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Abstract. A permuted puzzle problem is defined by a pair of distribu-
tions D0,D1 over Σn. The problem is to distinguish samples from D0,D1,
where the symbols of each sample are permuted by a single secret per-
mutation π of [n].
The conjectured hardness of specific instances of permuted puzzle prob-
lems was recently used to obtain the first candidate constructions of
Doubly Efficient Private Information Retrieval (DE-PIR) (Boyle et al. &
Canetti et al., TCC’17). Roughly, in these works the distributions D0,D1

over Fn are evaluations of either a moderately low-degree polynomial or
a random function. This new conjecture seems to be quite powerful, and
is the foundation for the first DE-PIR candidates, almost two decades
after the question was first posed by Beimel et al. (CRYPTO’00). How-
ever, while permuted puzzles are a natural and general class of problems,
their hardness is still poorly understood.
We initiate a formal investigation of the cryptographic hardness of per-
muted puzzle problems. Our contributions lie in three main directions:
– Rigorous formalization. We formalize a notion of permuted puz-

zle distinguishing problems, extending and generalizing the proposed
permuted puzzle framework of Boyle et al. (TCC’17).

– Identifying hard permuted puzzles. We identify natural exam-
ples in which a one-time permutation provably creates cryptographic
hardness, based on “standard” assumptions. In these examples, the
original distributions D0,D1 are easily distinguishable, but the per-
muted puzzle distinguishing problem is computationally hard. We
provide such constructions in the random oracle model, and in the
plain model under the Decisional Diffie-Hellman (DDH) assumption.
We additionally observe that the Learning Parity with Noise (LPN)
assumption itself can be cast as a permuted puzzle.

– Partial lower bound for the DE-PIR problem. We make progress
towards better understanding the permuted puzzles underlying the
DE-PIR constructions, by showing that a toy version of the prob-
lem, introduced by Boyle et al. (TCC’17), withstands a rich class of
attacks, namely those that distinguish solely via statistical queries.

1 Introduction

Computational hardness assumptions are the foundation of modern cryptog-
raphy. The approach of building cryptographic systems whose security follows



from well-defined computational assumptions has enabled us to obtain fantastical
primitives and functionality, pushing far beyond the limitations of information
theoretic security. But, in turn, the resulting systems are only as secure as the
computational assumptions lying beneath them. As cryptographic constructions
increasingly evolve toward usable systems, gaining a deeper understanding of the
true hardness of these problems—and the relationship between assumptions—is
an important task.

To date, a relatively select cluster of structured problems have withstood
the test of time (and intense scrutiny), to the point that assuming their hard-
ness is now broadly accepted as “standard.” These problems include flavors
of factoring [RSA78,Rab79] and computing discrete logarithms [DH76], as well
as certain computational tasks in high-dimensional lattices and learning the-
ory [GKL88,BFKL93,Ajt96,BKW00,Ale03,Reg05]. A central goal in the foun-
dational study of cryptography is constructing cryptographic schemes whose
security provably follows from these (or weaker) assumptions.

In some cases, however, it may be beneficial—even necessary—to introduce
and study new assumptions (indeed, every assumption that is “standard” to-
day was at some point freshly conceived). There are several important cryp-
tographic primitives (notable examples include indistinguishability obfuscation
(IO) [BGI+01,GGH+13] and SNARKs [BCC+17]) that we do not currently know
how to construct based on standard assumptions. Past experience has shown
that acheiving new functionalities from novel assumptions, especially falsifiable
assumptions [Nao03,GW11,GK16], can be a stepping stone towards attaining
the same functionality from standard assumptions. This was the case for fully
homomorphic encryption [RAD78,Gen09,BV11], as well as many recent primi-
tives that were first built from IO and later (following a long line of works) based
on more conservative assumptions (notably, non-interactive zero-knowledge pro-
tocols for NP based on LWE [KRR17,CCRR18,HL18,CCH+19,PS19], and the
cryptographic hardness of finding a Nash equilibrium based on the security of the
Fiat-Shamir heuristic [BPR15,HY17,CHK+19]). Finally, cryptographic primi-
tives that can be based on diverse assumptions are less likely to “go extinct” in
the event of a devastating new algorithmic discovery.

Of course, new assumptions should be introduced with care. We should strive
to extract some intuitive reasoning justifying them, and some evidence for their
hardness. A natural approach is to analyze the connection between the new as-
sumption and known (standard) assumptions, with the ultimate goal of showing
that the new assumption is, in fact, implied by a standard assumption. However,
coming up with such a reduction usually requires deep understanding of the new
assumption, which can only be obtained through a systematic study of it.

DE-PIR and permuted polynomials. A recent example is the new computational
assumption underlying the construction of Doubly Efficient Private Informa-
tion Retrieval (DE-PIR) [BIPW17,CHR17], related to pseudorandomness of per-
muted low-degree curves.

Private Information Retrieval (PIR) [CGKS95,KO97] schemes are protocols
that enable a client to access entries of a database stored on a remote server (or
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multiple servers), while hiding from the server(s) which items are retrieved. If
no preprocessing of the database takes place, the security guarantee inherently
requires the server-side computation to be linear in the size of the database
for each incoming query [BIM00]. Database preprocessing was shown to yield
computational savings in the multi-server setting [BIM00], but the goal of single-
server PIR protocols with sublinear-time computation was a longstanding open
question, with no negative results or (even heuristic) candidate solutions. Such
a primitive is sometimes referred to as Doubly Efficient (DE) PIR.3

Recently, two independent works [BIPW17,CHR17] provided the first candi-
date constructions of single-server DE-PIR schemes, based on a new conjecture
regarding the hardness of distinguishing permuted local-decoding queries (for
a Reed-Muller code [Ree54,Mul54] with suitable parameters) from a uniformly
random set of points. Specifically, although given the queries {z1, . . . , zk} ⊆ [N ]
of the local decoder it is possible to guess (with a non-trivial advantage) the
index i which is being locally decoded, the conjectures of [BIPW17,CHR17] very
roughly assert that adding a secret permutation can computationally hide i.
More precisely, if an adversary instead sees (many) samples of sets of permuted
queries {π(z1), . . . , π(zk)}, where π : [N ] → [N ] is a secret fixed permutation
(the same for all samples), then the adversary cannot distinguish these from
independent uniformly random size-k subsets of [N ].

This new assumption (which we will refer to as PermRM, see Conjecture 1
in Section 6.2) allowed for exciting progress forward in the DE-PIR domain.
But what do we really know about its soundness? Although [BIPW17,CHR17]
provide some discussion and cryptanalysis of the assumption, our understanding
of it is still far from satisfactory.

Permuted puzzles. The PermRM assumption can be cast as a special case in
a broader family of hardness assumptions: as observed in [BIPW17], it can be
thought of as an example of an instance where a secret random permutation
seems to make an (easy) “distinguishing problem” hard, namely the permuta-
tion is the only sources of computational hardness. It should be intuitively clear
that such permutations may indeed create hardness. For example, while one
can easily distinguish a picture of a cat from that of a dog, this task becomes
much more challenging when the pixels are permuted. There are also other in-
stances in which random secret permutations were used to introduce hardness
(see Section 1.2 below). Therefore, using permutations as a source of crypto-
graphic hardness seems to be a promising direction for research, and raises the
following natural question:

Under which circumstances can a secret random permutation be a source
of cryptographic hardness?

