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Overview of This Talk

• Diophantine complexity: definitions

• Noncryptographic result: bounded arithmetic is in PD

• Cryptographic applications:

? Diophantine HVSZK arguments

? “Outsourcing” model

This paper has too many results to even mention all of them in the presentation!
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Hilbert’s 10th Problem

• Hilbert, 1900: find an algorithm that, given a polynomial f , returns its
integral solutions

• Solved negatively by Davis, Putnam, Robinson and Matiyasevich
(1952. . . 1970) by showing that for any recursively enumerable set
S ⊆ Zn there exists a representing polynomial RS ∈ Z[X, Y ], s.t.

µ ∈ S ⇐⇒ (∃ω ∈ Zm)[RS(µ;ω) = 0] .

• Set S is called Diophantine if it has such a representing polynomial.
Thus every r.e. set is Diophantine.
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Example: Primality

Jones etc:

• Constructed a representing polynomial RPrimes ∈ Z[X, Y ], s.t.

µ ∈ Primes ⇐⇒ (∃ω ∈ Z26)[RS(µ;ω) = 0] .

• However, some of the witnesses are either hard to compute or plainly
too long
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Diophantine Theory: Nice But Nonpractical

• Positive: there are representing polynomials for any r.e. set

? There is also a “universal” polynomial (similar to the universal TM)

• Negative: the witnesses have nonpractical length or are difficult to
compute

• A really nice area of mathematics (full of real gems). . .

• . . . without almost any practical applications
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Adleman-Manders’s Conjecture: Step to Practicality

• Adleman-Manders 1976: Define the complexity class D as follows:
S ∈ D iff there exists a representing polynomial RS ∈ Z[X, Y ], s.t.

µ ∈ S ⇐⇒ (∃ω ∈ Zm)[RS(µ;ω) = 0 ∧ |ω| = poly(|µ|)] .

• Clearly, a much more “applicable” (and restricted class) than r.e. (See
[AM76] for possible applications.)

• Adleman-Manders conjecture (76): D = NP

• A conjecture that is believed to be true but not much is known about
the power of D
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Let’s Get Really Practical

• Assume that there is an efficient witness algorithm PS, so that

µ ∈ S ⇒ RS(µ;PS(µ)) = 0 ,

and

µ 6∈ S ⇒ (¬∃ω)[RS(µ;ω) = 0 ∧ |ω| = poly(|µ|)] .

Then we say that S ∈ PD

• Interested in the case when |ω| is sub-quadratic in |µ|

• Which languages in PD are guaranteed to have
|PS(µ)| = |µ|2−o(1)?
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More Background: Bounded Arithmetic

• Bounded arithmetic is a first-order theory of the natural numbers with
non-logical symbols

0, σ,+, ·,≤,
.−, bx/2c, |x|, MSP(x, i), ] .

• Here, σ(x) = x + 1, x
.− y = max(x− y,0), |x| = blog2(x + 1)c,

MSP(x, i) = bx/2ic, x]y = 2|x|·|y|

• We assume that the underlying domain is Z (and not N)

• Let L2 be the set of terms of the quantifier-free bounded arithmetic
(over Z)
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More Background: Bounded Arithmetic

• Some predicates in bounded arithmetic: [µ1 > µ2],
[µ is a perfect square], [µ2 = bit(µ1, i)], [µ1 = max(µ2, µ3)],
[µ1 is not a power of 2], . . .

• A relatively small set of languages that contains however sufficiently
many arithmetic and number-theoretic predicates

• Pollet 2003: bounded arithmetic is in D
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Main Result: Bounded Arithmetic is in PD

Theorem. Bounded arithmetic is in PD, with |ω| = |µ|2−o(1).

Proof. By induction on length of structure of the term. For example,

[µ2 = bµ1/2c] ≡ [(µ2 = 2µ1) ∨ (µ2 = 2µ1 + 1)] .

The proof follows from the two nontrivial theorems that construct represent-
ing polynomials (and witness algorithms) for nonnegativity and exponential
relationship.
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Efficient Witness Algorithm for Nonnegativity

• Lagrange 1770: µ ≥ 0 iff µ = ω2
1 + ω2

2 + ω2
3 + ω2

4 for ωi ∈ Z

• Thus N0 ∈ D with |ω| = Θ(|µ|)

• Rabin, Shallit 1986: corresponding ωi can be found in probabilistic
polynomial time

• Thus N0 ∈ PD

• This paper: slight improvement over Rabin-Shallit (a slightly faster al-
gorithm for computing ωi)
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Exponential Relation is in PD

• Matiyasevich 1970: e.r. has representing polynomial

• Adleman-Manders 1976: e.r. is in PD

• Current paper: more efficient representing polynomial for the expo-
nential relation
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Theorem Assume µ1 > 1, µ3 > 0 and µ2 > 2. The exponential relation
[µ3 = µ

µ2
1 ] belongs to PD. More precisely, let E(µ1, µ2, µ3) be the next

equation:

[(∃ω1, ω2, ω3, ω4, ω5, ω6)(∃bω7, ω8)]

[(ω2 = ω1µ1 − µ2
1 − 1) ∧ (ω2 − µ3 − 1 ≥ 0)∧ (E1− E2)

(µ3 − (µ1 − ω1)ω7 − ω8 = ω2ω3)) ∧ (ω1 − 2 ≥ 0)∧ (E3− E4)

