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Homomorphic Encryption Agressive analysis of S(V)SSP Shallower decryption

Main result

Improved bit-complexity bound for homomorphically evaluating a
binary gate with Gentry’s fully homomorphic scheme:

Õ(t6) −→ Õ(t3.5) bit operations, with t =security parameter.

To compare with: standard RSA Enc/Dec costs Õ(t3) per bit.

Two ingredients:

A less pessimistic analysis of one of the hardness assumptions.

An improved decryption algorithm.
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Two ingredients:

A less pessimistic analysis of one of the hardness assumptions.

An improved decryption algorithm.
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Homomorphic Encryption Agressive analysis of S(V)SSP Shallower decryption

1 Reminders on homomorphic encryption.

2 Ingredient 1: a less pessimistic analysis of S(V)SSP.

3 Ingredient 2: a shallower decryption algorithm.

Damien Stehlé Faster Fully Homomorphic Encryption 08/12/2010 3/21



Homomorphic Encryption Agressive analysis of S(V)SSP Shallower decryption

Ideal lattices

Let n be a power of 2 and R = Z[x ]/(xn + 1).

J ⊆ R is an ideal if ∀a, b ∈ J,∀r ∈ R : a + b · r ∈ J.

Any ideal is a lattice, i.e., an additive subgroup of Zn.

Basis: (bi )i≤n linearly independent s.t.

L = {∑i≤n xibi : xi ∈ Z}

Minimum: λ = min(‖b‖ : b ∈ L \ 0).

Determinant: det = | det((bi )i )|, for any basis.
= volume of Rn/L.
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Gentry’s somewhat homomorphic scheme: SomHom

Public key: BJ a basis of an ideal J, with rather large det(J).

Secret key: vsk
J .

Plaintext domain: P = {0, 1}. Ciphertext domain: C = R/BJ .

Encryption:

π 7→ ψ = (π + 2ρ) mod BJ , with ρ random and small.

Decryption:

ψ 7→ (ψ − ⌊vsk
J · ψ⌉) mod 2.
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Properties of Gentry’s scheme

“Enc(π1)
(
+
×

)
Enc(π2) mod BJ” decrypts to π1

(
+
×

)
π2.

“π + 2ρ mod BJ” decrypts to π, if ρ <∼ det(J)1/n ≈ λ(J).

An addition doubles ρ, a multiplication squares ρ.

Best known attack: Finding π from “π + 2ρ mod BJ” is an
instance of the Bounded Distance Decoding problem.

See [Gentry-CRYPTO’10] for a security proof of SomHom.
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Lattice reduction ‘Rule of Thumb’ conjecture

BDDγ

Given (bi )i basis of L and t ∈ Qn such that dist(t, L) ≤ γ−1 · λ(L),
find b ∈ L closest to t.

SVPγ

Given (bi )i basis of L, find b ∈ L such that 0 < ‖b‖ ≤ γ · λ(L).

Lattice reduction ‘rule of thumb’ conjecture

There exists a constant c s.t. the following holds. Assuming there
is nothing “special” with the lattice:
with time ≤ 2t , one cannot solve SVPγ/BDDγ for γ < cn/t .

This conjecture is consistent with the current algorithmic
knowledge. Essentially unchanged since [Schnorr’87].
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From SomHom to FullHom, via bootstrapping

An encryption scheme is bootstrappable if it can
homomorphically evaluate its own decryption circuit.

Decryption/security constraints
⇒ SomHom is not bootstrappable.

To squash the decryption, some effort is shifted from P to C:

Splitting the secret key vsk
J :

vsk
J =

∑

i≤nset

sivi , for s ∈ {0, 1}n of Hamming weight nsub.

New secret key: (si )i ; New public key: BJ , (vi )i .

Ciphertext expansion: ψ 7→ (ψ × vi )i .

Decryption: ψ, (ψ × vi )i 7→ (ψ − ⌊∑i si (ψ × vi )⌉) mod 2.
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Homomorphic Encryption Agressive analysis of S(V)SSP Shallower decryption

1 Reminders on homomorphic encryption.

2 Ingredient 1: a less pessimistic analysis of S(V)SSP.

3 Ingredient 2: a shallower decryption algorithm.

Using the lattice ‘rule of thumb’ for both BDD and S(V)SSP.
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The Sparse Vector Subset Sum Problem

SVSSPnset ,nsub

Distinguish between (ai )i≤nset
uniform in [R mod (2J)]nset and the

same but conditioned on the existence of s ∈ {0, 1}nset of
Hamming weight nsub s.t.

∑
i siai = 0 mod 2J.

Resembles Sparse Subset Sum Problem (with integers rather
than ring elements), used for server-aided RSA.

Gentry showed that FullHom is secure assuming the
hardnesses of:

BDDγ for ideal lattices, for a large γ.
SVSSPnset ,nsub

for specific values of nsub ≪ nset .
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Known attacks on SVSSP

SVSSPnset ,nsub

Distinguish between (ai )i≤nset
uniform in [R mod (2J)]nset and the

same but conditioned on the existence of s ∈ {0, 1}nset of
Hamming weight nsub s.t.