3 Namely, computationally efficient for both client and server.
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1.1 Our Results

We initiate a formal investigation of the cryptographic hardness of permuted
puzzle problems. More concretely, our contributions can be summarized within
the following three directions.

Rigorous formalization. We formalize a notion of permuted puzzle distinguishing
problems, which extends and generalizes the proposed framework of [BIPW17].
Roughly, a permuted puzzle distinguishing problem is associated with a pair of
distributions D0,D1 over strings in Σn, together with a random permutation π
over [n]. The permuted puzzle consists of the distributions D0,π,D1,π which are
defined by sampling a string s according to D0,D1 (respectively), and permuting
the entries of s according to π. A permuted puzzle is computationally hard if
no efficient adversary can distinguish between a sample from D0,π or D1,π, even
given arbitrarily many samples of its choice from either of the distributions. We
also briefly explore related hardness notions, showing that a weaker and simpler
variant (which is similar to the one considered in [BIPW17]) is implied by our
notion of hardness, and that in some useful cases the weaker hardness notion
implies our hardness notion. Our motivation for studying the stronger (and per-
haps less natural) hardness notion is that the weaker variant is insufficient for
the DE-PIR application.

Identifying Hard Permuted Puzzles. We identify natural examples in which a one-
time permutation provably introduces cryptographic hardness, based on standard
assumptions. In these examples, the distributions D0,D1 are efficiently distin-
guishable, but the permuted puzzle distinguishing problem is computationally
hard. We provide such constructions in the random oracle model, and in the
plain model under the Decisional Diffie-Hellman (DDH) assumption [DH76].
We additionally observe that the Learning Parity with Noise (LPN) assump-
tion [BKW00,Ale03] itself can be cast as a permuted puzzle. This is described in
the following theorem (see Proposition 1, Proposition 3, and Proposition 2 for
the formal statements).

Informal Theorem 1 (Hard Permuted Puzzles). There exists a computationally-
hard permuted puzzle distinguishing problem:

– In the random oracle model.
– If the DDH assumption holds.
– If the LPN assumption holds.

Statistical Query Lower Bound for DE-PIR Toy Problem. We make progress
towards better understanding the PermRM assumption underlying the DE-PIR
constructions of [BIPW17,CHR17]. Specifically, we show that a toy version of
the problem, which was introduced in [BIPW17], provably withstands a rich
class of learning algorithms known as Statistical Query (SQ) algorithms.

Roughly, the toy problem is to distinguish randomly permuted graphs of
random univariate polynomials of relatively low degree from randomly permuted
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graphs of random functions. More formally, for a function f : X → Y , we define
its 2-dimensional graph Graph(f) : X × Y → {0, 1} where Graph(f)(x, y) = 1⇔
y = f(x). For a security parameter λ and a field F, the distributions D0,D1 in the

toy problem are over {0, 1}n for n = |F|2, and output a sample Graph(γ) where
γ : F → F is a uniformly random degree-λ polynomial in D0, and a uniformly
random function in D1.

We analyze the security of the toy problem against SQ learning algorithms.
Our motivation for focusing on learning algorithms in general is that permuted
puzzles are a special example of a learning task. Indeed, the adversary’s goal is
to classify a challenge sample, given many labeled samples. Thus, it is natural
to explore approaches from learning theory as potential solvers for (equivalently,
attacks on) the permuted puzzle. Roughly speaking, most known learning algo-
rithms can be categorized within two broad categories. The first category lever-
ages linearity, by identifying correlations with subspaces and using algorithms
based on Gaussian elimination to identify these. The second category, which is
our focus in this work, is SQ algorithms. Informally, an SQ algorithm obtains
no labeled samples. Instead, it can make statistical queries that are defined by
a boolean-valued function f , and the algorithm then obtains the outcome of ap-
plying f to a random sample. A statistical query algorithm is an SQ algorithm
that makes polynomially many such queries. We show that the toy problem is
hard for SQ algorithms (see Theorem 8):

Informal Theorem 2. The BIPW toy problem is hard for statistical query
algorithms.

We contrast this statistical-query lower bound with the bounded-query sta-
tistical indistinguishability lower bound of [CHR17]. That result showed that
there is some fixed polynomial B such that no adversary can distinguish B DE-
PIR queries from random, even if computationally unbounded. In contrast, our
result proves a lower bound for adversaries (also computationally unbounded),
that have no a-priori polynomial bound on the number of queries that they can
make—in fact, they can make up to 2ελ queries where λ is the security parame-
ter and ε is a small positive constant. However, they are restricted in that they
cannot see the result of any individual query in its entirety; instead, adversaries
can only see the result of applying bounded (up to ελ-bit) output functions
separately to each query.

1.2 Other Instances of Hardness from Random Permutations

There are other instances in which random secret permutations were used to
obtain computational hardness. The Permuted Kernel Problem (PKP) is an
example in the context of a search problem. Roughly, the input in PKP consists
of a matrix A ∈ Zm×np and a vector v ∈ Znp , where p is a large prime. A solution
is a permutation π on [n] such that the vector v′ obtained by applying π to
the entries of v is in the kernel of A. PKP is known to be NP-complete in the
worst-case [GJ02], and conjectured to be hard on average [Sha89], for sufficiently
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large (n −m) and p. It is the underlying assumption in Shamir’s identification
scheme [Sha89], and has lately seen renewed interest due to its applicability
to post-quantum cryptography (e.g., [LP12,FKM+18,KMP19]). Despite being
studied for 3 decades, the best known algorithms to date run in exponential
time; see [KMP19] and the references therein.

1.3 Techniques

We now proceed to discuss our results and techniques in greater detail.

Defining Permuted Puzzles We generalize and extend the intuitive puzzle
framework proposed in [BIPW17], by formally defining the notions of (permuted)
puzzle distinguishing problems.

We formalize a puzzle distinguishing problem as a pair of distributions D0,D1

over Σn, for some alphabet Σ and some input length n. Very roughly, hard-
ness of a puzzle distinguishing problem means one cannot distinguish a single
sample from D0 or D1, even given oracle access to D0 and D1. We say that a
puzzle problem is (s, ε)-hard if any size-s adversary distinguishes D0 from D1

with advantage at most ε. This concrete hardness notion naturally extends to
computational hardness of an ensemble of puzzles, in which case we allow the
distributions to be keyed (by both public and secret key information) and require
that they be efficiently sampleable given the key.

With this notion of puzzle distinguishing problems, we turn to defining a
permuted puzzle which, informally, is obtained by sampling a random permuta-
tion π once and for all as part of the secret key, and permutating all samples
according to π. Hardness of a permuted puzzle is defined identically to hardness
of (standard) puzzle distinguishing problems.

