<u>A Distributed</u> Online Certificate Status Protocol

Satoshi Koga, Kouichi Sakurai Kyushu University, Japan

- <u>Certificate Revocation Problem</u>
 - The certificate should be revoked in case that:
 - User's private key is compromised
 - User's personal information is changed
 - The user should check whether the certificate has been revoked or not
- Online Certificate Status Protocol (OCSP)

- The standard protocol of online revocation system
 - 1. The client requests to OCSP responder
 - Is this certificate valid or not ?
 - 2. The OCSP responder responses to the user
 - OCSP responder digitally signs the response

<u>If responder is centralized</u>, it's vulnerable to Denial of Service (DoS) attacks

 Compromise of responder's private key is affected the entire system

Distributed OCSP

• Private key exposures appear to be unavoidable

Minimizing the damage caused by responder's key exposures is important

- A Distributed OCSP (D-OCSP) composed of the multiple responders
 - Each responder has own private key
 - If the responder's private key is compromised, the others are not affected

Motivation

- General D-OCSP
 - <u>Every time</u> the client receives the response, he should download responder's certificate
 - The client needs to obtain <u>the different</u> responder's certificates

[Goals]

- Minimize the damage caused by responder's private key exposures
- Reduce the load of users

- Key-Insulated Signature Scheme [D03]
 - The private key can be changed frequently, but the corresponding public key remains fixed

[Our Method]

- The multiple private keys are generated and assigned each responder
 - The user can verify any responses using a single public key !!

[D03] Y.Dodis et al., "Strong Key-Insulated Signature Schemes", PKC 2003

Thank you !!

satoshi@itslab.csce.kyushu-u.ac.jp