Faster Fully Homomorphic Encryption

Damien Stehlé Joint work with Ron Steinfeld

CNRS – ENS de Lyon / Macquarie University

Singapore, December 2010

Main result

Improved bit-complexity bound for homomorphically evaluating a binary gate with Gentry's fully homomorphic scheme:

 $\widetilde{\mathcal{O}}(t^6) \longrightarrow \widetilde{\mathcal{O}}(t^{3.5})$ bit operations, with t =security parameter.

To compare with: standard RSA Enc/Dec costs $\widetilde{\mathcal{O}}(t^3)$ per bit. Two ingredients:

- A less pessimistic analysis of one of the hardness assumptions.
- An improved decryption algorithm.

Main result

Improved bit-complexity bound for homomorphically evaluating a binary gate with Gentry's fully homomorphic scheme:

 $\widetilde{\mathcal{O}}(t^6) \longrightarrow \widetilde{\mathcal{O}}(t^{3.5})$ bit operations, with t =security parameter.

To compare with: standard RSA Enc/Dec costs $\widetilde{\mathcal{O}}(t^3)$ per bit.

Two ingredients:

- A less pessimistic analysis of one of the hardness assumptions.
- An improved decryption algorithm.

Main result

Improved bit-complexity bound for homomorphically evaluating a binary gate with Gentry's fully homomorphic scheme:

 $\widetilde{\mathcal{O}}(t^6) \longrightarrow \widetilde{\mathcal{O}}(t^{3.5})$ bit operations, with t =security parameter.

To compare with: standard RSA Enc/Dec costs $\widetilde{\mathcal{O}}(t^3)$ per bit.

Two ingredients:

- A less pessimistic analysis of one of the hardness assumptions.
- An improved decryption algorithm.

Q Reminders on homomorphic encryption.

- **2** Ingredient 1: a less pessimistic analysis of S(V)SSP.
- Ingredient 2: a shallower decryption algorithm.

Let *n* be a power of 2 and $R = \mathbb{Z}[x]/(x^n + 1)$.

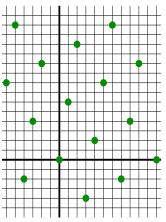
- $J \subseteq R$ is an ideal if $\forall a, b \in J, \forall r \in R : a + b \cdot r \in J$.
- Any ideal is a lattice, i.e., an additive subgroup of \mathbb{Z}^n .

Basis: $(\mathbf{b}_i)_{i \leq n}$ linearly independent s.t.

 $L = \{\sum_{i \le n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$

Minimum: $\lambda = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Determinant: det = $|det((\mathbf{b}_i)_i)|$, for any basis. = volume of \mathbb{R}^n/L .



Let *n* be a power of 2 and $R = \mathbb{Z}[x]/(x^n + 1)$.

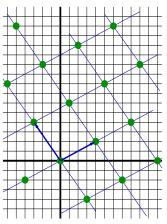
- $J \subseteq R$ is an ideal if $\forall a, b \in J, \forall r \in R : a + b \cdot r \in J$.
- Any ideal is a lattice, i.e., an additive subgroup of \mathbb{Z}^n .

Basis: $(\mathbf{b}_i)_{i \leq n}$ linearly independent s.t.

 $L = \{\sum_{i \le n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$

Minimum: $\lambda = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Determinant: det = $|det((\mathbf{b}_i)_i)|$, for any basis. = volume of \mathbb{R}^n/L .



Let *n* be a power of 2 and $R = \mathbb{Z}[x]/(x^n + 1)$.

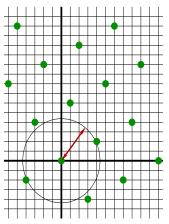
- $J \subseteq R$ is an ideal if $\forall a, b \in J, \forall r \in R : a + b \cdot r \in J$.
- Any ideal is a lattice, i.e., an additive subgroup of \mathbb{Z}^n .