We also consider a simpler hardness definition, in which the adversary is given
oracle access only to a randomly selected Db (but not to D1−b), and attempts
to guess b. We say that a puzzle distinguishing problem is weak computationally
hard if every adversary of polynomial size obtains a negligible advantage in this
modified distinguishing game. Weak computational hardness captures the secu-
rity notion considered in [BIPW17], but is too weak for certain applications, as
it allows for trivial permuted puzzles, e.g., D0 =

{
0n/21n/2

}
,D1 =

{
1n/20n/2

}
.

More generally, and as discussed in Remark 3 (Section 3), weak computational
hardness is generally weaker than the definition discussed above (which is more
in line with the DE-PIR application). Concretely, we show that the definition
discussed above implies the weaker definition, and that in certain cases (e.g.,
when D1 is the uniform distribution), the weaker definition implies the stronger
one. This last observation will be particularly useful in proving security of our
permuted puzzle constructions.

Hard Permuted Puzzle in the Random Oracle (RO) Model Our first
permuted puzzle is in the random oracle model. Recall that a permuted puzzle is
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defined as the permuted version of a puzzle distinguishing problem. For our RO-
based permuted puzzle, the underlying puzzle distinguishing problem is defined
as follows. There is no key, but both the sampling algorithm and the adversary
have access to the random oracle H. The sampling algorithm samples a uniformly
random input x0 for H, and uniformly random seeds s1, . . . , sn, where n = λ,

and computes xn sequentially as follows. For every 1 ≤ i ≤ n, xi
def
= H (si, xi−1).

The sample is then (x0, x
′
n, s1, . . . , sn) where x′n

def
= xn in D0, and x′n is uniformly

random in D1. Notice that in this (unpermuted) puzzle distinguishing problem
one can easily distinguish samples from D0 and D1, by sequentially applying the
oracle to x0 and the seeds, and checking whether the output is x′n. This will hold
with probability 1 for samples from D0, and only with negligible probability for
samples from D1 (assuming H has sufficiently long outputs). The corresponding
permuted puzzle is obtained by applying a fixed random permutation π∗ to the
seeds (s1, . . . , sn).4

Hardness of the Permuted Puzzle. We focus on a simpler case in which the
adversary receives only the challenge sample (and does not request any additional
samples from its challenger). This will allow us to present the main ideas of the
analysis, and (as we show in Section 4), the argument easily extends to the
general case.

At a very high level, we show that the hardness of the permuted puzzle
stems from the fact that to successfully guess b, the adversary has to guess the
underlying random permutation π∗, even though it has oracle access to H.

We first introduce some terminology. For a random oracle H, input x0 and
seeds s′1, . . . , s

′
n, each permutation π over the seeds uniquely defines a corre-

sponding “output” xπn through a length-(n + 1) “path” Pπ defined as follows.

Let xπ0
def
= x0, and for every 1 ≤ i ≤ n, let s′′i

def
= s′π−1(i) and xπi

def
= H

(
s′′i , x

π
i−1
)
.

Then the label of the i’th node on the path Pπ is xπi . We say that a node v with
label x on some path Pπ is reachable if x was the oracle answer to one of the
adversary’s queries in the distinguishing game. We note that when s′i = sπ∗(i),
i.e., the seeds are permuted with the permutation used in the permuted puzzle,
then xπ

∗

i = xi for every 1 ≤ i ≤ n. We call Pπ∗ the special path.
We will show that with overwhelming probability, unless the adversary

queriesH on all the xi’s on the special path (i.e., on xπ
∗

0 , xπ
∗

1 , . . . , xπ
∗

n = xn), then
he obtains only a negligible advantage in guessing b. Hardness of the permuted
puzzle then follows because there are n! possible paths, and the adversary has
a negligible chance of guessing the special path (because π∗ is a secret random
permutation).

4 We note that syntactically, this is not a permuted puzzle since the permutation
should be applied to the entire sample. However, this simplified view of the per-
muted puzzle captures the fact that in our construction, the permutation essentially
operates only over the seeds. In the actual construction, this is achieved by tagging
the different parts of the sample (with either “input”, “output”, or “seed”) such that
any permutation over the entire sample uniquely determines a permutation over the
seeds; see Section 4.
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We would first like to prove that all node labels, over all paths Pπ, are unique.
This, however, is clearly false, because the paths are not disjoint: for example,
the label of node 0 in all of them is x0. More generally, if π 6= π′ have the same
length-k prefix for some 0 ≤ k < λ, then for every 0 ≤ i ≤ k, the i’th nodes on
Pπ,Pπ′ have the same label. In this case, we say that the i’th nodes correspond
to the same node. Let Unique denote the event that across all paths there do
not exist two nodes that (1) do not correspond to the same node, but (2) have
the same label. Our first observation is that Unique happens with overwhelming
probability. Indeed, this holds when H’s output is sufficiently large (e.g., of the
order of 3λ · log λ), because there are only λ · λ! different nodes (so the number
of pairs is roughly of the order of 22λ·log λ).

Let E denote the event that the adversary queries H on the label of an un-
reachable node, and let ReachQ = Ē denote its complement. Our next observation
is that conditioned on Unique, ReachQ happens with overwhelming probability.
Indeed, conditioned on Unique, the label of an unreachable node is uniformly
random, even given the entire adversarial view (including previous oracle an-
swers). Thus, querying H on an unreachable node corresponds to guessing the
random node label. When H’s output length is sufficiently large (on the order
of 3λ · log λ as discussed above) this happens only with negligible probability.

Consequently, it suffices to analyze the adversarial advantage in the distin-
guishing game conditioned on Unique∧ReachQ. Notice that in this case, the only
potential difference between the adversarial views when b = 0 and when b = 1 is
in the label of the endpoint vend of the special path Pπ∗ , which is x′n when b = 0,
and independent of x′n when b = 1. Indeed, conditioned on Unique, the label of
vend appears nowhere else (i.e., is not the label of any other node on any path).
Therefore, conditioned on ReachQ ∧ Unique, the label of vend appears as one of
the oracle answers only if vend is reachable, i.e., only if the adversary queried H
on all the node labels on the special path.

Hard Permuted Puzzles in the Plain Model Our second permuted puzzle is
based on the Decisional Diffi-Helman (DDH) assumption. The underlying puzzle
distinguishing problem is defined over a multiplicative cyclic group G of prime
order p with generator g. The public key consists of G, g and a uniformly random
vector u ←

(
Z∗p
)n

. A sample from D0,D1 is of the form (gx1 , . . . , gxn), where
in D0 (x1, . . . , xn) is chosen as a uniformly random vector that is orthogonal to
u, whereas in D1 (x1, . . . , xn) is uniformly random. As discussed below, in this
(unpermuted) puzzle distinguishing problem one can easily distinguish samples
from D0 and D1. The corresponding permuted puzzle is obtained by applying a
fixed random permutation to the samples (gx1 , . . . , gxn).

