Limitations on Transformations from Composite-Order to Prime-Order Groups: The Case of Round-Optimal Blind Signatures

Sarah Meiklejohn (UC San Diego)

Hovav Shacham (UC San Diego) David Mandell Freeman (Stanford University)

Elliptic curves: what are they and why do we care?

Bilinear groups are cyclic groups G of some finite order that admit a nondegenerate bilinear map e: $G \times G \rightarrow G_T$

- Bilinear: $e(x^a, y) = e(x, y)^a = e(x, y^a)$, nondegenerate: e(x, y) = 1 for all $y \Leftrightarrow x = 1$
- Composite order: |G| = N (often use N = pq), prime order: |G| = p

Elliptic curves: what are they and why do we care?

Bilinear groups are cyclic groups G of some finite order that admit a nondegenerate bilinear map e: $G \times G \rightarrow G_T$

- Bilinear: $e(x^a, y) = e(x, y)^a = e(x, y^a)$, nondegenerate: e(x, y) = 1 for all $y \Leftrightarrow x = 1$
- Composite order: |G| = N (often use N = pq), prime order: |G| = p

Elliptic curves: what are they and why do we care?

Bilinear groups are cyclic groups G of some finite order that admit a nondegenerate bilinear map e: $G \times G \rightarrow G_T$

- Bilinear: $e(x^a, y) = e(x, y)^a = e(x, y^a)$, nondegenerate: e(x, y) = 1 for all $y \Leftrightarrow x = 1$
- Composite order: |G| = N (often use N = pq), prime order: |G| = p

Historically, we use elliptic curves for two main reasons:

- Efficiency: discrete log problem is harder, can use smaller parameters
- Functionality: IBE [BF01], predicate encryption [KSW08], etc.

Divide the talk into three main parts:

Divide the talk into three main parts:

• The setting: work in composite-order bilinear groups

Divide the talk into three main parts:

• The setting: work in composite-order bilinear groups

Divide the talk into three main parts:

The setting: work in composite-order bilinear groups

 The problem: what if we want to instantiate our scheme in a prime-order setting instead?

- Cyclic groups G and G_T of order N = pq, $G = G_p \times G_q$ but p,q are secret
- Bilinear map e: $G \times G \rightarrow G_T$
- Often use the subgroup hiding assumption: element of G_q indistinguishable from an element of G
- This setting has proved to be quite useful:

- Cyclic groups G and G_T of order N = pq, $G = G_p \times G_q$ but p,q are secret
- Bilinear map e: $G \times G \rightarrow G_T$
- Often use the subgroup hiding assumption: element of G_q indistinguishable from an element of G
- This setting has proved to be quite useful:

"somewhat" homomorphic encryption [BGN05]

- Cyclic groups G and G_T of order N = pq, $G = G_p \times G_q$ but p,q are secret
- Bilinear map e: $G \times G \rightarrow G_T$
- Often use the subgroup hiding assumption: element of G_q indistinguishable from an element of G

- Cyclic groups G and G_T of order N = pq, $G = G_p \times G_q$ but p,q are secret
- Bilinear map e: $G \times G \rightarrow G_T$
- Often use the subgroup hiding assumption: element of G_q indistinguishable from an element of G

Composite- vs. prime-order groups

Why would we switch to prime-order groups?

Composite- vs. prime-order groups

Why would we switch to prime-order groups?

- Composite-order means bigger: in prime-order groups, can use group of size ~160 bits; in composite-order groups need ~1024 bits (discrete log vs. factoring)
- In addition, there aren't many composite-order curve families (need to use supersingular vs. ordinary curves)

Composite- vs. prime-order groups

Why would we switch to prime-order groups?

- Composite-order means bigger: in prime-order groups, can use group of size ~160 bits; in composite-order groups need ~1024 bits (discrete log vs. factoring)
- In addition, there aren't many composite-order curve families (need to use supersingular vs. ordinary curves)

Previously, people converted schemes in an ad-hoc way [W09,GSW09,LW10]

Freeman [F10] is first to provide a general conversion method

Signatures: user obtains a signature σ on a message m from a signer

Signatures: user obtains a signature σ on a message m from a signer

Signatures: user obtains a signature σ on a message m from a signer

Signatures: user obtains a signature σ on a message m from a signer

Signatures: user obtains a signature σ on a message m from a signer

Signatures: user obtains a signature σ on a message m from a signer

In a **blind** signature scheme [Ch82], user gets this signature without the signer learning which message he signed!

case above

Applications: electronic cash [Ch82], anonymous credentials, etc.