Basis: $(\mathbf{b}_i)_{i \leq n}$ linearly independent s.t.

$$L = \{\sum_{i \le n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$$

Minimum: $\lambda = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Determinant: det = $|det((\mathbf{b}_i)_i)|$, for any basis. = volume of \mathbb{R}^n/L .



Let *n* be a power of 2 and $R = \mathbb{Z}[x]/(x^n + 1)$.

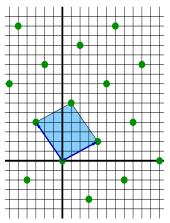
- $J \subseteq R$ is an ideal if $\forall a, b \in J, \forall r \in R : a + b \cdot r \in J$.
- Any ideal is a lattice, i.e., an additive subgroup of \mathbb{Z}^n .

Basis: $(\mathbf{b}_i)_{i \leq n}$ linearly independent s.t.

$$L = \{\sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$$

Minimum: $\lambda = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Determinant: det =
$$|\det((\mathbf{b}_i)_i)|$$
, for any basis.
= volume of \mathbb{R}^n/L .



Gentry's somewhat homomorphic scheme: SomHom

- Public key: B_J a basis of an ideal J, with rather large det(J).
- Secret key: \mathbf{v}_{J}^{sk} .
- Plaintext domain: $\mathcal{P} = \{0, 1\}$. Ciphertext domain: $\mathcal{C} = R/B_J$.

• Encryption:

 $\pi \mapsto \psi = (\pi + 2\rho) \mod B_J$, with ρ random and small.

• Decryption:

$$\psi \mapsto (\psi - \lfloor \mathbf{v}_J^{sk} \cdot \psi \rfloor) \mod 2.$$

Gentry's somewhat homomorphic scheme: SomHom

- Public key: B_J a basis of an ideal J, with rather large det(J).
- Secret key: \mathbf{v}_J^{sk} .
- Plaintext domain: $\mathcal{P} = \{0,1\}$. Ciphertext domain: $\mathcal{C} = R/B_J$.

• Encryption:

 $\pi \mapsto \psi = (\pi + 2\rho) \mod B_J$, with ρ random and small.

• Decryption:

$$\psi \mapsto (\psi - [\mathbf{v}_J^{sk} \cdot \psi]) \mod 2.$$

Gentry's somewhat homomorphic scheme: SomHom

- Public key: B_J a basis of an ideal J, with rather large det(J).
- Secret key: \mathbf{v}_J^{sk} .
- Plaintext domain: $\mathcal{P} = \{0, 1\}$. Ciphertext domain: $\mathcal{C} = R/B_J$.

• Encryption:

 $\pi \mapsto \psi = (\pi + 2\rho) \mod B_J$, with ρ random and small.

Decryption:

$$\psi \mapsto (\psi - \lfloor \mathbf{v}_J^{sk} \cdot \psi \rceil) \mod 2.$$

• "Enc (π_1) ($^+_{\times}$) Enc (π_2) mod B_J " decrypts to $\pi_1(^+_{\times})$ π_2 .

• " $\pi + 2\rho \mod B_J$ " decrypts to π , if $\rho \lesssim \det(J)^{1/n} \approx \lambda(J)$.

• An addition doubles ρ , a multiplication squares ρ .

Best known attack: Finding π from " $\pi + 2\rho$ mod B_J " is an instance of the Bounded Distance Decoding problem.

- "Enc (π_1) ($^+_{\times}$) Enc (π_2) mod B_J " decrypts to $\pi_1(^+_{\times})$ π_2 .
- " $\pi + 2\rho \mod B_J$ " decrypts to π , if $\rho \lesssim \det(J)^{1/n} \approx \lambda(J)$.
- An addition doubles ρ , a multiplication squares ρ .

Best known attack: Finding π from " $\pi + 2\rho \mod B_J$ " is an instance of the Bounded Distance Decoding problem.