Why are both DDH and a permutation needed? The computational hardness of
the permuted puzzles stems from the combination of the DDH assumption and
the permutation, as we now explain. To see why the DDH assumption is needed,
notice that in D0, all sampled (x1, . . . , xn) belong to an (n − 1)-dimensional
subspace of Znp , whereas in D1 this happens only with negligible probability,
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because each sample is uniformly and independently sampled. Consider a simpler
version in which D0,D1 simply output the vector (x1, . . . , xn). In this case, one
can obtain an overwhelming distinguishing advantage by (efficiently) checking
whether all samples (x1, . . . , xn) lie within an (n−1)-dimensional subspace, and
if so guess that the underlying distribution is D0. This “attack” can be executed
even if the samples are permuted (as is the case in a permuted puzzle), because
applying a permutation to the (x1, . . . , xn) is a linear operation, and therefore
preserves the dimension of the subspace. Therefore, a permutation on its own
is insufficient to get computational hardness, and we need to rely on the DDH
assumption.

To see why the permutation is needed, notice that even if the DDH as-
sumption holds in G, given (gx1 , . . . , gxn) one can efficiently test whether the
underlying exponents (x1, . . . , xn) are orthogonal to a known vector u, by only
computing exponentiations and multiplications inG. Notice that for a sufficiently
large p, the exponents of a sample from D1 will be orthogonal to u only with
negligible probability, so this “attack” succeeds with overwhelming probability.

Hardness of the permuted puzzle. We now show that the combination of the
DDH assumption, and permuted samples, gives computational hardness. Notice
that it suffices to prove that the permuted puzzle is weak computationally hard,
because D1 is random over Gn (see Section 1.3). In this case, the adversarial
view Vb, b ∈ {0, 1} consists of the public key (G, g,u), and a polynomial number
of permuted samples of the form (gx1 , . . . , gxn) which were all sampled according
to Db and permuted using the same random permutation π.

Our first observation is that Vb is computationally indistinguishable from the

distribution Hb in which the public key is (G, g, π′ (u)) for π′
def
= (π)

−1
, and the

samples from Db are unpermuted.
Our second observation is that the DDH assumption implies that Hb is com-

putationally indistinguishable from the distribution H′b in which the (x1, . . . , xn)
additionally lie in a random 1-dimensional subspace Lb,v. That is, (x1, . . . , xn)
are chosen at random from Lb,v, where in H′0 v is random subject to v · u = 0,
and in H′1 v is uniformly random. Specifically, we show that the problem of
distinguishing between Hb,H′b can be efficiently reduced to the task of distin-
guishing between a polynomial number of length-(n − 1) vectors of the form
(gy1 , . . . , gyn−1), where the (y1, . . . , yn−1) are all sampled from a random 1-
dimensional subspace of Zn−1p or all sampled from the full space Zn−1p . If the
DDH assumption holds in G then a polynomial-sized adversary cannot efficiently
distinguish between these distributions [BHHO08]. Consequently, it suffices to
show that H′0,H′1 are computationally close.

The final step is to show that H′0,H′1 are computationally (in fact, statisti-
cally) close. The only difference between the two distributions is in the choice of
v (which is orthogonal to u in H′0, and random in H′1), where all other sampled
values are either identical or deterministically determined by the choice of v.
Notice that in H′1, (π (u) ,v) is uniformly random in Znp × Znp . Thus, to show
thatH′0,H′1 are statistically close and conclude the proof, it suffices to prove that
(π (u) ,v) in H′0 is statistically close to uniform over Znp ×Znp . Very roughly, this
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follows from the leftover hash lemma due to the following observations. First,
π (u) has high min entropy even conditioned on u (because π is random). Sec-
ond, the family of inner product functions with respect to a fixed vector (i.e.,
hv (v′) = v · v′) is a pair-wise independent hash function.

Permuted Puzzles and the Learning Parity with Noise (LPN) Assumption. The
argument used in the DDH-based permuted puzzle can be generalized to other
situations in which it is hard to distinguish between the uniform distribution
and a hidden permuted kernel (but easy to distinguish when the kernel is not
permuted). This more general view allows us to cast the LPN assumption as a
permuted puzzle, see Section 5.1.

Statistical-Query Lower Bound We show that SQ algorithms that make
polynomially many queries obtain only a negligible advantage in distinguishing
the distributions D0,D1 in the toy problem presented in Section 1.1. Recall that
a sample in the toy problem is a permuted Graph(γ) where γ is either a uniformly
random degree-λ polynomial (in D0), or a uniformly random function (in D1),
and that the SQ algorithm obtains the outputs of boolean-valued functions f of
its choice on random samples. Very roughly, we will show that the outcome of
f on (permutation of) a random sample x← Db is independent of the challenge
bit b and the permutation π.

Notice that every permutation π over Graph(γ) defines a partition Φ
def
=

{π ({i} × F)}i∈F of F × F, where each set in the partition corresponds to a sin-
gle x value. We say that π respects the partition Φ. Notice also that each set
contains a single non-0 entry (which is π (i, γ(i)), where i is the value of x that
corresponds to the set). Thus, an SQ algorithm can compute this partition, so
we cannot hope to hide it. Instead, we show indistinguishability even when the
adversary is given the partition.

Our main observation is that for every partition Φ, and any boolean-valued
function f , there exists pf,Φ ∈ [0, 1] such that for every b ∈ {0, 1}, with over-
whelming probability over the choice of random permutation π that respects the
partition Φ, the expectation Ex←Db [f (π (x))] is very close to pf,Φ, where π (x)
denote that the entries of x are permuted according to π. Crucially, pf,Φ is in-
dependent of the challenge bit b, any particular sample x, and the permutation
(other than the partition).

We prove this observation in two steps. First, we show that in expectation
over the choice of the permutation, Ex←D0

[f (π (x))] and Ex←D1
[f (π (x))] have

the same value. To see this, we write the expectations over x← Db as a weighted
sum

∑
x Pb(x)f(π(x)), and apply linearity of the expectation over π. To show

that this is independent of b, we observe that for any fixed x, the distribution of
π(x) is the same (i.e. does not depend on x).

Next, we show that for any distribution D, the variance (over the choice of
the permutation π) of Ex←Db [f (π (x))] is small. The variance is by definition
the difference between

E
π

[
E

x←Db
[f (π (x))]

2 ]
(1)
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and
E
π

[
E

x←Db
[f (π (x))]

]2
. (2)

We show that both Eq. (1) and Eq. (2) can be expressed as an expectation

(over some distribution of g, g′) of Eπ
[(
f(π(Graph(g))), f(π(Graph(g′)))

)]
. We

observe that this depends only on the Hamming distance between g and g′.
Finally, we observe that the distribution of (g, g′) is uniform in Eq. (2) and two
independent samples from Db in Eq. (1). To complete the bound on the variance,
we show that when g, g′ are sampled independently from Db (specifically, the
interesting case is when they are sampled from D0), then the distribution of the
Hamming distance between g and g′ is nearly the same as when g and g′ are
independent uniformly random functions.

