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1 Background on Information Theory

The modern study of transmission and storage of information through noisy
communication channels goes back to Claude E. Shannon [4]. It is very rare
that an intellectual discipline is initiated from scratch, and its framework
fully given, as well as its many basic theorems proven by the initiator–but
that’s exactly what Shannon did.

This has made Shannon a very tough act to follow. By its nature, In-
formation Theory can be very dry and terse. However, Shannon strongly
believed in making the intuition behind results clear, and his writing was
precise and lucid at the same time. He never sacrificed clarity at the altar
of rigour, except when absolutely necessary. Over the past 60 years, the
field of information theory has developed along many directions, and once
engineering practice caught up with theory, the modern information society,
where personal communicators such as mobile phones, tablets are common-
place would not have emerged without the research output of information
theorists.

The first edition [2] of this text was very rigorous, and it was also very
direct and effective in obtaining the strongest results possible, as a reward
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for the rigour used. The authors introduced and used the method of types
to great effect in obtaining their results in the first edition, and also stripped
down the problems of information theory to their bare-bones essentials, where
the combinatorial nature of many of the problems becomes very plain. A
review [1] of the first edition states “Theorem 2.15 [. . .] is a universal version
of the block source coding theorem complete with the exponentially tight
bound on the optimum attainable decay with block length of the probability
of ambiguous encoding. That all this happens within a scant ten pages reveals
[. . .] the power of the authors’ approach.” The second edition is also written
in the same rigorous fashion.

Finally, the authors are both Shannon award winners of the IEEE In-
formation Theory Society, the highest award the society bestows on any
researcher, based on the totality of their research career. They have been
active contributors of major research results in information theory, over the
past four decades and are uniquely qualified to write a research monograph
on information theory.

2 Summary of the book

We now give a brief overview of the topics covered in the book. Firstly we
note that this book is the expanded second edition of the classic published
by Academic Press in 1981 [2]. The new book still has the same basic or-
ganisation into three parts, but there are two new chapters, Chapter 11 and
Chapter 17, as well as some additions to the old chapters, mainly in the form
of new problems. There are also historical notes on the results at the end of
each chapter.

Part I: Information Measures in Simple Coding Problems This part
forms the probabilistic foundations of information theory.

Chapter 1: Source coding and Hypothesis Testing introduces the
basic definitions required to specify a discrete memoryless source (DMS) and
proves the relationship that must be satisfied by the code rate of any source
code for correct reproduction of the source with high probability. A brief
discussion of the relationship between the source coding and the hypothesis
testing problems is also provided.

Chapter 2: Types and typical sequences introduces the concept of
types, which is central to the book, from a combinatorial point of view. It is



then proved that any subset of the set of sequences with probability at least
1− ε must have a large overlap with the “typical set”. the set of sequences
which almost surely form the output of a DMS.

Chapter 3: Formal properties of Shannon’s information measures
considers these measures–such as entropy, conditional entropy, mutual in-
formation, and establishes their basic properties including the chain rule,
the data processing inequality, etc. The classical “Fano’s inequality” is also
proved here.

Chapter 4: Non-block source coding introduces non-block source coding
in the context of a separable code, i.e., a prefix code.Most of the classical
results on these codes, such as the Kraft’s inequality are relegated to the
problems following the Chapter, while much of the chapter itself focuses on
proving more general results on source coding with variable symbol costs. In
the simplest incarnation, if the source X has entropy H(X) the rate required
to encode it reliably–i.e, compress it if H(X) < logM–is also H(X) bits per
symbol, where M is the size of the input alphabet.

Chapter 5: Blowing up lemma: a combinatorial digression discusses
the topic in the title, which is a combinatorial concentration of measure result
which applies to finite alphabet product spaces. Informally it says that any
set A within the space, with large enough measure–i.e., constant measure
instead of exponentially falling measure in terms of the dimension n–can
be extended into its neighborhood by including those points which are at a
small, say constant c, Hamming distance away from some point in A and the
resulting set Ac will have measure approaching 1.

Part II: Two terminal systems Here one considers a single transmitter
and a single receiver.

Chapter 6: The noisy channel coding problem proves the basic noisy
channel coding theorem by proving that the maximum value of the common
information between the input and output distributions is the ε−capacity
of the discrete memoryless channel (DMC), for any ε > 0. This ε−capacity
is simply the maximum data rate required if one tolerates a probability of
block error equal to ε > 0. In this context, it is interesting to note that that
in the last 2 decades or so, a number of actual constructive codes have finally
been devised (Turbo codes and more recently Polar codes) and some redis-
covered (LDPC codes, which date back to Gallager from the 1960’s) which



approach, and in a practical sense achieve, channel capacity at practical
codeword lengths.

Chapter 7: Rate-distortion tradeoff in source coding and the source-
channel transmission problem focuses on the joint problem of source
encoding-to remove redundancy and achieve efficiency-followed by channel
coding to combat noise on the transmission channel. Rate-distortion func-
tions encapsulate how much distortion on average results at a given trans-
mission rate. The main result of the chapter is the source-channel coding
theorem which states that the two problems can be considered separately at
no loss of source fidelity or error performance.

