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Main result

Improved bit-complexity bound for homomorphically evaluating a
binary gate with Gentry's fully homomorphic scheme:

O(t% — O(t>®) bit operations, with t =security parameter.
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Main result

Improved bit-complexity bound for homomorphically evaluating a
binary gate with Gentry's fully homomorphic scheme:

O(t% — O(t>®) bit operations, with t =security parameter.

To compare with: standard RSA Enc/Dec costs O(t3) per bit.

Two ingredients:
@ A less pessimistic analysis of one of the hardness assumptions.

@ An improved decryption algorithm.
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Homomorphic Encryption

© Reminders on homomorphic encryption.
© Ingredient 1: a less pessimistic analysis of S(V)SSP.
© Ingredient 2: a shallower decryption algorithm.
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Homomorphic Encryption

Ideal lattices

Let n be a power of 2 and R = Z[x]/(x" + 1).

o JCRisanidealif Vabe J,VNre R: a+b-reJ.
@ Any ideal is a lattice, i.e., an additive subgroup of Z".
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Homomorphic Encryption

Ideal lattices

Let n be a power of 2 and R = Z[x]/(x" + 1).

o JCRisanidealif Vabe J,VNre R: a+b-reJ.
@ Any ideal is a lattice, i.e., an additive subgroup of Z".
\ \
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Basis: (bj)i<n linearly independent s.t. Py
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Minimum: A = min(||b|]| : b e L\ 0). &
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Homomorphic Encryption

Gentry's somewhat homomorphic scheme: SomHom

@ Public key: Bj a basis of an ideal J, with rather large det(J).

@ Secret key: vjk.
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Gentry's somewhat homomorphic scheme: SomHom

@ Public key: Bj a basis of an ideal J, with rather large det(J).
@ Secret key: vjk.
@ Plaintext domain: P = {0,1}. Ciphertext domain: C = R/B,.
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Homomorphic Encryption

Gentry's somewhat homomorphic scheme: SomHom

Public key: B a basis of an ideal J, with rather large det(J).

Secret key: vjk.
Plaintext domain: P = {0,1}. Ciphertext domain: C = R/B,.

Encryption:
7w — 1 = (7w + 2p) mod By, with p random and small.

Decryption:

¥ (¢ = [v§ - 9T) mod 2.
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Homomorphic Encryption

Properties of Gentry's scheme

@ “Enc(my) (JXF) Enc(m;) mod B, decrypts to 7 (JXF) .
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Best known attack: Finding 7 from “m + 2p mod B," is an
instance of the Bounded Distance Decoding problem.
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Homomorphic Encryption

Properties of Gentry's scheme

@ “Enc(my) (JXF) Enc(m;) mod B, decrypts to 7 (JXF) .

o “m+42pmod B, decrypts to , if p < det(J)Y" =~ \(J).
@ An addition doubles p, a multiplication squares p.
Best known attack: Finding 7 from “m + 2p mod B," is an
instance of the Bounded Distance Decoding problem.

See [Gentry-CRYPTO'10] for a security proof of SomHom.
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Homomorphic Encryption

Lattice reduction ‘Rule of Thumb' conjecture

Given (b;); basis of L and t € Q" such that dist(t, L) < v~1- (L),
find b € L closest to t.

Given (bj); basis of L, find b € L such that 0 < ||b|| <~ - A(L).

Damien Stehlé Faster Fully Homomorphic Encryption 08/12/2010 7/21



Homomorphic Encryption

Lattice reduction ‘Rule of Thumb' conjecture

Given (b;); basis of L and t € Q" such that dist(t, L) < v~1- (L),
find b € L closest to t.

Given (bj); basis of L, find b € L such that 0 < ||b|| <~ - A(L).

Lattice reduction ‘rule of thumb' conjecture

There exists a constant c s.t. the following holds. Assuming there
is nothing “special” with the lattice:
with time < 2, one cannot solve SVP,/BDD,, for v < ch/'t,

Damien Stehlé Faster Fully Homomorphic Encryption 08/12/2010 7/21



Homomorphic Encryption

Lattice reduction ‘Rule of Thumb' conjecture

Given (b;); basis of L and t € Q" such that dist(t, L) < v~1- (L),
find b € L closest to t.

Given (bj); basis of L, find b € L such that 0 < ||b|| <~ - A(L).

Lattice reduction ‘rule of thumb' conjecture

There exists a constant c s.t. the following holds. Assuming there
is nothing “special” with the lattice:
with time < 2, one cannot solve SVP,/BDD,, for v < ch/'t,

This conjecture is consistent with the current algorithmic
knowledge. Essentially unchanged since [Schnorr'87].
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Homomorphic Encryption

From SomHom to FullHom, via bootstrapping

@ An encryption scheme is bootstrappable if it can
homomorphically evaluate its own decryption circuit.