To prove this, we prove a lemma (Lemma 4) stating that when t-wise in-
dependent random variables (X1, . . . , Xn) satisfy Pr[Xi 6= ?i] = pi for some
values of ?i and pi such that

∑
i∈[n] pi ≤

t
4 ≥ ω(log λ), then (X1, . . . , Xn) are

statistically negl(λ)-close to mutually independent. We apply this with Xi be-
ing the indicator random variable for the event that g(i) 6= g′(i). This lemma
quantitatively strengthens a lemma of [CHR17].

Open Problems and Future Research Directions The broad goal of bas-
ing DE-PIR on standard assumptions was a motivating starting point for this
work, in which we put forth the framework of permuted puzzles. In describing
hard permuted puzzles, we take a “bottom-up” approach by describing such con-
structions based on standard cryptographic assumptions. Since these permuted
puzzles are still not known to imply DE-PIR, we try to close the gap between
the permuted puzzle on which DE-PIR security is based, and provably hard per-
muted puzzles, by taking a “top-down” approach, and analyzing the security of
a toy version of the DE-PIR permuted puzzle, against a wide class of possible
attacks.

Our work still leaves open a fascinating array of questions, we discuss some
of them below. First, it would be very interesting to construct a hard permuted
puzzle based only on the existence of one-way functions, as well as to provide
“public-key” hard permuted puzzles, namely ones in which the key generation
algorithm needs no secret key, based on standard assumptions. In the context
of DE-PIR and its related permuted puzzle, it would be interesting to construct
DE-PIR based on other (and more standard) assumptions, as well as to analyze
the security of its underlying permuted puzzle (and its toy version) against a
wider class of attacks.

2 Preliminaries

For a set X, we write x← X to denote that x is sampled uniformly at random
from X. For a distribution D, we use Supp (D) to denote its support. The min

entropy of D is H∞ (D)
def
= minx∈Supp(D) log 1

Pr[x] . For a pair X,Y of random
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variables, we denote their statistical distance by dTV (X,Y ). We use · to denote
inner product, i.e., for a pair x = (x1, . . . , xn) ,y = (y1, . . . , yn) of vectors,

x ·y def
=
∑n
i=1 xiyi. We use [n] to denote the set {1, . . . , n}, and Sn to denote the

group of permutations of [n].

Notation 3 (Permutation of a vector). For a vector x = (x1, . . . , xn), and a
permutation π ∈ Sn, we denote:

π (x)
def
=
(
xπ−1(1), . . . , xπ−1(n)

)
.

3 Distinguishing Problems and Permuted Puzzles

In this section, we formally define (permuted) puzzle problems which are,
roughly, a (special case) of ensembles of keyed “string-distinguishing” problems.

We begin in Section 3.1 by developing terminology for general string-
distinguishing and puzzle problems. In Section 3.2 we present the formal dis-
tinguishing challenge and define hardness. Then, in Section 3.3, we discuss the
case of permuted puzzles, and present an alternative indistinguishability notion
that is equivalent in certain cases.

3.1 String-Distinguishing Problems

At the core, we consider string-distinguishing problems, defined by a pair of
distributions over n-element strings. We begin by defining a finite instance.

Definition 1 (String-Distinguishing Problems). A string-distinguishing
problem is a tuple Π = (n,Σ,D0,D1), where n is a positive integer, Σ is a
non-empty finite set, and each Db is a distribution on Σn. We call n the string
length, and Σ the string alphabet.

More generally, an oracle-dependent string-distinguishing problem is a function
Π(·) that maps an oracle O : {0, 1}∗ → {0, 1} to a string-distinguishing problem
ΠO.

For example, we will consider permuted puzzle string-distinguishing problems
relative to a random oracle in Section 4. Note that oracle-dependent string-
distinguishing problems are strictly more general than string-distinguishing
problems, as the distributions can simply ignore the oracle.

Remark 1 (Oracle Outputs). In the above, we modeled the oracle as out-
putting a single bit for simplicity. However, any (deterministic) oracle with multi-
bit output can be emulated given a corresponding single-bit-output oracle, at
the cost of making more oracle queries.

We will be interested in distinguishing problems where the distributions D0

and D1 may depend on common sampled “key” information. Parts of this key
may be publicly available, or hidden from a distinguishing adversary (discussed
in Definition 4); these parts are denoted pk, sk, respectively.

12



Definition 2 (Keyed Families). A keyed family of (oracle-dependent) string-
distinguishing problems is a tuple (K, {Πk}k∈K), where K is a distribution on
a non-empty finite set of pairs (pk, sk) and each Πk is an (oracle-dependent)
string-distinguishing problem. We refer to the support of K as the key space, and
also denote it by K.

Note that any string-distinguishing problem can trivially be viewed as a keyed
family by letting K be a singleton set.

Example 1 (Keyed Family: Dimension-t Subspaces). For a finite field F, and
n ∈ N, consider an example keyed family of string-distinguishing problems
(K, {Πk}k∈K) as follows:

– K samples a random t← {1, . . . , n− 1}, and a random subspace L ⊆ Fn of
dimension t, sets pk = t and sk = L, and outputs (pk, sk).

– For a key k = (t, L), the corresponding string-distinguishing problem is
Πk = (n,F,D0,D1) where D0 outputs a uniformly random v ∈ L, and D1

outputs a uniformly random v ∈ Fn.

Note that in this example, it will be computationally easy to distinguish between
the distributions D0,D1 given sufficiently many samples.

We next define a puzzle problem which, informally, is an efficiently sampleable
ensemble of keyed families of string-distinguishing problems.

Definition 3 (Puzzle problem). A puzzle problem is an ensem-

ble {(Kλ, {Π(·)
k }k∈Kλ)}λ∈Z+ of keyed families of (oracle-dependent) string-

distinguishing problems associated with probabilistic polynomial-time algorithms
KeyGen and Samp such that:

– For any λ ∈ Z+, KeyGen(1λ) outputs a sample from Kλ.

– For any k ∈ Kλ, any b ∈ {0, 1}, and any oracle O : {0, 1}∗ → {0, 1},
SampO(k, b) outputs a sample from Db, where ΠO

k = (n,Σ,D0,D1).

Remark 2 (Abbreviated terminology). Somewhat abusing notation, we will
also refer to a single keyed family of string-distinguishing problems as a puzzle
problem.

3.2 Distinguishing Games and Hardness

We will focus on puzzle problems where it is computationally hard to distinguish
between the pair of distributions. This notion of hardness is formalized through
the following distinguishing game. Roughly, the distinguishing adversary is given
a challenge sample x from a randomly selected Db, and query access to both
distributions (denoted by choices β below), and must identify from which Db
the x was sampled.
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Definition 4 (Distinguishing Game). Let P = (K, {Πk}k∈K) be a puzzle
problem, and let O be a distribution of oracles. The distinguishing game GOdist[P]
is run between an “adversary” A and a fixed “challenger” C, and is defined as
follows:

1. C samples a key k = (pk, sk) from K, and O ← O, and denote ΠO
k =

(n,Σ,D0,D1). C sends pk to A, who is also given oracle access to O through-
out the game.

