
Limitations on Transformations from Composite-
Order to Prime-Order Groups: The Case of Round-
Optimal Blind Signatures

Sarah Meiklejohn (UC San Diego)
Hovav Shacham (UC San Diego)
David Mandell Freeman (Stanford University)

1

Elliptic curves: what are they and why do we care?

2

Bilinear groups are cyclic groups G of some finite order that admit a
nondegenerate bilinear map e: G × G → GT

• Bilinear: e(xa,y) = e(x,y)a = e(x,ya), nondegenerate: e(x,y) = 1 for all y ⇔ x = 1

• Composite order: |G| = N (often use N = pq), prime order: |G| = p

Elliptic curves: what are they and why do we care?

3

Bilinear groups are cyclic groups G of some finite order that admit a
nondegenerate bilinear map e: G × G → GT

• Bilinear: e(xa,y) = e(x,y)a = e(x,ya), nondegenerate: e(x,y) = 1 for all y ⇔ x = 1

• Composite order: |G| = N (often use N = pq), prime order: |G| = p

Elliptic curves: what are they and why do we care?

4

Bilinear groups are cyclic groups G of some finite order that admit a
nondegenerate bilinear map e: G × G → GT

• Bilinear: e(xa,y) = e(x,y)a = e(x,ya), nondegenerate: e(x,y) = 1 for all y ⇔ x = 1

• Composite order: |G| = N (often use N = pq), prime order: |G| = p

Historically, we use elliptic curves for two main reasons:

• Efficiency: discrete log problem is harder, can use smaller parameters

• Functionality: IBE [BF01], predicate encryption [KSW08], etc.

Divide the talk into three main parts:

Outline

5

Divide the talk into three main parts:

• The setting: work in composite-order bilinear groups

Outline

5

Divide the talk into three main parts:

• The setting: work in composite-order bilinear groups

• The application: a round-optimal blind signature scheme

Outline

5

Divide the talk into three main parts:

• The setting: work in composite-order bilinear groups

• The application: a round-optimal blind signature scheme

• The problem: what if we want to instantiate our scheme in a prime-order
setting instead?

Outline

5

The setting: composite-order bilinear groups

• Cyclic groups G and GT of order N = pq, G = Gp × Gq but p,q are secret

• Bilinear map e: G × G → GT

• Often use the subgroup hiding assumption: element of Gq indistinguishable
from an element of G

• This setting has proved to be quite useful:

6

The setting: composite-order bilinear groups

• Cyclic groups G and GT of order N = pq, G = Gp × Gq but p,q are secret

• Bilinear map e: G × G → GT

• Often use the subgroup hiding assumption: element of Gq indistinguishable
from an element of G

• This setting has proved to be quite useful:

6

“somewhat”
homomorphic

encryption
[BGN05]

group
signatures

[BW07]

The setting: composite-order bilinear groups

• Cyclic groups G and GT of order N = pq, G = Gp × Gq but p,q are secret

• Bilinear map e: G × G → GT

• Often use the subgroup hiding assumption: element of Gq indistinguishable
from an element of G

• This setting has proved to be quite useful:

6

traitor
tracing

[BSW06]zero knowledge
[GOS06,GS08]

“somewhat”
homomorphic

encryption
[BGN05]

predicate
encryption
[KSW08]

ring
signatures

[SW07]
HIBE

[LW10]

group
signatures

[BW07]

The setting: composite-order bilinear groups

• Cyclic groups G and GT of order N = pq, G = Gp × Gq but p,q are secret

• Bilinear map e: G × G → GT

• Often use the subgroup hiding assumption: element of Gq indistinguishable
from an element of G

• This setting has proved to be quite useful:

6

traitor
tracing

[BSW06]zero knowledge
[GOS06,GS08]

“somewhat”
homomorphic

encryption
[BGN05]

predicate
encryption
[KSW08]

ring
signatures

[SW07]

blind
signatures
[MSF10] HIBE

[LW10]

Composite- vs. prime-order groups

7

Why would we switch to prime-order groups?

Composite- vs. prime-order groups

7

Why would we switch to prime-order groups?

• Composite-order means bigger: in prime-order groups, can use group of
size ~160 bits; in composite-order groups need ~1024 bits (discrete log vs.
factoring)

• In addition, there aren’t many composite-order curve families (need to use
supersingular vs. ordinary curves)

Composite- vs. prime-order groups

7

Why would we switch to prime-order groups?