- "Enc (π_1) ($^+_{\times}$) Enc (π_2) mod B_J " decrypts to $\pi_1(^+_{\times})$ π_2 .
- " $\pi + 2\rho \mod B_J$ " decrypts to π , if $\rho \lesssim \det(J)^{1/n} \approx \lambda(J)$.
- An addition doubles ρ , a multiplication squares ρ .

Best known attack: Finding π from " $\pi + 2\rho \mod B_J$ " is an instance of the Bounded Distance Decoding problem.

- "Enc (π_1) ($^+_{\times}$) Enc (π_2) mod B_J " decrypts to $\pi_1(^+_{\times})$ π_2 .
- " $\pi + 2\rho \mod B_J$ " decrypts to π , if $\rho \lesssim \det(J)^{1/n} \approx \lambda(J)$.
- An addition doubles ρ , a multiplication squares ρ .

Best known attack: Finding π from " $\pi + 2\rho \mod B_J$ " is an instance of the Bounded Distance Decoding problem.

- "Enc (π_1) ($^+_{\times}$) Enc (π_2) mod B_J " decrypts to $\pi_1(^+_{\times})$ π_2 .
- " $\pi + 2\rho \mod B_J$ " decrypts to π , if $\rho \lesssim \det(J)^{1/n} \approx \lambda(J)$.
- An addition doubles ρ , a multiplication squares ρ .

Best known attack: Finding π from " $\pi + 2\rho \mod B_J$ " is an instance of the Bounded Distance Decoding problem.

Lattice reduction 'Rule of Thumb' conjecture

BDD_{γ}

Given $(\mathbf{b}_i)_i$ basis of L and $\mathbf{t} \in \mathbb{Q}^n$ such that $dist(\mathbf{t}, L) \leq \gamma^{-1} \cdot \lambda(L)$, find $\mathbf{b} \in L$ closest to \mathbf{t} .

SVP_{γ}

Given $(\mathbf{b}_i)_i$ basis of L, find $\mathbf{b} \in L$ such that $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.

Lattice reduction 'rule of thumb' conjecture

There exists a constant c s.t. the following holds. Assuming there is nothing "special" with the lattice: with time $\leq 2^t$, one cannot solve SVP_{γ}/BDD_{γ} for $\gamma < c^{n/t}$.

This conjecture is consistent with the current algorithmic knowledge. Essentially unchanged since [Schnorr'87].

Damien Stehlé

Faster Fully Homomorphic Encryption

Lattice reduction 'Rule of Thumb' conjecture

BDD_{γ}

Given $(\mathbf{b}_i)_i$ basis of L and $\mathbf{t} \in \mathbb{Q}^n$ such that $dist(\mathbf{t}, L) \leq \gamma^{-1} \cdot \lambda(L)$, find $\mathbf{b} \in L$ closest to \mathbf{t} .

SVP_{γ}

Given $(\mathbf{b}_i)_i$ basis of L, find $\mathbf{b} \in L$ such that $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.

Lattice reduction 'rule of thumb' conjecture

There exists a constant c s.t. the following holds. Assuming there is nothing "special" with the lattice: with time $\leq 2^t$, one cannot solve SVP_{γ}/BDD_{γ} for $\gamma < c^{n/t}$.

This conjecture is consistent with the current algorithmic knowledge. Essentially unchanged since [Schnorr'87].

Damien Stehlé

Lattice reduction 'Rule of Thumb' conjecture

BDD_{γ}

Given $(\mathbf{b}_i)_i$ basis of L and $\mathbf{t} \in \mathbb{Q}^n$ such that $dist(\mathbf{t}, L) \leq \gamma^{-1} \cdot \lambda(L)$, find $\mathbf{b} \in L$ closest to \mathbf{t} .

SVP_{γ}

Given $(\mathbf{b}_i)_i$ basis of L, find $\mathbf{b} \in L$ such that $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$.

Lattice reduction 'rule of thumb' conjecture

There exists a constant c s.t. the following holds. Assuming there is nothing "special" with the lattice: with time $\leq 2^t$, one cannot solve SVP_{γ}/BDD_{γ} for $\gamma < c^{n/t}$.

