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Bilinear groups are cyclic groups G of some finite order that admit a 
nondegenerate bilinear map e: G × G → GT 

• Bilinear: e(xa,y) = e(x,y)a = e(x,ya), nondegenerate: e(x,y) = 1 for all y ⇔ x = 1

• Composite order: |G| = N (often use N = pq), prime order: |G| = p

Historically, we use elliptic curves for two main reasons:

• Efficiency: discrete log problem is harder, can use smaller parameters

• Functionality: IBE [BF01], predicate encryption [KSW08], etc.
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Divide the talk into three main parts:

• The setting: work in composite-order bilinear groups

• The application: a round-optimal blind signature scheme

• The problem: what if we want to instantiate our scheme in a prime-order 
setting instead?
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Why would we switch to prime-order groups?

• Composite-order means bigger: in prime-order groups, can use group of 
size ~160 bits; in composite-order groups need ~1024 bits (discrete log vs. 
factoring)

• In addition, there aren’t many composite-order curve families (need to use 
supersingular vs. ordinary curves)

Previously, people converted schemes in an ad-hoc way [W09,GSW09,LW10]

Freeman [F10] is first to provide a general conversion method
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Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer 
learning which message he signed!

Applications: electronic cash [Ch82], anonymous credentials, etc.

Still a very active research area [O06,F09,AO10,AHO10,AFGHO10,R10]

The application: round-optimal blind signatures

8

m
σ

req
σ´σ

Same σ as in the unblinded 
case above
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• Abstract assumption: B = B1 × B2, where B1 is indistinguishable from B

• Subgroup hiding: set B = G = Gp × Gq

• DLIN: rank 2 matrix ~ rank 3 matrix for a 3×3 matrix over Fp

• Benefits: can use composite- and prime-order settings

Our scheme: ideas
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req={ci,πi}

σ=(S1,S2)

...blind signature is 
short (j=1,2,or 3), and...

...signature obtained is 
short as well!

Request is a bit long, but...

σ´=(K1,K2,{K3j})
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Can prove the following security theorem:

• Under the subgroup hiding and CDH assumptions, our blind signature 
scheme is one-more unforgeable and blind (using the standard definitions 
[JLO97]).

Can we prove a more abstract theorem?

• Blindness requires only the abstract assumption,...

• ... but one-more unforgeability requires more.



Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling



Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have: 

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))



Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have: 

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))

For cancelling, we have:

• decomposition B = B1 × B2 such that E(a,b) = 1 for all a in B1, b in B2



Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have: 

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))

For cancelling, we have:

• decomposition B = B1 × B2 such that E(a,b) = 1 for all a in B1, b in B2

In composite-order groups:

B = G = Gp × Gq

Projecting: π(x) = xλ for λ s.t. 
λ = 0 mod p
λ = 1 mod q 

Then π(g) = π(gp∗gq) = (gq∗gp)λ = gq

Cancelling:
E(gp,gq) = E(gq,gp) = E(g,g)pq = E(g,g)N = 1



Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have: 

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))

For cancelling, we have:

• decomposition B = B1 × B2 such that E(a,b) = 1 for all a in B1, b in B2

Freeman [F10] provides generic transformation to prime-order groups for schemes 
in composite-order groups that require either of these two properties

In composite-order groups:

B = G = Gp × Gq

Projecting: π(x) = xλ for λ s.t. 
λ = 0 mod p
λ = 1 mod q 

Then π(g) = π(gp∗gq) = (gq∗gp)λ = gq

Cancelling:
E(gp,gq) = E(gq,gp) = E(g,g)pq = E(g,g)N = 1
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E is public, if dependent on B1 

could reveal information to help 
to distinguish it from B

If B1 is not random, can’t be sure 
indistinguishability still holds

We can prove the following theorem:

• If we use the DLIN assumption* for the indistinguishability of B1 and B and 
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Showed that if we want projecting and cancelling, generic transformations from 
composite- to prime-order groups fail

• Can’t use DLIN (more generally, k-Linear [HK07,S07])

• This suggests possible functionality gap

Constructed a round-optimal blind signature scheme

• First efficient scheme using ‘mild’ assumptions (non-interactive, static), 
even including ones in the random oracle model

• Signature scheme demonstrates potential need for both properties
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• Construct a projecting and cancelling pairing in prime-order groups

• Prove our scheme secure in prime-order groups

• Show another general conversion from composite- to prime-order groups

16

Positive:

Negative:
• Prove there can be no projecting and cancelling pairing in prime-order groups

• Show our scheme is insecure in prime-order groups

• Prove that some other properties cannot be achieved in prime-order groups

Any questions?