∑
i siai = 0 mod 2J.

Birthday paradox. Requires time
(
nset

nsub

)1/2
.

Lattice attack: s is likely to be a shortest non-zero vector in

L = {x ∈ Znset :
∑

i

xiai = 0 mod 2J}.
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Analysis of the lattice attack against SVSSP

L = {x ∈ Znset :
∑

i xiai = 0 mod 2J}.

dim(L) = nset .

λ(L) ∈ [1,
√

nsub].

det(L) ≤ det(2J) = 2n det(J).

Former analysis:

nset ≫ log2 det(2J) implies the existence of too many short
vectors (via Minkowski’s theorem).

Most are unlikely to give any insight for solving SVSSP.
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A less pessimistic analysis of the lattice attack

L = {x ∈ Znset :
∑

i xiai = 0 mod 2J}.

The former analysis assumes being able to find extremely
short vectors of L, i.e., essentially solve SVP.

But for SomHom, we assumed BDDγ hard for a large γ.

We homogenize the hardness assumptions:

‘Rule of thumb’ ⇒ in time ≤ 2t , one cannot find vectors
shorter than cnset/t , for some constant c .

Minkowski’s theorem implies that there are many vectors of L

within that norm bound.

Most are unlikely to give any insight for solving SVSSP.
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Homomorphic Encryption Agressive analysis of S(V)SSP Shallower decryption

1 Reminders on homomorphic encryption.

2 Ingredient 1: a less pessimistic analysis of S(V)SSP.

3 Ingredient 2: a shallower decryption algorithm.

Using fewer multiplications to homomorphically decrypt.
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Decryption

For SomHom: ψ 7→ ψ − ⌊vsk
J · ψ⌉ mod 2.

Squashed decryption:

ψ, (ψ × vi )i 7→ ψ − ⌊∑i si (ψ × vi )⌉ mod 2.

The decryption circuit is to be evaluated homomorphically.

What’s important: not the time complexity, but the
multiplicative degree of the algebraic decryption circuit.

Because this fixes the homomorphic capacity of SomHom,
and thus the size of J.
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Damien Stehlé Faster Fully Homomorphic Encryption 08/12/2010 15/21



Homomorphic Encryption Agressive analysis of S(V)SSP Shallower decryption

Degree of the decryption

Dominating component: sum of nsub reals y1, . . . , ynsub
, modulo 2.

1 Choose a precision p for the inputs: yi =
∑p

j=0 yi ,j2
−j .

2 For each j , compute Sj =
∑

i≤nsub
yi ,j .

3 Compute S = (
∑

j Sj2
−j) mod 2.

Step 2 dominates.

If
∑

k Sj ,k2k is the binary representation of Sj , then Sj ,k has
algebraic degree 2k .

Sj can be as large as nsub ⇒ decryption degree ≈ nsub
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Shallower decryption: first remark

Dominating component: sum of nsub reals y1, . . . ynsub
, modulo 2.

1 Choose a precision p for the inputs: yi =
∑p

j=0 yi ,j2
−j .

2 For each j , compute Sj =
∑

i≤nsub
yi ,j .

3 Compute S = (
∑

j Sj2
−j) mod 2.

Sj needs only being evaluated mod 2j+1.

Since j ≤ p, the decryption degree is ≤ min(2p+1, nsub).

But which p do we need?
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Shallower decryption: choice of p

yi = y ′
i + εi , |εi | ≤ 2−p i = 1..nsub.

Promise:
∑

yi is at distance ≤ 1/4 of an integer.

Former strategy: p = 4 + log2 nsub ⇒ |
∑

i εi | ≤ 1/8.

Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

If the εi ’s are iid with expectancy 0, Hoeffding’s bound gives:

Pr

[
|
∑

i

εi | ≥
√

nsub · 2−p · ω(
√

log t)

]
≤ n−ω(1).

⇒ Choose p ≈ 1
2 log2 nsub.
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Remarks on the shallower decryption

Making the εi ’s iid with expectancy 0 requires some care.

Decryption is now probabilistic: it fails with negligible prob.

Additional difficulty for the KDM-variant of Gentry’s FullHom
(to ensure independence).
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Conclusion

Let q = det(2J), security goal ≥ 2t .

Condition [Gentry’09] Here

Ideal-BDD hard q1/n ≤ cn/t

SVSSP-Combinatorial
(
nset

nsub

)
≥ 22t

SVSSP-Lattice nset = Ω(log q) n2
set

t
= Ω̃(log q)

Bootstrappability nsub ≤ log q1/n √
nsub

<∼ log q1/n

Complexity of homomorphically evaluating one gate:

≈ nset log q : Õ(t6) −→ Õ(t3.5).
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Open problems

1 Faster scheme, e.g., using more bits in the plaintext
(see work by Smart and Vercauteren).

2 Fewer security assumptions, e.g., no S(V)SSP.

3 Better understood security assumptions: can we rely on more
classical assumptions? can we improve Gentry’s CRYPTO’10
reduction?

4 What about practice? (see work by Gentry and Halevi).
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