This conjecture is consistent with the current algorithmic knowledge. Essentially unchanged since [Schnorr'87].

Damien Stehlé

Faster Fully Homomorphic Encryption

From SomHom to FullHom, via bootstrapping

- An encryption scheme is bootstrappable if it can homomorphically evaluate its own decryption circuit.
- Decryption/security constraints
 ⇒ SomHom is not bootstrappable.
- To squash the decryption, some effort is shifted from *P* to *C*:
 Splitting the secret key v^{sk}_J:

$$\mathbf{v}_J^{sk} = \sum_{i \leq n_{set}} s_i \mathbf{v}_i, \text{ for } \mathbf{s} \in \{0,1\}^n \text{ of Hamming weight } n_{sub}.$$

- New secret key: $(s_i)_i$; New public key: B_J , $(\mathbf{v}_i)_i$.
- Ciphertext expansion: $\psi \mapsto (\psi \times \mathbf{v}_i)_i$.
- Decryption: $\psi, (\psi \times \mathbf{v}_i)_i \mapsto (\psi \lfloor \sum_i s_i(\psi \times \mathbf{v}_i) \rfloor) \mod 2.$

From SomHom to FullHom, via bootstrapping

- An encryption scheme is bootstrappable if it can homomorphically evaluate its own decryption circuit.
- Decryption/security constraints
 - \Rightarrow SomHom is not bootstrappable.

To squash the decryption, some effort is shifted from ${\mathcal P}$ to ${\mathcal C}:$

• Splitting the secret key \mathbf{v}_J^{sk} :

$$\mathbf{v}_J^{sk} = \sum_{i \leq n_{set}} s_i \mathbf{v}_i, ext{ for } \mathbf{s} \in \{0,1\}^n ext{ of Hamming weight } n_{sub}.$$

- New secret key: $(s_i)_i$; New public key: B_J , $(\mathbf{v}_i)_i$.
- Ciphertext expansion: $\psi \mapsto (\psi \times \mathbf{v}_i)_i$.
- Decryption: $\psi, (\psi \times \mathbf{v}_i)_i \mapsto (\psi \lfloor \sum_i s_i(\psi \times \mathbf{v}_i) \rfloor) \mod 2.$

From SomHom to FullHom, via bootstrapping

- An encryption scheme is bootstrappable if it can homomorphically evaluate its own decryption circuit.
- Decryption/security constraints
 - \Rightarrow SomHom is not bootstrappable.
- To squash the decryption, some effort is shifted from \mathcal{P} to \mathcal{C} :
 - Splitting the secret key \mathbf{v}_J^{sk} :

$$\mathbf{v}_J^{sk} = \sum_{i \leq n_{set}} s_i \mathbf{v}_i$$
, for $\mathbf{s} \in \{0,1\}^n$ of Hamming weight n_{sub} .

- New secret key: $(s_i)_i$; New public key: B_J , $(\mathbf{v}_i)_i$.
- Ciphertext expansion: $\psi \mapsto (\psi \times \mathbf{v}_i)_i$.
- Decryption: $\psi, (\psi \times \mathbf{v}_i)_i \mapsto (\psi \lfloor \sum_i s_i(\psi \times \mathbf{v}_i) \rceil) \mod 2.$

- Reminders on homomorphic encryption.
- **2** Ingredient 1: a less pessimistic analysis of S(V)SSP.
- Ingredient 2: a shallower decryption algorithm.

Using the lattice 'rule of thumb' for both BDD and S(V)SSP.

The Sparse Vector Subset Sum Problem

$SVSSP_{n_{set}, n_{sub}}$

- Resembles Sparse Subset Sum Problem (with integers rather than ring elements), used for server-aided RSA.
- Gentry showed that FullHom is secure assuming the hardnesses of:
 - BDD_{γ} for ideal lattices, for a large $\gamma.$
 - SVSSP_{n_{set}, n_{sub}} for specific values of $n_{sub} \ll n_{set}$.