@ Decryption/security constraints
= SomHom is not bootstrappable.
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Homomorphic Encryption

From SomHom to FullHom, via bootstrapping

@ An encryption scheme is bootstrappable if it can
homomorphically evaluate its own decryption circuit.

@ Decryption/security constraints
= SomHom is not bootstrappable.

To squash the decryption, some effort is shifted from P to C:
o Splitting the secret key v_sjk:

vjk = Z sivj, for s € {0,1}" of Hamming weight ngp.

i<nset

@ New secret key: (s;)i; New public key: By, (v;);.
o Ciphertext expansion: ¢ — (¢ X v;);.

@ Decryption: v, (¢ x v;)i — (¢ — | >, si(¢ x v;)]) mod 2.
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Agressive analysis of S(V)SSP

© Reminders on homomorphic encryption.
Q Ingredient 1: a less pessimistic analysis of S(V)SSP.
© Ingredient 2: a shallower decryption algorithm.

Using the lattice ‘rule of thumb’ for both BDD and S(V)SSP.
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Agressive analysis of S(V)SSP

The Sparse Vector Subset Sum Problem

SVSS Pnset »yNsub

Distinguish between (a;);<p,., uniform in [R mod (2J)]™ and the
same but conditioned on the existence of s € {0, 1}t of
Hamming weight ngp s.t. > . s;ai = 0 mod 2J.
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Agressive analysis of S(V)SSP

The Sparse Vector Subset Sum Problem

SVSSP

Distinguish between (a;);<p,., uniform in [R mod (2J)]™ and the
same but conditioned on the existence of s € {0, 1}t of
Hamming weight ngp s.t. > . s;ai = 0 mod 2J.

Nset ,Nsyp

@ Resembles Sparse Subset Sum Problem (with integers rather
than ring elements), used for server-aided RSA.
@ Gentry showed that FullHom is secure assuming the
hardnesses of:
o BDD, for ideal lattices, for a large .
o SVSSP for specific values of ng,p < Nget.

Nset s Nsub
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Agressive analysis of S(V)SSP

Known attacks on SVSSP

SVSSP
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Hamming weight ngp s.t. > . s;ai = 0 mod 2J.

Nset ,Nsyp

Damien Stehlé Faster Fully Homomorphic Encryption 08/12/2010 11/21



Agressive analysis of S(V)SSP

Known attacks on SVSSP

SVSSP

Distinguish between (a;);<p,., uniform in [R mod (2J)]™ and the
same but conditioned on the existence of s € {0, 1}t of
Hamming weight ngp s.t. > . s;ai = 0 mod 2J.

Nset ,Nsup

@ Birthday paradox. Requires time ("sef)l/2.

Nsub
o Lattice attack: s is likely to be a shortest non-zero vector in

L={x€eZ™ :) xa;=0mod 2J}.

1
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Agressive analysis of S(V)SSP

Analysis of the lattice attack against SVSSP

L={xeZ"t:%" xaj =0 mod 2J}.

o dim(L) = nser.

o A(L) € [1, \/Azgp)].
o det(L) < det(2J) = 2" det(J).
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Agressive analysis of S(V)SSP

Analysis of the lattice attack against SVSSP

L={xeZ"t:%" xaj =0 mod 2J}.

o dim(L) = nser.

o A(L) € [1, \/Azgp)].
o det(L) < det(2J) = 2" det(J).

Former analysis:

® nger > log, det(2J) implies the existence of too many short
vectors (via Minkowski's theorem).

@ Most are unlikely to give any insight for solving SVSSP.
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A less pessimistic analysis of the lattice attack

L={xeZ"t:%" xaj =0 mod 2J}.

@ The former analysis assumes being able to find extremely
short vectors of L, i.e., essentially solve SVP.

@ But for SomHOM, we assumed BDD,, hard for a large .
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Agressive analysis of S(V)SSP

A less pessimistic analysis of the lattice attack

L={xeZ"t:%" xaj =0 mod 2J}.

@ The former analysis assumes being able to find extremely
short vectors of L, i.e., essentially solve SVP.

@ But for SomHOM, we assumed BDD,, hard for a large .

We homogenize the hardness assumptions:

@ ‘Rule of thumb' = in time < 2%, one cannot find vectors
shorter than c”sef/t, for some constant c.

