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• Previous works: time randomization can help 

• But we need to be careful with re-synchronization 

• e.g. random insertion of dummy operations is 

not enough [Durvaux et al./CARDIS2012] 

 

• Best known option so far: shuffling operations 
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• Shuffling aims to amplify physical noise, by forcing 

the adversary to combine multiple points 
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• Two RAM accesses per R/W access to operands 

 Very large cycle counts 
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HOW? 



  Randomized execution path               7 



  Randomized execution path               7 



  Randomized execution path               7 



  Randomized execution path               7 

• Better exploitation of registers 

 Significantly reduces the cycle count 
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• Large precomputations (technology dependent) 
• Somehow similar to a one-time program 

 

• Minimum “online” cycle count (~ unprotected) 
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Implementation Clock Cycles 

Unprotected AES 2739       (3546 with KS) 

Double Indexing shuffling 30202   (46395 with KS) 

Randomized Path shuffling 6934     (14834 with KS) 

Randomized Memory shuffling 3299* 

* Excludes  precomputations (approx. 18 milliseconds) 

• Includes shuffling of other AES operations (among 

16 for each of them – see paper for the details)  
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• Security evaluations of masking schemes usually 

exploit the leakage of all the shares 

• Integrating attacks ignore “permutation leakages” 

• (Which appear within the double indexing and 

randomized execution path methods) 

 

 Natural next step: include them in analysis 
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• Standard (sensitive operation) leakages 
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• Standard (sensitive operation) leakages 

 

 

 

 

 

• Let Sc = P(c) be the part of the master key 

manipulated at cycle c, with P the shuffling perm. 

• We additionally consider permutations leakages 

 

 

 

 



  EC09 information theoretic analysis (I)           11 

• Based on the leakage probability distribution 
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• Different scenarios 
 

• Template attack without permutation leakage (UNI-TA) 
 

 

• Template attack with permutation leakage (DPLEAK-TA) 

 
 

• Random Start Index (RSIENUM-TA) 
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• Fact: for similar amounts of noise, actual attacks 

more efficient than simulated ones  
• Surprising since the opposite is usually observed 

(because simulated attacks have perfect leakage 

models while actual attacks use estimated ones) 
 

• Why? Recall the processor structure: 

• Even if operation order is shuffled,                             

the state bytes are still manipulated                          

by the same hardware resources! 

• As these resources have slightly                     

different leakage models, this leads                      

to additional (indirect) leakage! 

• Even for randomized program memory !! 
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• Shuffling can be implemented in different ways  

• Tradeoff between “online” and “offline” cycles  

• Cautionary note: shuffling can be used as a noise 

amplifier – never as a noise generator! 

• Computation matters: enumerable permutations 

lead to easier attacks => RSI should be avoided 

• (and all the operations in the block cipher 

should be permuted over at least 16!) 

• Indirect leakages can appear! 

• Ideally, not only the order of operations should 

be shuffled, but also the resources used 

 



 

 

THANKS 
http://perso.uclouvain.be/fstandae/ 

 

 

                    

                    

http://perso.uclouvain.be/fstandae/