The Sparse Vector Subset Sum Problem

$SVSSP_{n_{set}, n_{sub}}$

- Resembles Sparse Subset Sum Problem (with integers rather than ring elements), used for server-aided RSA.
- Gentry showed that FullHom is secure assuming the hardnesses of:
 - BDD_{γ} for ideal lattices, for a large γ .
 - SVSSP_{n_{set}, n_{sub}} for specific values of $n_{sub} \ll n_{set}$.

Known attacks on SVSSP

$SVSSP_{n_{set}, n_{sub}}$

- Birthday paradox. Requires time $\binom{n_{set}}{n_{cub}}^{1/2}$
- Lattice attack: s is likely to be a shortest non-zero vector in

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{set}} : \sum_{i} x_i \mathbf{a}_i = 0 \mod 2J \}.$$

Known attacks on SVSSP

$SVSSP_{n_{set}, n_{sub}}$

- Birthday paradox. Requires time $\binom{n_{set}}{n_{sub}}^{1/2}$.
- Lattice attack: **s** is likely to be a shortest non-zero vector in

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{set}} : \sum_{i} x_i \mathbf{a}_i = 0 \text{ mod } 2J \}.$$

Analysis of the lattice attack against SVSSP

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{set}} : \sum_{i} x_i \mathbf{a}_i = 0 \mod 2J \}.$$

• dim
$$(L) = n_{set}$$
.

•
$$\lambda(L) \in [1, \sqrt{n_{sub}}].$$

•
$$\det(L) \leq \det(2J) = 2^n \det(J)$$
.

Former analysis:

- *n_{set}* ≫ log₂ det(2*J*) implies the existence of too many short vectors (via Minkowski's theorem).
- Most are unlikely to give any insight for solving SVSSP.

Analysis of the lattice attack against SVSSP

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{set}} : \sum_{i} x_i \mathbf{a}_i = 0 \mod 2J \}.$$

• dim
$$(L) = n_{set}$$
.

•
$$\lambda(L) \in [1, \sqrt{n_{sub}}].$$

•
$$\det(L) \leq \det(2J) = 2^n \det(J)$$
.

Former analysis:

- n_{set} ≫ log₂ det(2J) implies the existence of too many short vectors (via Minkowski's theorem).
- Most are unlikely to give any insight for solving SVSSP.

A less pessimistic analysis of the lattice attack

$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{set}} : \sum_{i} x_i \mathbf{a}_i = 0 \mod 2J \}.$

- The former analysis assumes being able to find extremely short vectors of *L*, i.e., essentially solve SVP.
- But for SOMHOM, we assumed BDD_{γ} hard for a large γ .

We homogenize the hardness assumptions:

- 'Rule of thumb' ⇒ in time ≤ 2^t, one cannot find vectors shorter than c^{n_{set}/t}, for some constant c.
- Minkowski's theorem implies that there are many vectors of *L* within that norm bound.
- Most are unlikely to give any insight for solving SVSSP.

A less pessimistic analysis of the lattice attack

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{set}} : \sum_{i} x_i \mathbf{a}_i = 0 \mod 2J \}.$$

- The former analysis assumes being able to find extremely short vectors of *L*, i.e., essentially solve SVP.
- But for SOMHOM, we assumed BDD_{γ} hard for a large γ .

We homogenize the hardness assumptions:

- 'Rule of thumb' ⇒ in time ≤ 2^t, one cannot find vectors shorter than c^{n_{set}/t}, for some constant c.
- Minkowski's theorem implies that there are many vectors of *L* within that norm bound.
- Most are unlikely to give any insight for solving SVSSP.

A less pessimistic analysis of the lattice attack

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{set}} : \sum_{i} x_i \mathbf{a}_i = 0 \mod 2J \}.$$

- The former analysis assumes being able to find extremely short vectors of *L*, i.e., essentially solve SVP.
- But for SOMHOM, we assumed BDD_{γ} hard for a large γ .