• Composite-order means bigger: in prime-order groups, can use group of
size ~160 bits; in composite-order groups need ~1024 bits (discrete log vs.
factoring)

• In addition, there aren’t many composite-order curve families (need to use
supersingular vs. ordinary curves)

Previously, people converted schemes in an ad-hoc way [W09,GSW09,LW10]

Freeman [F10] is first to provide a general conversion method

Signatures: user obtains a signature σ on a message m from a signer

The application: round-optimal blind signatures

8

Signatures: user obtains a signature σ on a message m from a signer

The application: round-optimal blind signatures

8

Signatures: user obtains a signature σ on a message m from a signer

The application: round-optimal blind signatures

8

m

Signatures: user obtains a signature σ on a message m from a signer

The application: round-optimal blind signatures

8

m
σ

Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer
learning which message he signed!

The application: round-optimal blind signatures

8

m
σ

Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer
learning which message he signed!

The application: round-optimal blind signatures

8

m
σ

req

Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer
learning which message he signed!

The application: round-optimal blind signatures

8

m
σ

req
σ´

Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer
learning which message he signed!

The application: round-optimal blind signatures

8

m
σ

req
σ´σ

Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer
learning which message he signed!

The application: round-optimal blind signatures

8

m
σ

req
σ´σ

Same σ as in the unblinded
case above

Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer
learning which message he signed!

Applications: electronic cash [Ch82], anonymous credentials, etc.

The application: round-optimal blind signatures

8

m
σ

req
σ´σ

Same σ as in the unblinded
case above

Signatures: user obtains a signature σ on a message m from a signer

In a blind signature scheme [Ch82], user gets this signature without the signer
learning which message he signed!

Applications: electronic cash [Ch82], anonymous credentials, etc.

Still a very active research area [O06,F09,AO10,AHO10,AFGHO10,R10]

The application: round-optimal blind signatures

8

m
σ

req
σ´σ

Same σ as in the unblinded
case above

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Our scheme: ideas

9

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

Our scheme: ideas

9

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

Our scheme: ideas

9

e: G × G → GT

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

Our scheme: ideas

9

e: G × G → GT

 τ↓.................
E: B × B → BT

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

• Abstract assumption: B = B1 × B2, where B1 is indistinguishable from B

Our scheme: ideas

9

e: G × G → GT

 τ↓.................
E: B × B → BT

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

• Abstract assumption: B = B1 × B2, where B1 is indistinguishable from B

• Subgroup hiding: set B = G = Gp × Gq

Our scheme: ideas

9

e: G × G → GT

 τ↓.................
E: B × B → BT

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

• Abstract assumption: B = B1 × B2, where B1 is indistinguishable from B

• Subgroup hiding: set B = G = Gp × Gq

• DLIN: rank 2 matrix ~ rank 3 matrix for a 3×3 matrix over Fp

Our scheme: ideas

9

e: G × G → GT

 τ↓.................
E: B × B → BT

Simple construction (inspired by [BW06]): combine Waters signature [W07] with
Groth-Sahai zero-knowledge proofs [GS08]

Recap of Groth-Sahai setting:

• Abstract assumption: B = B1 × B2, where B1 is indistinguishable from B

• Subgroup hiding: set B = G = Gp × Gq

• DLIN: rank 2 matrix ~ rank 3 matrix for a 3×3 matrix over Fp

• Benefits: can use composite- and prime-order settings

Our scheme: ideas

9

e: G × G → GT

 τ↓.................
E: B × B → BT

Our scheme: sketch

10

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

10

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

10

req={ci,πi}

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

• Signer: check proof (ci,πi) for each i, then compute blind signature (K1,K2,{K3j})

10

req={ci,πi}

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

• Signer: check proof (ci,πi) for each i, then compute blind signature (K1,K2,{K3j})

10

req={ci,πi}

σ´=(K1,K2,{K3j})

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

• Signer: check proof (ci,πi) for each i, then compute blind signature (K1,K2,{K3j})

• User: check blind signature was formed properly, then unblind it using
randomness from the commitments to get Waters signature (S1,S2)

10

req={ci,πi}

σ´=(K1,K2,{K3j})

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

• Signer: check proof (ci,πi) for each i, then compute blind signature (K1,K2,{K3j})

• User: check blind signature was formed properly, then unblind it using
randomness from the commitments to get Waters signature (S1,S2)

10

req={ci,πi}

σ=(S1,S2) σ´=(K1,K2,{K3j})

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

• Signer: check proof (ci,πi) for each i, then compute blind signature (K1,K2,{K3j})

• User: check blind signature was formed properly, then unblind it using
randomness from the commitments to get Waters signature (S1,S2)

10

req={ci,πi}

σ=(S1,S2)

Request is a bit long, but...