Signatures: user obtains a signature σ on a message m from a signer

In a **blind** signature scheme [Ch82], user gets this signature without the signer learning which message he signed!

case above

Applications: electronic cash [Ch82], anonymous credentials, etc.

Still a very active research area [O06,F09,AO10,AHO10,AFGHO10,R10]

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

e: $G \times G \rightarrow G_T$

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

e: $G \times G \rightarrow G_T$ $^{\mathsf{T}}\downarrow$ E: $B \times B \rightarrow B_T$

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

e: $G \times G \rightarrow G_T$ $^{\intercal}\downarrow$ E: $B \times B \rightarrow B_T$

• Abstract assumption: $B = B_1 \times B_2$, where B_1 is indistinguishable from B

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

e: $G \times G \rightarrow G_T$ $^{\tau}\downarrow$ E: $B \times B \rightarrow B_T$

- Abstract assumption: $B = B_1 \times B_2$, where B_1 is indistinguishable from B
 - Subgroup hiding: set $B = G = G_p \times G_q$

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

e: $G \times G \rightarrow G_T$ $^{\tau}\downarrow$ E: $B \times B \rightarrow B_T$

- Abstract assumption: $B = B_1 \times B_2$, where B_1 is indistinguishable from B
 - Subgroup hiding: set $B = G = G_p \times G_q$
 - DLIN: rank 2 matrix ~ rank 3 matrix for a 3×3 matrix over F_p

Simple construction (inspired by [BW06]): combine Waters signature [W07] with Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

e: $G \times G \rightarrow G_T$ $^{\tau}\downarrow$ E: $B \times B \rightarrow B_T$

- Abstract assumption: $B = B_1 \times B_2$, where B_1 is indistinguishable from B
 - Subgroup hiding: set $B = G = G_p \times G_q$
 - DLIN: rank 2 matrix ~ rank 3 matrix for a 3×3 matrix over F_p
- Benefits: can use composite- and prime-order settings

Our scheme: sketch

Our scheme: sketch

• User: write message bitwise as $m = b_1...b_n$, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1

• User: write message bitwise as $m = b_1...b_n$, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1

- User: write message bitwise as $m = b_1...b_n$, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1
- Signer: check proof (c_i, π_i) for each i, then compute blind signature ($K_1, K_2, \{K_{3j}\}$)

- User: write message bitwise as $m = b_1...b_n$, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1
- Signer: check proof (c_i, π_i) for each i, then compute blind signature ($K_1, K_2, \{K_{3j}\}$)

- User: write message bitwise as $m = b_1...b_n$, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1
- Signer: check proof (c_i, π_i) for each i, then compute blind signature ($K_1, K_2, \{K_{3j}\}$)
- User: check blind signature was formed properly, then unblind it using randomness from the commitments to get Waters signature (S₁,S₂)

- User: write message bitwise as $m = b_1...b_n$, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1
- Signer: check proof (c_i, π_i) for each i, then compute blind signature ($K_1, K_2, \{K_{3j}\}$)
- User: check blind signature was formed properly, then unblind it using randomness from the commitments to get Waters signature (S₁,S₂)

- User: write message bitwise as m = b₁...b_n, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1
 Request is a bit long, but...
- Signer: check proof (c_i, π_i) for each i, then compute blind signature ($K_1, K_2, \{K_{3j}\}$)
- User: check blind signature was formed properly, then unblind it using randomness from the commitments to get Waters signature (S₁,S₂)

- User: write message bitwise as m = b₁...b_n, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1
 Request is a bit long, but...
- Signer: check proof (c_i, π_i) for each i, then compute blind signature ($K_1, K_2, \{K_{3j}\}$)
- User: check blind signature was formed properly, then unblind it using randomness from the commitments to get Waters signature (S1,S2)

...blind signature is short (j=1,2,or 3), and...

- User: write message bitwise as m = b₁...b_n, compute GS commitment c_i to each bit b_i and GS proof π_i that value in c_i is either 0 or 1
 Request is a bit long, but...
- Signer: check proof (c_i, π_i) for each i, then compute blind signature ($K_1, K_2, \{K_{3j}\}$)
- User: check blind signature was formed properly, then unblind it using randomness from the commitments to get Waters signature (S1,S2)

...signature obtained is short as well!