2. C samples a random bit b← {0, 1}, samples x← Db, and sends x to A.
3. The following is repeated an arbitrary number of times: A sends a bit β to
C, who samples x′ ← Dβ and sends x′ to A.

4. A outputs a “guess” bit b′ ∈ {0, 1}.

A is said to win the game if b′ = b. A’s advantage is AdvA(GOdist[P])
def
= 2·

∣∣Pr[b′ =

b]− 1
2

∣∣.
Informally, a permuted puzzle is computationally hard if any polynomial-time

adversary wins the distinguishing game of Definition 4 with negligible advantage.
We first formalize the notion of concrete hardness.

Definition 5 (Concrete Hardness). A puzzle problem P = (K, {Πk}k∈K) is
said to be (s, ε)-hard (with respect to oracle distribution O) if in the game GOdist[P],
all adversaries A of size at most s have advantage at most ε.

We say a puzzle problem
{

(Kλ, {Π(·)
k }k∈Kλ)

}
λ∈Z+ is

(
s(·), ε(·)

)
-hard (with

respect to an ensemble {Oλ} of oracle distributions) if each (Kλ, {Π(·)
k }k∈Kλ) is(

s(λ), ε(λ)
)
-hard with respect to Oλ.

Definition 6 (Asymptotic Hardness). As usual, we say simply that P is
(computationally) hard if for every s(λ) ≤ λO(1), there exists ε(λ) ≤ λ−ω(1) such
that for every λ ∈ Z+, P is (s(·), ε(·))-hard.
P is statistically hard if for some ε(λ) ≤ λ−ω(1), P is (∞, ε(·))-hard.

Remark 3 (Discussion on Definition).
A slightly simpler and more natural definition would be to give the adversary

access to (polynomially-many samples from) only a randomly selected Db, where
the adversary must identify b.

For keyed puzzles, these definitions are in general not equivalent. Consider,
for example, a modified version of Example 1, where both D0 and D1 are defined
by random dimension-t subspaces, L0 and L1. Then over the choice of the key
(including L0, L1), the distributions D0 and D1 on their own are identical: that
is, even an unbounded adversary with arbitrarily many queries would have 0
advantage in the simplified challenge. However, given t samples from both dis-
tributions, as in Definition 4, D0 and D1 are trivially separated, and a sample
x can be correctly labeled with noticeable advantage. On the other hand, hard-
ness with respect to our definition implies hardness with respect to the simplified
notion, by a hybrid argument over the number of queries (see Lemma 1).
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Since our motivation for studying puzzles come from applications where cor-
related samples from the corresponding distributions can be revealed (e.g., cor-
related PIR queries on different indices i), we thus maintain the more complex,
stronger definition.

The definitional separation in the example above stems from the fact that
given access to only one distribution Db, one cannot necessarily simulate con-
sistent samples from D0 and D1. However, in certain instances, this issue does
not arise; for example, if one of the two is simply the uniform distribution over
strings. We formally address this connection in the following section: presenting
the simplified indistinguishability notion in Definition 8, and proving equivalence
for certain special cases in Lemma 2.

3.3 Permuted Puzzles and a Related Indistinguishability Notion

In this work we will focus on permuted puzzles. This is a special case of puzzle
problems, as we now define. Here, the key includes an additional secret random
permutation on the indices of the n-element strings, and strings output by the
distributions D0,D1 will be permuted as dictated by π.

Definition 7 (Permuted Puzzle Problems). For a puzzle problem P =

{(Kλ, {Π(·)
k }k∈Kλ)}λ∈Z+ , we define the associated permuted puzzle problem

Perm (P)
def
= {(K′λ, {Π

′(·)
k′ }k′∈K′λ)}λ∈Z+ , where:

– A sample from K′λ is
(
pk, (sk, π)

)
, where:

• (pk, sk) is sampled from Kλ, and
• If Πk = (n,Σ,D0,D1), then π is sampled uniformly at random from the

symmetric group Sn.
– For any key k′ = (pk, (sk, π)), if Π(pk,sk) = (n,Σ,D0,D1) then Π ′k′ =

(n,Σ,D′0,D′1), where a sample from D′b is π(x) for x← Db.

Recall (Notation 3) for vector x ∈ Σn and π ∈ Sn, that π(x) denotes the index-
permuted vector.

As discussed in Remark 3, we now present a simplified notion of indistin-
guishability, and show that in certain special cases, this definition aligns with
Definition 6. In such cases, it will be more convenient to work with the simplified
version.

Definition 8 (Weak Hardness of Puzzle Problems). Let P =
(K, {Πk}k∈K) and O be as in Definition 4. The simplified distinguishing game
GOdist,s[P] is defined similarly to GOdist[P], except that in Step 3, C samples x′ ← Db
(instead of x′ ← Dβ).

A puzzle problem P = (K, {Πk}k∈K) is weak (s, ε)-hard if AdvA(GOdist,s[P]) ≤ ε
for any size-s adversary A. Weak computational hardness is defined similarly to
Definition 6.

Note that weak computational (statistical) hardness (with respect to Defini-
tion 8) is implied by hardness with respect to Definition 4:
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Lemma 1 (Standard ⇒ Weak). Let P = {(Kλ, {Π(·)
k }k∈Kλ)}λ∈Z+ be a puz-

zle problem. If P is computationally (statistically, respectively) hard in the stan-
dard sense (Definition 6) then it is weak computationally (statistically, respec-
tively) hard (Definition 8).

The more interesting direction is that weak hardness implies (standard) hard-
ness in the case that one of the two distributionsD0 orD1 is efficiently sampleable
and permutation-invariant, in the following sense.

Definition 9 (Permutation-Invariant Distributions). Let n ∈ N, let Σ be
a non-empty set, and let D be a distribution over Σn. For a permutation π ∈ Sn,
let Dπ be the distribution induced by sampling x← D and outputting π (x). We
say that D is permutation-invariant if for a uniformly random π ∈ Sn, the joint
distribution Dπ ×Dπ is identical to D ×Dπ.

Remark 4. One example of a permutation-invariant distribution D particularly
useful in this work is the uniform distribution over Σn.

Lemma 2 (In certain cases Weak ⇒ Standard). Let P =

{(Kλ, {Π(·)
k }k∈Kλ)}λ∈Z+ be a puzzle problem. If:

– The corresponding permuted puzzle Perm (P) is weak computationally hard
(Definition 8).

– For every λ, every k = (pk, sk) ∈ Supp (Kλ), and every Πk = (n,Σ,D0,D1):
• D1 is permutation-invariant.
• One can efficiently sample from D1 without sk.

Then Perm (P) is computationally hard in the standard sense (Definition 6).

Finally, we show that the existence of hard permuted puzzles for which the
original distributions D0,D1 are statistically far implies the existence of one-way
functions. Note that this holds with respect to our standard (strong) definition
of computational hardness, but not in general for the weaker notion (where, for
example, even trivially distinguishable singleton distributions D0 over (0, 1) and
D1 over (1, 0) become statistically identical when receiving samples only from
permuted-D0 or permuted-D1).

