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Multi-Stage Indifferentiability

real

πG

ideal

Π S

D

• instead of resettable simulators, consider stateless ones

• think “reset after each query”

• equivalent to reset indifferentiability

• simulators are pseudo deterministic—why?
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No Domain Extension

• there is no domain-extending construction of a RO from an IC

• consider a length-doubling construction Gπ

• let distinguisher D sample m← {0, 1}` and locally evaluate
G (·)(m), then query m on left-hand side interface

D
Gm

• real world: identical results
• ideal world

• S needs to query Π on m
• gets k inputs of size

`
2 < ` = |Π(m)|

• but k · 2`/2 � 2`

• ⇒ very unlikely to “hit” m
reliably

• note: choice of primitives arbitrary
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No Domain Extension (cont’d)

• ICM 6⇒ ROM (also shown by [LAMP12, DGHM13] for one-bit
extension)

• ROM 6⇒ ICM
• typical Feistel constructions are length doubling

• what about domain shrinking?
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The Duality Lemma

• what about domain shrinking?

observation:

• simulators are pseudo deterministic

• constructions are typically (pseudo) deterministic, e.g. hash
function, block cipher, . . .

• can switch roles!
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The Duality Lemma (cont’d)

given two ideal primitives π1 and π2, one of the following holds

1. π1 and π2 are equivalent

• there exist constructions G1 and G2 such that Gπ2
1 (resp. Gπ1

2 )
is multi stage indifferentiable from π1 (resp. π2); i.e., π1 ⇒ π2

and π2 ⇒ π1

2. π1 and π2 are incomparable

• no multi-stage indifferentiable constructions from each other
exist; i.e., π1 6⇒ π2 and π2 6⇒ π1

• positive (resp. negative) result in one direction translates to
other direction

• no domain-extending constructions ⇒ no domain-shrinking
constructions; ROM and ICM are incomparable
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Do Weaker Notions Help?

• reset indifferentiability permits poly. many resets
• Luykx et al. [LAMP12] consider n-reset indifferentiability

• n resets compose with n stages

• turns out n-reset = n′-reset = 1-reset

• idea: at least one reset must be “critical”, find it
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Eliminating Resets

consider the distinguisher Dn on randomness r (max. n resets)

Dn(r)
q1

a1

q2

a2

q3

a3

q4

a4

q5

a5

construct D1

Dn

D1D1(r)
q1 q2 q3 q4 q5

a1 a2 a3 a4 a5

let D1’s output be (a4, a5)
?
= (a′4, a

′
5)

next, consider Dn−1
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Summary

take-home message

• is the ROM equivalent to the ICM?
• answer—depends on “equivalent”

• for composing single-stage games: 3
• multi stage / non length preserving: 7
• multi stage / length preserving:

open question
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The End

Thank you!

?
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Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.

Merkle-Damg̊ard revisited: How to construct a hash function.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, August 2005.
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