σ´=(K1,K2,{K3j})

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

• Signer: check proof (ci,πi) for each i, then compute blind signature (K1,K2,{K3j})

• User: check blind signature was formed properly, then unblind it using
randomness from the commitments to get Waters signature (S1,S2)

10

req={ci,πi}

σ=(S1,S2)

...blind signature is
short (j=1,2,or 3), and...

Request is a bit long, but...

σ´=(K1,K2,{K3j})

Our scheme: sketch

• User: write message bitwise as m = b1...bn, compute GS commitment ci to
each bit bi and GS proof πi that value in ci is either 0 or 1

• Signer: check proof (ci,πi) for each i, then compute blind signature (K1,K2,{K3j})

• User: check blind signature was formed properly, then unblind it using
randomness from the commitments to get Waters signature (S1,S2)

10

req={ci,πi}

σ=(S1,S2)

...blind signature is
short (j=1,2,or 3), and...

...signature obtained is
short as well!

Request is a bit long, but...

σ´=(K1,K2,{K3j})

Our scheme: security

11

Can prove the following security theorem:

• Under the subgroup hiding and CDH assumptions, our blind signature
scheme is one-more unforgeable and blind (using the standard definitions
[JLO97]).

Our scheme: security

11

Can prove the following security theorem:

• Under the subgroup hiding and CDH assumptions, our blind signature
scheme is one-more unforgeable and blind (using the standard definitions
[JLO97]).

Can we prove a more abstract theorem?

Our scheme: security

11

Can prove the following security theorem:

• Under the subgroup hiding and CDH assumptions, our blind signature
scheme is one-more unforgeable and blind (using the standard definitions
[JLO97]).

Can we prove a more abstract theorem?

• Blindness requires only the abstract assumption,...

• ... but one-more unforgeability requires more.

Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have:

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))

Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have:

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))

For cancelling, we have:

• decomposition B = B1 × B2 such that E(a,b) = 1 for all a in B1, b in B2

Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have:

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))

For cancelling, we have:

• decomposition B = B1 × B2 such that E(a,b) = 1 for all a in B1, b in B2

In composite-order groups:

B = G = Gp × Gq

Projecting: π(x) = xλ for λ s.t.
λ = 0 mod p
λ = 1 mod q

Then π(g) = π(gp∗gq) = (gq∗gp)λ = gq

Cancelling:
E(gp,gq) = E(gq,gp) = E(g,g)pq = E(g,g)N = 1

Projecting and cancelling

12

Security proof relies on two properties: projecting and cancelling

For projecting, we have:

• decomposition B = B1 × B2

• map π: B → B2 s.t. π(b=b1*b2) = b2

• map πT s.t. πT(E(a,b)) = E(π(a),π(b))

For cancelling, we have:

• decomposition B = B1 × B2 such that E(a,b) = 1 for all a in B1, b in B2

Freeman [F10] provides generic transformation to prime-order groups for schemes
in composite-order groups that require either of these two properties

In composite-order groups:

B = G = Gp × Gq

Projecting: π(x) = xλ for λ s.t.
λ = 0 mod p
λ = 1 mod q

Then π(g) = π(gp∗gq) = (gq∗gp)λ = gq

Cancelling:
E(gp,gq) = E(gq,gp) = E(g,g)pq = E(g,g)N = 1

The problem: what if we want both properties?

13

This turns out to be very tricky!

The problem: what if we want both properties?

13

This turns out to be very tricky!

We want to prove the following theorem:

• If we use the DLIN assumption for the indistinguishability of B1 and B and
E is cancelling, then E cannot be projecting.

The problem: what if we want both properties?

13

This turns out to be very tricky!

We want to prove the following theorem:

• If we use the DLIN assumption for the indistinguishability of B1 and B and
E is cancelling, then E cannot be projecting.

Break it up into two lemmas:

• Cancelling shrinks the target space: If we use the DLIN assumption for the
indistinguishability of B1 and B and E is cancelling, then |E(B,B)| = p.

• Can’t project with small target: If |E(B,B)| = p then E cannot be projecting.

The problem: what if we want both properties?

13

This turns out to be very tricky!

We want to prove the following theorem:

• If we use the DLIN assumption for the indistinguishability of B1 and B and
E is cancelling, then E cannot be projecting.

Break it up into two lemmas:

• Cancelling shrinks the target space: If we use the DLIN assumption for the
indistinguishability of B1 and B and E is cancelling, then |E(B,B)| = p.