We homogenize the hardness assumptions:

- 'Rule of thumb' ⇒ in time ≤ 2^t, one cannot find vectors shorter than c^{n_{set}/t}, for some constant c.
- Minkowski's theorem implies that there are many vectors of *L* within that norm bound.
- Most are unlikely to give any insight for solving SVSSP.

- Reminders on homomorphic encryption.
- **2** Ingredient 1: a less pessimistic analysis of S(V)SSP.
- **Ingredient 2:** a shallower decryption algorithm.

Using fewer multiplications to homomorphically decrypt.

Decryption

- For SOMHOM: $\psi \mapsto \psi \lfloor \mathbf{v}_J^{sk} \cdot \psi \rfloor \mod 2$.
- Squashed decryption:

$$\psi, (\psi \times \mathbf{v}_i)_i \mapsto \psi - \lfloor \sum_i s_i(\psi \times \mathbf{v}_i) \rfloor \mod 2.$$

- The decryption circuit is to be evaluated homomorphically.
- What's important: not the time complexity, but the multiplicative degree of the algebraic decryption circuit.
- Because this fixes the homomorphic capacity of SOMEMON, MOREMON, MOREMON, MOREMON, MOREMON, MOREMON, MOREMON, M

Decryption

- For SOMHOM: $\psi \mapsto \psi \lfloor \mathbf{v}_J^{sk} \cdot \psi \rfloor \mod 2$.
- Squashed decryption:

$$\psi, (\psi \times \mathbf{v}_i)_i \mapsto \psi - \lfloor \sum_i s_i(\psi \times \mathbf{v}_i) \rfloor \mod 2.$$

- The decryption circuit is to be evaluated homomorphically.
- What's important: not the time complexity, but the multiplicative degree of the algebraic decryption circuit.
- Because this fixes the homomorphic capacity of SOMHOM, and thus the size of *J*.

Decryption

- For SOMHOM: $\psi \mapsto \psi \lfloor \mathbf{v}_J^{sk} \cdot \psi \rfloor \mod 2$.
- Squashed decryption:

$$\psi, (\psi \times \mathbf{v}_i)_i \mapsto \psi - \lfloor \sum_i s_i(\psi \times \mathbf{v}_i) \rfloor \mod 2.$$

- The decryption circuit is to be evaluated homomorphically.
- What's important: not the time complexity, but the multiplicative degree of the algebraic decryption circuit.
- Because this fixes the homomorphic capacity of SOMHOM, and thus the size of *J*.

Decryption

- For SOMHOM: $\psi \mapsto \psi \lfloor \mathbf{v}_J^{sk} \cdot \psi \rfloor \mod 2$.
- Squashed decryption:

$$\psi, (\psi \times \mathbf{v}_i)_i \mapsto \psi - \lfloor \sum_i s_i(\psi \times \mathbf{v}_i) \rfloor \mod 2.$$

- The decryption circuit is to be evaluated homomorphically.
- What's important: not the time complexity, but the multiplicative degree of the algebraic decryption circuit.
- Because this fixes the homomorphic capacity of SOMHOM, and thus the size of *J*.

Degree of the decryption

Dominating component: sum of n_{sub} reals $y_1, \ldots, y_{n_{sub}}$, modulo 2.

- Choose a precision p for the inputs: $y_i = \sum_{j=0}^{p} y_{i,j} 2^{-j}$.
- **2** For each *j*, compute $S_j = \sum_{i \le n_{sub}} y_{i,j}$.

3 Compute
$$S = (\sum_j S_j 2^{-j}) \mod 2$$
.

Step 2 dominates.

- If $\sum_{k} S_{j,k} 2^{k}$ is the binary representation of S_{j} , then $S_{j,k}$ has algebraic degree 2^{k} .
- S_j can be as large as $n_{sub} \Rightarrow$ decryption degree $pprox n_{sub}$

Degree of the decryption

Dominating component: sum of n_{sub} reals $y_1, \ldots, y_{n_{sub}}$, modulo 2.