...blind signature is

short (j=1,2,or 3), and...

Our scheme: security

Can prove the following security theorem:

 Under the subgroup hiding and CDH assumptions, our blind signature scheme is one-more unforgeable and blind (using the standard definitions [JLO97]).

Our scheme: security

Can prove the following security theorem:

 Under the subgroup hiding and CDH assumptions, our blind signature scheme is one-more unforgeable and blind (using the standard definitions [JLO97]).

Can we prove a more abstract theorem?

Our scheme: security

Can prove the following security theorem:

 Under the subgroup hiding and CDH assumptions, our blind signature scheme is one-more unforgeable and blind (using the standard definitions [JLO97]).

Can we prove a more abstract theorem?

- Blindness requires only the abstract assumption,...
- ... but one-more unforgeability requires more.

Security proof relies on two properties: projecting and cancelling

Security proof relies on two properties: projecting and cancelling

For projecting, we have:

- decomposition $B = B_1 \times B_2$
- map π : B \rightarrow B₂ s.t. π (b=b₁*b₂) = b₂
- map π_T s.t. $\pi_T(E(a,b)) = E(\pi(a),\pi(b))$

Security proof relies on two properties: projecting and cancelling

For projecting, we have:

- decomposition $B = B_1 \times B_2$
- map π : B \rightarrow B₂ s.t. π (b=b₁*b₂) = b₂
- map π_T s.t. $\pi_T(E(a,b)) = E(\pi(a),\pi(b))$

For cancelling, we have:

• decomposition $B = B_1 \times B_2$ such that E(a,b) = 1 for all a in B_1 , b in B_2

Security proof relies on two properties: projecting and cancelling

	In composite-order groups:
For projecting, we have:	$B = G = G_p \times G_q$
• decomposition $B = B_1 \times B_2$	Projecting : $π(x) = x^{\lambda}$ for λ s.t.
• map π : B \rightarrow B ₂ s.t. π (b=b ₁ *b ₂) = b ₂	$\lambda = 0 \mod p$ $\lambda = 1 \mod q$
 map π_T s.t. π_T(E(a,b)) = E(π(a),π(b)) 	Then $\pi(g) = \pi(g_p * g_q) = (g^q * g^p)^{\lambda} = g_q$
For cancelling, we have:	$\label{eq:cancelling:} \begin{split} & \text{Cancelling:} \\ & \text{E}(g_p,g_q) = \text{E}(g^q,g^p) = \text{E}(g,g)^{pq} = \text{E}(g,g)^{N} = 1 \end{split}$

• decomposition $B = B_1 \times B_2$ such that E(a,b) = 1 for all a in B_1 , b in B_2

Security proof relies on two properties: projecting and cancelling

	In composite-order groups:
For projecting, we have:	$B = G = G_p \times G_q$
• decomposition $B = B_1 \times B_2$	Projecting : $π(x) = x^{\lambda}$ for λ s.t.
• map π : B \rightarrow B ₂ s.t. π (b=b ₁ *b ₂) = b ₂	$\lambda = 0 \mod p$ $\lambda = 1 \mod q$
 map π_T s.t. π_T(E(a,b)) = E(π(a),π(b)) 	Then $\pi(g) = \pi(g_{p*}g_q) = (g^q*g^p)^{\lambda} = g_q$
For cancelling, we have:	Cancelling: $E(g_p,g_q) = E(g^q,g^p) = E(g,g)^{pq} = E(g,g)^N = 1$

• decomposition $B = B_1 \times B_2$ such that E(a,b) = 1 for all a in B_1 , b in B_2

Freeman [F10] provides generic transformation to prime-order groups for schemes in composite-order groups that require either of these two properties

This turns out to be very tricky!

This turns out to be very tricky!

We want to prove the following theorem:

 If we use the DLIN assumption for the indistinguishability of B₁ and B and E is cancelling, then E cannot be projecting.

This turns out to be very tricky!

We want to prove the following theorem:

 If we use the DLIN assumption for the indistinguishability of B₁ and B and E is cancelling, then E cannot be projecting.

Break it up into two lemmas:

- Cancelling shrinks the target space: If we use the DLIN assumption for the indistinguishability of B_1 and B and E is cancelling, then |E(B,B)| = p.
- Can't project with small target: If |E(B,B)| = p then E cannot be projecting.