((ω1 − 2)2 − (µ1 + 2)(ω1 − 2)ω5 − ω2
5 = 1)∧ (E5)

(ω1 − 2 = µ2 + ω6(µ1 + 2)) ∧ (ω7 ≥ 0) ∧ (ω7 < ω8)∧ (E6− E8)

(ω2
7 − ω1ω7ω8 − ω2

8 = 1) ∧ (ω7 = µ2 + ω4(ω1 − 2)] , (E9− E10)

where ‘∃b” signifies a bounded quantifier in the following sense: if
µ3 = µ

µ2
1 then E(µ1, µ2, µ3) is true with |ω| = Θ(µ2

2 logµ1) = o(|µ|2).
On the other hand, if µ3 6= µ

µ2
1 then either E(µ1, µ2, µ3) is false, or it is

true but the intermediate witnesses ω7 and ω8 have length Ω(µ3 logµ3),
which is equal to Ω(2|µ| · |µ|) in the worst case.

16 additional witnesses are hidden in 4 inequalities
Asiacrypt 2003, 03.12.2003 On Diophantine Complexity and SZK Arguments, Helger Lipmaa

15



Overview of This Talk

• Diophantine complexity: definitions

• Noncryptographic result: bounded arithmetic is in PD

• Cryptographic applications:

? Diophantine HVSZK arguments

? “Outsourcing” model

Asiacrypt 2003, 03.12.2003 On Diophantine Complexity and SZK Arguments, Helger Lipmaa

16



Integer commitment schemes

• Integer commitment scheme [FO97,DF02]: a function C(µ; ρ), µ ∈ Z,
that has the next two properties:

? Statistically hiding: for any µ1, µ2 ∈ Z, the distributions C(µ1; ·)
and C(µ2; ·) are statistically close

? Computationally binding: for any µ1, it is hard to find an integer
µ2 6= µ1, ρ1 and ρ2, such that C(µ1; ρ1) = C(µ2; ρ2)

• A nonstandard primitive that has many applications. . .
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Diophantine SZK arguments

• Goal: show that a committed integer tuple µ = (µ1, . . . , µn) belongs
to set S, where S belongs to bounded arithmetic

• Method: Let C be an integer commitment scheme. Then

1. Apply PS(µ) to find ω = (ω1, . . . , ωm), s.t. RS(µ;ω) = 0

2. Commit to ωi, and send the commitments to the verifier

3. Argue by using the methodology of Fujisaki and Okamoto that
RS(µ;ω) = 0

• Results in practical statistical ZK arguments for all languages in
bounded arithmetic
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Example: Nonnegativity

• Goal: for a committed integer µ, argue that µ ≥ 0

1. Find (ω1, . . . , ω4) s.t.
∑

ω2
i = µ

2. Commit to ωi and send commitments to the verifier

3. Argue in SZK that µ =
∑

ω2
i

• This argument system is slightly shorter than Boudot’s (Eurocrypt
2000), conceptually much simpler and perfectly complete

• ZK argument for nonnegativity has many cryptographic applications
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Outsourcing model

• n individuals, 1 interested third party S, one established authority A.

• Individual i has input ei, her financial or social choice (vote, bid, . . . ).

• Security: S gets to know y := final(e1, . . . , en) for some destination
function final.

• Privacy: S will not get any information that cannot be computed from
y alone. Individuals will not get any new information at all. A can get
to know the vector (e1, . . . , en).
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Why makes sense?

• In voting, it is better to have one tallier: in real life, very hard to have a
multiple of completely independent talliers.

• Same in auctions: there is a single seller, all servers are operated by
him; why should we trust m machines controlled by the same person
more than just one machine, controlled by him?

• OTOH: A can be an established authority who has a reputation to take
care off; often S is an occassional party.

• It is also possible to design the system so that we can avoid the limita-
tions of the two-party and multi-party computations, efficiently
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Outsourcing model: picture
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4 Send acknowledgment

1 SendEA(enc(ei); ri)

2 Send
∏

i
EA(enc(e1); ri)

3 Decrypt and decode choices, sendfinal(e1, . . . , en) to S

Add SZK correctness arguments forenc() andfinal
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Details

• There exist enc(·) in bounded arithmetic and dec(·), such that
dec(

∑
enc(ei)) = (e1, . . . , en) for all e1 from [0, V − 1] and that the

corresponding SZK argument is efficient

• Common choice: enc(ei) = V ei; dec(b) returns the vector of V -radix
positions of b

• Our proposal: use enc(ei) = ZV (ei), where ZV (ei) is an element of
a certain Lucas sequence. Results in more efficient SZK arguments
than enc(ei) = V ei

• Many cryptographic protocols (voting, auctions, voting with minimal
disclosure, . . . ) can be implemented by using final that belong to
bounded arithmetic
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Conclusions

• Showed that most of the necessary arguements in this model can be
obtained efficiently by using integer commitment schemes

• New algorithm for Lagrange representation, new polynomial for the
exponential relationship

• Argued for the outsourcing model for cryptographic protocols

? No threshold trust, efficient arguments of knowledge

? More efficient versions of [DJ01] voting protocol and [LAN02] auc-
tion protocol

• Proposed to use Lucas sequences in the SZK arguments
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Questions?

?
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