• Can’t project with small target: If |E(B,B)| = p then E cannot be projecting.

The problem: what if we want both properties?

14

We can prove the following theorem:

• If we use the DLIN assumption* for the indistinguishability of B1 and B and
E is cancelling, then E cannot be projecting with overwhelming probability.

Break it up into two lemmas:

• Let E: B × B → BT be a nondegenerate pairing that is independent of the
decomposition B = B1 × B2. Then if B = G3, B1 is a uniformly random
rank-2 submodule of B, and E is cancelling, then |E(B,B)| = p with
overwhelming probability.

• Can’t project with small target: If |E(B,B)| = p then E cannot be projecting.

The problem: what if we want both properties?

14

E is public, if dependent on B1

could reveal information to help
to distinguish it from B

We can prove the following theorem:

• If we use the DLIN assumption* for the indistinguishability of B1 and B and
E is cancelling, then E cannot be projecting with overwhelming probability.

Break it up into two lemmas:

• Let E: B × B → BT be a nondegenerate pairing that is independent of the
decomposition B = B1 × B2. Then if B = G3, B1 is a uniformly random
rank-2 submodule of B, and E is cancelling, then |E(B,B)| = p with
overwhelming probability.

• Can’t project with small target: If |E(B,B)| = p then E cannot be projecting.

The problem: what if we want both properties?

14

E is public, if dependent on B1

could reveal information to help
to distinguish it from B

If B1 is not random, can’t be sure
indistinguishability still holds

We can prove the following theorem:

• If we use the DLIN assumption* for the indistinguishability of B1 and B and
E is cancelling, then E cannot be projecting with overwhelming probability.

Break it up into two lemmas:

• Let E: B × B → BT be a nondegenerate pairing that is independent of the
decomposition B = B1 × B2. Then if B = G3, B1 is a uniformly random
rank-2 submodule of B, and E is cancelling, then |E(B,B)| = p with
overwhelming probability.

• Can’t project with small target: If |E(B,B)| = p then E cannot be projecting.

Conclusions

15

Showed that if we want projecting and cancelling, generic transformations from
composite- to prime-order groups fail

• Can’t use DLIN (more generally, k-Linear [HK07,S07])

• This suggests possible functionality gap

Conclusions

15

Showed that if we want projecting and cancelling, generic transformations from
composite- to prime-order groups fail

• Can’t use DLIN (more generally, k-Linear [HK07,S07])

• This suggests possible functionality gap

Constructed a round-optimal blind signature scheme

• First efficient scheme using ‘mild’ assumptions (non-interactive, static),
even including ones in the random oracle model

• Signature scheme demonstrates potential need for both properties

Open problems

16

Positive:

Negative:

Open problems

• Construct a projecting and cancelling pairing in prime-order groups

16

Positive:

Negative:

Open problems

• Construct a projecting and cancelling pairing in prime-order groups

16

Positive:

Negative:
• Prove there can be no projecting and cancelling pairing in prime-order groups

Open problems

• Construct a projecting and cancelling pairing in prime-order groups

• Prove our scheme secure in prime-order groups

16

Positive:

Negative:
• Prove there can be no projecting and cancelling pairing in prime-order groups

Open problems

• Construct a projecting and cancelling pairing in prime-order groups

• Prove our scheme secure in prime-order groups

16

Positive:

Negative:
• Prove there can be no projecting and cancelling pairing in prime-order groups

• Show our scheme is insecure in prime-order groups

Open problems

• Construct a projecting and cancelling pairing in prime-order groups

• Prove our scheme secure in prime-order groups

• Show another general conversion from composite- to prime-order groups

16

Positive:

Negative:
• Prove there can be no projecting and cancelling pairing in prime-order groups

• Show our scheme is insecure in prime-order groups

Open problems

• Construct a projecting and cancelling pairing in prime-order groups

• Prove our scheme secure in prime-order groups

• Show another general conversion from composite- to prime-order groups

16

Positive:

Negative:
• Prove there can be no projecting and cancelling pairing in prime-order groups

• Show our scheme is insecure in prime-order groups

• Prove that some other properties cannot be achieved in prime-order groups

Open problems

• Construct a projecting and cancelling pairing in prime-order groups

• Prove our scheme secure in prime-order groups

• Show another general conversion from composite- to prime-order groups

16

Positive:

Negative:
• Prove there can be no projecting and cancelling pairing in prime-order groups

• Show our scheme is insecure in prime-order groups

• Prove that some other properties cannot be achieved in prime-order groups

Any questions?