This turns out to be very tricky!

We want to prove the following theorem:

 If we use the DLIN assumption for the indistinguishability of B₁ and B and E is cancelling, then E cannot be projecting.

Break it up into two lemmas:

Cancelling shrinks the target space: If we use the DLIN assumption for the indistinguishability of B₁ and B and E is cancelling, then |E(B,B)| = p.
 Can't project with small target: If |E(B,B)| = p then E cannot be projecting.

We can prove the following theorem:

 If we use the DLIN assumption* for the indistinguishability of B1 and B and E is cancelling, then E cannot be projecting with overwhelming probability.

Break it up into two lemmas:

Let E: B × B → B_T be a nondegenerate pairing that is independent of the decomposition B = B₁ × B₂. Then if B = G³, B₁ is a uniformly random rank-2 submodule of B, and E is cancelling, then |E(B,B)| = p with overwhelming probability.

Can't project with small target: If |E(B,B)| = p then E cannot be projecting.

We can prove the following theorem:

 If we use the DLIN assumption* for the indistinguishability of B1 and B and E is cancelling, then E cannot be projecting with overwhelming probability.

Break it up into two lemmas:

E is public, if dependent on B₁ could reveal information to help to distinguish it from B

Let E: B × B → B_T be a nondegenerate pairing that is independent of the decomposition B = B₁ × B₂. Then if B = G³, B₁ is a uniformly random rank-2 submodule of B, and E is cancelling, then |E(B,B)| = p with overwhelming probability.

Can't project with small target: If |E(B,B)| = p then E cannot be projecting.

We can prove the following theorem:

 If we use the DLIN assumption* for the indistinguishability of B1 and B and E is cancelling, then E cannot be projecting with overwhelming probability.

Break it up into two lemmas:

E is public, if dependent on B₁ could reveal information to help to distinguish it from B

Let E: B × B → B_T be a nondegenerate pairing that is independent of the decomposition B = B₁ × B₂. Then if B = G³, B₁ is a uniformly random rank-2 submodule of B, and E is cancelling, then |E(B,B)| = p with overwhelming probability.
 If B₁ is *not* random, can't be sure

indistinguishability still holds Can't project with small target: If |E(B,B)| = p then E cannot be projecting.

Conclusions

Showed that if we want projecting and cancelling, generic transformations from composite- to prime-order groups fail

- Can't use DLIN (more generally, k-Linear [HK07,S07])
- This suggests possible functionality gap

Conclusions

Showed that if we want projecting and cancelling, generic transformations from composite- to prime-order groups fail

- Can't use DLIN (more generally, k-Linear [HK07,S07])
- This suggests possible functionality gap

Constructed a round-optimal blind signature scheme

- First efficient scheme using 'mild' assumptions (non-interactive, static), even including ones in the random oracle model
- Signature scheme demonstrates potential need for both properties

Positive:

Positive:

• Construct a projecting and cancelling pairing in prime-order groups

Positive:

• Construct a projecting and cancelling pairing in prime-order groups

Negative:

• Prove there can be no projecting and cancelling pairing in prime-order groups

Positive:

- Construct a projecting and cancelling pairing in prime-order groups
- Prove our scheme secure in prime-order groups

Negative:

• Prove there can be no projecting and cancelling pairing in prime-order groups

Positive:

- Construct a projecting and cancelling pairing in prime-order groups
- Prove our scheme secure in prime-order groups

- Prove there can be no projecting and cancelling pairing in prime-order groups
- Show our scheme is insecure in prime-order groups

Positive:

- Construct a projecting and cancelling pairing in prime-order groups
- Prove our scheme secure in prime-order groups
- Show another general conversion from composite- to prime-order groups

- Prove there can be no projecting and cancelling pairing in prime-order groups
- Show our scheme is insecure in prime-order groups

Positive:

- Construct a projecting and cancelling pairing in prime-order groups
- Prove our scheme secure in prime-order groups
- Show another general conversion from composite- to prime-order groups

- Prove there can be no projecting and cancelling pairing in prime-order groups
- Show our scheme is insecure in prime-order groups
- Prove that some other properties cannot be achieved in prime-order groups

Positive:

• Construct a projecting and cancelling pairing in prime-order groups

- Show our scheme is insecure in prime-order groups
- Prove that some other properties cannot be achieved in prime-order groups