@ Minkowski's theorem implies that there are many vectors of L
within that norm bound.

@ Most are unlikely to give any insight for solving SVSSP.
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Shallower decryption

© Reminders on homomorphic encryption.
© Ingredient 1: a less pessimistic analysis of S(V)SSP.

© Ingredient 2: a shallower decryption algorithm.

Using fewer multiplications to homomorphically decrypt.
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Shallower decryption

Decryption

o For SoMHOM: ¢ — 1 — [v¥ - 9] mod 2.
@ Squashed decryption:

W, (Y x vj)i—= 1 — > si(¥ x vi)] mod 2.
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Shallower decryption

Decryption

o For SoMHOM: ¢ — 1 — [v¥ - 9] mod 2.
@ Squashed decryption:

W, (Y x vj)i—= 1 — > si(¥ x vi)] mod 2.

@ The decryption circuit is to be evaluated homomorphically.

@ What's important: not the time complexity, but the
multiplicative degree of the algebraic decryption circuit.

@ Because this fixes the homomorphic capacity of SoMHOM,
and thus the size of J.
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Shallower decryption

Degree of the decryption

Dominating component: sum of ng,, reals yi,...,ys,,, modulo 2.
© Choose a precision p for the inputs: y; = Ef:o y,-d-2_j.
© For each j, compute 5; =37, yi;.
© Compute S = (3-; 5;277) mod 2.
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Shallower decryption

Degree of the decryption

Dominating component: sum of ng,, reals yi,...,ys,,, modulo 2.
© Choose a precision p for the inputs: y; = Ef:o y,-d-2_j.
© For each j, compute 5; =37, yi;.
© Compute S = (3-; 5;277) mod 2.

o Step 2 dominates.

o If 3", S k2% is the binary representation of S;, then S;  has
algebraic degree 2.

@ S; can be as large as ng,, = decryption degree ~ ng,,
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Shallower decryption

Shallower decryption: first remark

Dominating component: sum of ng reals yi,. ..y, modulo 2.
© Choose a precision p for the inputs: y; = Ef:o y,-d-2_j.
© For each j, compute 5; =37, yi;.
© Compute S = (3-; 5;277) mod 2.

@ S; needs only being evaluated mod 2/*1.
@ Since j < p, the decryption degree is < min(2P+1 ng,p).
@ But which p do we need?
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Shallower decryption

Shallower decryption: choice of p

vi=yl+ei, |eil <27P i =1l.ngp.
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Shallower decryption: choice of p

vi=yl+ei, |eil <27P i =1l.ngp.
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Shallower decryption

Shallower decryption: choice of p

vi=yl+ei, |eil <27P i =1l.ngp.

@ Promise: ) y; is at distance < 1/4 of an integer.
@ Former strategy: p =4+ log, ngyp = | >_;€il < 1/8.

@ Worst-case scenario: the signs of the errors are equal.

The worst-case scenario is very unlikely to happen!

o If the ¢;'s are iid with expectancy 0, Hoeffding's bound gives:
Pr |Zs;] > Vleas - 2P - w(y/log t)| < n®).

= Choose p ~ % logs Nsyb-
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Shallower decryption

Remarks on the shallower decryption

@ Making the ¢;'s iid with expectancy 0 requires some care.
@ Decryption is now probabilistic: it fails with negligible prob.

o Additional difficulty for the KDM-variant of Gentry’s FullHom
(to ensure independence).
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Shallower decryption

Conclusion

Let g = det(2J), security goal > 2.

Condition [Gentry'09] | Here
Ideal-BDD hard ql/n < cn/t
SVSSP-Combinatorial (gz;) > 2%t

SVSSP-Lattice nset = Q(log q) % = Q(log q)
Bootstrappability Neup < log /" | /nsup < log g'/"
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Shallower decryption

Conclusion

Let g = det(2J), security goal > 2.

Condition [Gentry'09] | Here
Ideal-BDD hard ql/n < cn/t
SVSSP-Combinatorial (gz;) > 2%t

SVSSP-Lattice nset = Q(log q) % = Q(log q)
Bootstrappability Neup < log /" | /nsup < log g'/"

Complexity of homomorphically evaluating one gate:

~ neerlogq: O(t%) — O(139).
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Shallower decryption

Open problems

@ Faster scheme, e.g., using more bits in the plaintext
(see work by Smart and Vercauteren).

© Fewer security assumptions, e.g., no S(V)SSP.

© Better understood security assumptions: can we rely on more
classical assumptions? can we improve Gentry’'s CRYPTO'10
reduction?

© What about practice? (see work by Gentry and Halevi).
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