- Choose a precision p for the inputs: $y_i = \sum_{j=0}^p y_{i,j} 2^{-j}$.
- **2** For each *j*, compute $S_j = \sum_{i \le n_{sub}} y_{i,j}$.

3 Compute
$$S = (\sum_j S_j 2^{-j}) \mod 2$$
.

- Step 2 dominates.
- If $\sum_{k} S_{j,k} 2^{k}$ is the binary representation of S_{j} , then $S_{j,k}$ has algebraic degree 2^{k} .
- S_j can be as large as $n_{sub} \Rightarrow$ decryption degree $\approx n_{sub}$

Shallower decryption: first remark

Dominating component: sum of n_{sub} reals $y_1, \ldots, y_{n_{sub}}$, modulo 2.

- Choose a precision p for the inputs: $y_i = \sum_{j=0}^p y_{i,j} 2^{-j}$.
- **2** For each *j*, compute $S_j = \sum_{i \le n_{sub}} y_{i,j}$.

3 Compute
$$S = (\sum_j S_j 2^{-j}) \mod 2$$
.

- S_j needs only being evaluated mod 2^{j+1} .
- Since $j \leq p$, the decryption degree is $\leq \min(2^{p+1}, n_{sub})$.
- But which *p* do we need?

$y_i = y'_i + \varepsilon_i, \ |\varepsilon_i| \le 2^{-p} \ i = 1..n_{sub}.$

- Promise: $\sum y_i$ is at distance $\leq 1/4$ of an integer.
- Former strategy: $p = 4 + \log_2 n_{sub} \Rightarrow |\sum_i \varepsilon_i| \le 1/8$.
- Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

• If the ε_i's are iid with expectancy 0, Hoeffding's bound gives:

$$\Pr\left[\left|\sum_{i} \varepsilon_{i}\right| \geq \sqrt{n_{sub}} \cdot 2^{-p} \cdot \omega(\sqrt{\log t})\right] \leq n^{-\omega(1)}.$$

$y_i = y'_i + \varepsilon_i, \ |\varepsilon_i| \le 2^{-p} \ i = 1..n_{sub}.$

- Promise: $\sum y_i$ is at distance $\leq 1/4$ of an integer.
- Former strategy: $p = 4 + \log_2 n_{sub} \Rightarrow |\sum_i \varepsilon_i| \le 1/8$.
- Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

• If the ε_i's are iid with expectancy 0, Hoeffding's bound gives:

$$\Pr\left[\left|\sum_{i} \varepsilon_{i}\right| \geq \sqrt{n_{sub}} \cdot 2^{-p} \cdot \omega(\sqrt{\log t})\right] \leq n^{-\omega(1)}.$$

$y_i = y'_i + \varepsilon_i, \ |\varepsilon_i| \le 2^{-p} \ i = 1..n_{sub}.$

- Promise: $\sum y_i$ is at distance $\leq 1/4$ of an integer.
- Former strategy: $p = 4 + \log_2 n_{sub} \Rightarrow |\sum_i \varepsilon_i| \le 1/8$.
- Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

• If the ε_i 's are iid with expectancy 0, Hoeffding's bound gives:

$$\Pr\left[\left|\sum_{i} \varepsilon_{i}\right| \geq \sqrt{n_{sub}} \cdot 2^{-p} \cdot \omega(\sqrt{\log t})\right] \leq n^{-\omega(1)}.$$

$y_i = y'_i + \varepsilon_i, \ |\varepsilon_i| \le 2^{-p} \ i = 1..n_{sub}.$

- Promise: $\sum y_i$ is at distance $\leq 1/4$ of an integer.
- Former strategy: $p = 4 + \log_2 n_{sub} \Rightarrow |\sum_i \varepsilon_i| \le 1/8$.
- Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