Chapter 8: Computation of channel capacity and ∆−distortion
rates describes the capacity computing algorithm of Blahut and Arimoto
and related algorithms, such as the ∆−distortion rate computation algo-
rithm. The main interest in these algorithms is that apart from a few special
cases, it is impossible to derive channel capacities analytically, and numerical
optimization must be used. These algorithms are iterative algorithms that
converge to the required capacity region and are of great practical impor-
tance.

Chapter 9: A covering lemma and the error exponent in source
coding generalizes and sharpens the source coding theorem by considering
more general source models and an arbitrary distortion measure, and evalu-
ates more precisely the asymptotically best code performance. The chapter
makes extensive use of the technique of random coding to obtain its results.
The sharpening refers to rates of convergence, as opposed to saying that an
error probability goes to zero the rate is given.

Chapter 10: A packing lemma and the error exponent in channel
coding revisits the coding theorem for a DMC and obtains rates of conver-
gence of the probability of error to: (a) zero, at rates below capacity; and
(b) one at rates above capacity. The point is made that the channel coding
problem here is more complex than the corresponding source coding problem
in Chapter 9, and has not yet been fully settled.

Chapter 11: The compound channel revisited: zero-error informa-
tion theory and extremal combinatorics It may be a bit surprising that
for certain channels it is possible to communicate at zero error. This topic lies
at the intersection of information theory and extremal combinatorics. The



zero error capacity of a channel is simply its ε−capacity for ε = 0. Deter-
mining the asymptotics of the largest cardinality (hence allowable rate, i.e.,
zero error capacity, of a zero error code C ⊂ Xn is a genuinely combinatorial
and hard problem. Graph theory, graph colourings, fractional colourings and
coverings, all play a part.

Chapter12: Arbitratily Varying Channels Instead of a DMC, or a
compound DMC (i.e., a collection of DMCs) arbitrarily varying channels are
such that the channel parameters can change from symbol interval to symbol
interval in an arbitrary and unknown manner. Even then an ε−capacity for
such a channel can be defined and analyzed with respect to either average
or maximum probability of error. The two approaches will in general yield
different results.

Part III: Multi-terminal systems In today’s networked world, these sys-
tems are the most relevant, but also the hardest to analyze.

Chapter 13: Separate coding of correlated sources In the typical
setup here, there are two sources, X and Y which are correlated. If they are
jointly encoded we can use H(X, Y ) bits per source symbol which is strictly
less then encoding them separately which requires H(X) + H(Y ) bits per
source symbol. In the case that the side information Y is available at the
decoder but not at the encoder, it is in fact possible to encode at the rate
H(X|Y ) bits per source symbol. In the more general network setting, such
as acyclic networks where sources enter at terminal nodes, the idea of “rate
slicing” can be useful sometimes.

Chapter 14: Multiple-access channels are channels where different trans-
mitters jointly access a commmon receiver, and the question is how should
they encode the information to be as efficient as possible provided each trans-
mitters information can be decoded with vanishing error rates. Capacity re-
gions of of such channels are subsets of the positive orthant which are the
convex closure of achievable rate points and have been determined for most
channels of interest.

Chapter15: Entropy and image size characterization is a technical
chapter which treats the problem of entropy characterization for source net-
works, and solves it completely for the 3-source case. The main tool is the
so-called single letterization lemma, but a number of general problems are
still unsolved, for more than 3 sources.



Chapter 16: Source and channel networks A number of source and
channel networks which are “normal” in some sense are solved here, by uti-
lizing the techniques from Chapter 15. Some network problems are solved for
the case of more general fidelity criteria than probability of error. Note that
the capacity region of the two-output broadcast channel, with say 3 input
sources and a central node that transmits to two receivers, each interested
in only two of the 3 input sources, is still unknown, even though it has been
considered since the early 1960s.

Chapter 17: Information theoretic security describes the area of prov-
able security (in the information theoretic sense, sometimes called perfect
secrecy in the case of encryption in the traditional cryptographic literature).
The two main problems considered are secure transmission over insecure
channels and secret key generation taking advantage of public communica-
tions. The adversary (say eavesdropper) may obtain a noisier version of the
transmitted signal, or may be restricted in some other way, and the main
quantities studied are asymptotic maximum rates of secure communication
and asymptotic maximum rates of key generation possible under these sce-
narios.

3 What is the book like (style)?

The book is written very rigorously in theorem/proof fashion with motivation
mostly relegated to the historical discussions at the end of each chapter. Its
coverage is as broad as any other current information theory book currently
in print, but it is decidedly a book about theory not applications.

4 Would you recommend this book?

In my opinion, this is a book that can be recommended to serious researchers
in information theory. I think Chapter 17 on information theoretic security
should be of interest to researchers in cryptology, and provides a wealth of
theorems in this area. In this area of cryptology there are gaps to be bridged
between the computer science research community and the information the-
ory research community. Some of the work covered in Chapter 17 was pub-
lished in the traditional cryptography literature (for example by Maurer and
Wolf [3]) but mostly it was published in the information theoretic literature.



Finally, the fact that the problems in each chapter are high level research
problems helps to motivate further research in information theory.

This would be a difficult book for non-specialist in the area, or the re-
searchers working mostly in applications of information theory. It will be
a useful reference for the researcher, as well as a very good textbook for a
rigorous graduate level course in the area. I recommend the book heartily
to specialists and beginning researchers in the area who want to make their
mark by learning the strongest techniques available.

The reviewer is an academic at RMIT University whose interests include
cryptography, sequence design, and coding and information theory.
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