Lemma 3. If P is a puzzle problem that is not statistically hard, but Perm(P)
is computationally hard, then there exists a one-way function.

The proofs of Lemmas 1, 2 and 3 are deferred to the full version.

4 Hard Permuted Puzzles in the Random Oracle Model

We show that there exist computationally hard permuted puzzles in the random
oracle model. We first formally define the notion of a random oracle.

Definition 10 (Random Oracle). We use the term random oracle to refer to
the uniform distribution on functions mapping {0, 1}∗ → {0, 1}.
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Construction 4 (Permuted puzzles in the ROM). Let H be a random oracle.
For a security parameter λ, we interpret H as a function Hλ : {0, 1}mλ+λ →
{0, 1}mλ for mλ = 2 (λ+ 1) log λ (also see Remark 1). We define a puzzle prob-
lem P =

{
(Kλ, {Πk}k∈Kλ)

}
by the following KeyGen and Samp algorithms:

– KeyGen
(
1λ
)

outputs 1λ as the public key (the secret key is empty).5

We note that for any λ, the corresponding string distinguishing prob-

lem Πλ =
(
n,Σ,D(·)

0 ,D(·)
1

)
has n = λ + 2 and Σ = {0, 1}mλ ×

{INPUT, OUTPUT, SEED}.
– Samp (k, b) where k = 1λ outputs a sample from DHλλ,b for Hλ : {0, 1}mλ+λ →
{0, 1}mλ as defined above, where DHλλ,b is defined as follows.

• A sample from DHλλ,0 is of the form (σ1, . . . , σλ+2), where:
∗ For i ∈ [λ], σi = (si, SEED) for uniformly random and independent
s1, . . . , sλ in {0, 1}mλ .
∗ σλ+1 = (x0, INPUT), where x0 is uniformly random in {0, 1}mλ .
∗ σλ+2 = (xλ, OUTPUT), where for each i ∈ [λ], xi = Hλ(s′i, xi−1),

where s′i is the length-λ prefix of si. (That is, the random oracle uses
length-λ seeds, and the rest of the bits in the seed are ignored.)

• DHλλ,1 is defined identically to DHλλ,0 , except that xλ is uniformly random
in {0, 1}mλ , independent of x0, Hλ, and s1, . . ., sλ.

Proposition 1. The puzzle problem P of Construction 4 is computationally
easy, and the corresponding permuted puzzle problem Perm (P) is statistically
hard, with respect to a random oracle.

We note that P is computationally easy in an extremely strong sense: a
polynomial-sized adversary can obtain advantage 1−negl (λ) in the distinguish-
ing game. The proof of is deferred to the full version.

5 Hard Permuted Puzzles in the Plain Model

In this section we discuss permuted puzzle problems based on hidden permuted
kernels. At a high level, these puzzles have the following structure. First, the
distributions D0,D1 are associated with a group G with generator g, and a
uniformly random public “constraint vector” c. Samples from D0 and D1 are
vectors inGm, of the form gx. Specifically,D1 samples a uniformly random vector
in Gm, whereas D0 samples a vector x that is uniformly random subject to being
orthogonal to c. Intuitively, since D1 is uniformly random, weak computational
hardness of the permuted puzzle problem implies computational hardness by
Lemma 2.

Remark 5 (An alternative formulation of the problem). In the high-level
blueprint of a permuted puzzle problem described above, the constraint vector c

5 We note that in this permuted puzzle construction the key generation stage is obso-
lete.
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is given “in the clear” (namely, we assume it is public, and indistinguishability
does not rely on the secrecy of c), and the samples x are permuted according
to a random permutation π ∈ Sn, namely, the adversary obtains π (x) (recall
that π (x) =

(
xπ−1(1), . . . , xπ−1(n)

)
Let C denote the set of “good” vectors c, i.e.,

vectors that satisfy the requirement, and let Gn denote the domain over which

D0,D1 are defined. Let D′b
def
=
(
c, (π (xi))i∈[q]

)
c←C,π←Sn,xi←Db

denote the distri-

bution over the adversary’s view in the simplified distinguishing game of Defini-
tion 8, where b is the challenge bit, and q is the number of samples the adversary

receives from the challenger. Denote D′′b
def
=
(
π (c) , (xi)i∈[q]

)
c←C,π←Sn,xi←Db

.

The permuted puzzle problems described in this section will have the property
that D′b ≈ D′′b for b ∈ {0, 1}, which will be used in the security proofs.

5.1 Permuted Puzzles and the Learning Parity With Noise (LPN)
Assumption

We now describe how to cast the Learning Parity with Noise (LPN) assumption
as a permuted puzzle.

Notation. For a ∈ Fn2 , we use |a| to denote the Hamming weight of a. For i ∈ [n],
we denote vn,i = 1i · 0n−i (i.e., a canonical length-n vector of Hamming weight
i). For n ∈ N, let Rn denote the distribution that outputs a uniformly random
x← Fn2 . For a fixed s ∈ Fn2 , and γ ∈ (0, 1), let DLPN,s,γ denote the distribution
over Fn2 that with probability γ outputs a uniformly random x ← Fn2 , and
otherwise (with probability 1 − γ) outputs a uniformly random element of the
set {x ∈ Fn2 : x · s = 0}.

Definition 11 (Learning Parity with Noise (LPN)). Let γ ∈ (0, 1).
The γ-Learning Parity with Noise (γ-LPN) assumption conjectures that for ev-
ery polynomial-sized oracle circuit ensemble A = {Aλ}λ there exists a negligible
function ε (λ) such that for every λ,

AdvLPNA (λ)
def
=

∣∣∣∣ Pr
s←Fλ2

[
ADLPN,s,γ (1λ) = 1

]
− Pr

[
ARλ(1λ) = 1

]∣∣∣∣ ≤ ε (λ) .

Remark 6 (Equivalence to standard LPN formulation). Recall that the
standard γ-LPN assumption, for 0 < γ < 1

2 , states that any polynomial-time
adversary obtains only a negligible advantage in distinguishing between (poly-
nomially many samples from) the following distributions:

– (ai, 〈ai, s〉 + ei)
m
i=1, where for every i, ai ← Fn2 and ei is sampled from a

Bernoulli distribution with Pr[ei = 1] = γ; vs.
– (ai, ui)

m
i=1, where each (ai, ui) is sampled uniformly at random from Fn+1

2 .

We now show that if the standard LPN assumption holds with parameters (λ−
1, γ/2), then Definition 11 holds with parameters (λ, γ), where the distinguishing
advantage increases by at most 2−λ.
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– In Definition 11 if s = 0 then DLPN,s,γ and Rλ are identically distributed,
whereas in the standard LPN formulation they might be distinguishable
(with some advantage ≤ 1).