If the ε_i's are iid with expectancy 0, Hoeffding's bound gives:

$$\Pr\left[|\sum_{i} \varepsilon_{i}| \geq \sqrt{n_{sub}} \cdot 2^{-p} \cdot \omega(\sqrt{\log t})\right] \leq n^{-\omega(1)}.$$

$y_i = y'_i + \varepsilon_i, \quad |\varepsilon_i| \le 2^{-p} \quad i = 1..n_{sub}.$

- Promise: $\sum y_i$ is at distance $\leq 1/4$ of an integer.
- Former strategy: $p = 4 + \log_2 n_{sub} \Rightarrow |\sum_i \varepsilon_i| \le 1/8$.
- Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

If the ε_i's are iid with expectancy 0, Hoeffding's bound gives:

$$\Pr\left[\left|\sum_{i} \varepsilon_{i}\right| \geq \sqrt{n_{sub}} \cdot 2^{-p} \cdot \omega(\sqrt{\log t})\right] \leq n^{-\omega(1)}.$$

$$y_i = y'_i + \varepsilon_i, \quad |\varepsilon_i| \le 2^{-p} \quad i = 1..n_{sub}.$$

- Promise: $\sum y_i$ is at distance $\leq 1/4$ of an integer.
- Former strategy: $p = 4 + \log_2 n_{sub} \Rightarrow |\sum_i \varepsilon_i| \le 1/8$.
- Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

• If the ε_i 's are iid with expectancy 0, Hoeffding's bound gives:

$$\Pr\left[\left|\sum_{i} \varepsilon_{i}\right| \geq \sqrt{n_{sub}} \cdot 2^{-p} \cdot \omega(\sqrt{\log t})\right] \leq n^{-\omega(1)}.$$

Remarks on the shallower decryption

- Making the ε_i 's iid with expectancy 0 requires some care.
- Decryption is now probabilistic: it fails with negligible prob.
- Additional difficulty for the KDM-variant of Gentry's FullHom (to ensure independence).

Conclusion

Let $q = \det(2J)$, security goal $\geq 2^t$.

Condition	[Gentry'09]	Here
Ideal-BDD hard	$q^{1/n} \leq c^{n/t}$	
SVSSP-Combinatorial	$\binom{n_{set}}{n_{sub}} \ge 2^{2t}$	
SVSSP-Lattice	$n_{set} = \Omega(\log q)$	$rac{n_{set}^2}{t} = \widetilde{\Omega}(\log q)$
Bootstrappability	$n_{sub} \leq \log q^{1/n}$	$\sqrt{n_{sub}} \stackrel{<}{_\sim} \log q^{1/n}$

Complexity of homomorphically evaluating one gate:

 $pprox n_{set} \log q: \quad \widetilde{\mathcal{O}}(t^6) \longrightarrow \widetilde{\mathcal{O}}(t^{3.5}).$

Conclusion

Let $q = \det(2J)$, security goal $\geq 2^t$.

Condition	[Gentry'09]	Here
Ideal-BDD hard	$q^{1/n} \leq c^{n/t}$	
SVSSP-Combinatorial	$\binom{n_{set}}{n_{sub}} \ge 2^{2t}$	
SVSSP-Lattice	$n_{set} = \Omega(\log q)$	$rac{n_{set}^2}{t} = \widetilde{\Omega}(\log q)$
Bootstrappability	$n_{sub} \leq \log q^{1/n}$	$\sqrt{n_{sub}} \stackrel{<}{_\sim} \log q^{1/n}$

Complexity of homomorphically evaluating one gate:

$$pprox n_{set} \log q: \quad \widetilde{\mathcal{O}}(t^6) \longrightarrow \widetilde{\mathcal{O}}(t^{3.5}).$$

Open problems

- Faster scheme, e.g., using more bits in the plaintext (see work by Smart and Vercauteren).
- Fewer security assumptions, e.g., no S(V)SSP.
- Better understood security assumptions: can we rely on more classical assumptions? can we improve Gentry's CRYPTO'10 reduction?
- What about practice? (see work by Gentry and Halevi).