– Conditioned on s 6= 0 in Definition 11, there exists at least one nonzero
coordinate i ∈ [λ] such that si = 1, in which case the i’th coordinate of
a sample from DLPN,s,γ is a noisy linear function of the other coordinates.
That is, with probability (1 − γ) + γ

2 , it holds that x is random subject to
xi =

∑
j 6=i xjsj , and with probability γ

2 , the vector x is random subject
to xi =

∑
j 6=i xjsj + 1 with offset noise. Moreover, since s is uniformly

random over non-zero vectors, such coordinate is equally likely to occur for
any index i ∈ [λ] (in contrast, in the standard LPN formulation the last
coordinate always necessary satisfies this “special” structure; i.e., equivalent
to DLPN,s,γ with secret s = (s′, 1)).

Thus, conditioned on the (overwhelming probability) event that s 6= 0, we can
reduce the problem of distinguishing standard LPN with parameters (λ−1, γ/2),
to distinguishing our version parameters (λ, γ), by selecting a random i ← [λ]
and transposing the i’th coordinate of all received LPN samples with the final
coordinate.

We now describe how to cast LPN as a permuted puzzle.

Construction 5 (Permuted puzzle problem from LPN). For a noise parameter
γ ∈ (0, 1/2), we define a puzzle problem P =

{
(Kλ, {Πk}k∈Kλ)

}
by the following

KeyGen and Samp algorithms:

– KeyGen
(
1λ
)

samples a weight w according to the binomial distribution over
[n]. It outputs w as the secret key (there is no public key).
For a key k generated by KeyGen

(
1λ
)
, the corresponding string-

distinguishing problem Πk =
(
n,Σ,D0,D1

)
has string length n = λ and

alphabet Σ = F2.
– Samp (w, b) outputs a sample from Dλ,b, where Dλ,0 = DLPN,vλ,w,γ , and
Dλ,1 = Rλ.

Proposition 2. For any constant γ ∈ (0, 1/2), the γ-LPN assumption is equiv-
alent to the computational hardness of the permuted puzzle problem Perm (Pγ)
of Construction 5.

Proof. Regarding the equivalence of the γ-LPN assumption and the computa-
tional hardness of Perm (Pγ), notice that the permuted distribution D′λ,0 of the
permuted puzzle is exactly DLPN,s,γ , where s = π (vλ,w) for a uniformly random
π ∈ Sλ, and a weight w ∈ [λ] which was sampled according to the binomial
distribution, so s is uniformly random in Fn2 . Therefore, the distinguishing ad-
vantage in the distinguishing game of the permuted puzzle corresponds exactly
to the γ-LPN assumption (because additionally D′λ,1 = Rλ).

Remark 7 ((Unpermuted) puzzle problem is computationally easy). We
note that the (unpermuted) puzzle problem of Construction 5 is computationally
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easy. Indeed, in the unpermuted puzzle problem there are only λ possible “secret”
vectors (i.e., vλ,1, . . . , vλ,λ). Given a polynomial number of samples from Dλ,0
the adversary can determine, with overwhelming probability, which of these is
the secret vector used in Dλ,0, and can then determine (with constant advantage)
whether the challenge sample is from Dλ,0 or Dλ,1.

5.2 Permuted Puzzles Based on DDH

In this section we describe a permuted puzzle problem based on the DDH as-
sumption. We first recall the standard DDH assumption, and describe an equiv-
alent formulation which we use.

Definition 12 (Group Samplers). A group sampler is a probabilistic
polynomial-time algorithm G that on input 1λ outputs a pair (G, g), where G
is a multiplicative cyclic group of order p = Θ(2λ), and g is a generator of G.
We assume that p is included in the group description G, and that there exists an
efficient algorithm that given G and descriptions of group elements g1, g2 outputs
a description of g1 · g2.

Definition 13 (DDH assumption). For any cyclic group G of order p with
generator g, define the following distributions:

– DDDH(G, g) is uniform over the set
{

(gx, gy, gxy) : x, y ∈ Zp
}

.
– RDDH(G, g) is uniform over G3.

For a group sampler G, the DDH assumption over G conjectures that for any
polynomial-sized circuit family A = {Aλ}λ there exists a negligible function ε (λ)
such that for every λ:

Adv
DDH(G)
A (λ)

def
=

∣∣∣∣∣∣∣ Pr
(G,g)←G(1λ)
v←DDDH(G,g)

[Aλ (v) = 1]− Pr
(G,g)←G(1λ)
v←RDDH(G,g)

[Aλ (v) = 1]

∣∣∣∣∣∣∣ ≤ ε (λ) .

We will use the matrix version of DDH, defined next. Informally, in matrix
DDH the adversary is given many vectors of the form (gx1 , . . . , gxn), and the
conjecture is that no polynomial-time adversary can distinguish between the
case that the (x1, . . . xn) are sampled uniformly from Znp , and the case that
(x1, . . . , xn) are sampled from a random 1-dimensional subspace of Znp .

Definition 14 (Matrix DDH assumption). For a cyclic group G of order
p, and n, q ∈ N, define

Rki
(
Gq×n

)
=
{
gA = (gaij )i∈[q],j∈[n] : A ∈ Zq×np , rank (A) = i

}
.

Let G be as in Definition 13, and let n = n (λ) , q = q (λ) be polynomials such
that q (λ) ≥ n (λ) for every λ. The matrix DDH assumption over G conjectures
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that for any polynomial-sized circuit family A = {Aλ}λ there exists a negligible
function ε (λ) such that for every λ:

Adv
M-DDH(G)
A (λ)

def
=

∣∣∣∣∣∣∣∣ Pr
(G,g)←G(1λ)
v←Rkn(Gq×n)

[Aλ (v) = 1]− Pr
(G,g)←G(1λ)
v←Rk1(Gq×n)

[Aλ (v) = 1]

∣∣∣∣∣∣∣∣ ≤ ε (λ) .

Boneh et al. proved [BHHO08, Lemma 1] that the DDH assumption over G
implies the matrix DDH assumption over G:

Imported Theorem 6 (DDH implies matrix-DDH [BHHO08]). Let λ be a
security parameter, let G be as in Definition 13, and let n = n (λ) , q = q (λ) be
polynomials. Then for any polynomial-sized adversary circuit AM-DDH there exists

an adversary ADDH of size |AM-DDH| + poly (q, n) such that Adv
M-DDH(G)
AM-DDH

(λ) ≤
(n− 1) · AdvDDH(G)

ADDH
(λ).

We are now ready to define the permuted puzzle problem based on DDH.

Construction 7 (Permuted puzzle problem from DDH). Let G be as in Defi-
nition 13. We define a puzzle problem P =

{
(Kλ, {Πk}k∈Kλ)

}
by the following

KeyGen and Samp algorithms:

– KeyGen on input 1λ samples (G, g)← G(1λ), where G is the group sampling
algorithm of Definition 13. Let p denote the order of G. Then, KeyGen sam-
ples a uniformly random vector u ∈ Znp for n = λ2 and outputs (G, g,u) as
a public key (there is no secret key).
We note that for any k = (G, g,u), the corresponding string distinguishing
problem Πk = (n,Σ,D0,D1) has alphabet Σ = G.

– Samp (k, b) for k = (n,Σ,D0,D1) outputs a sample from Db, where:
• D0 is uniform over {gx ∈ Gn : x · u = 0}.
• D1 is uniform over Gn.

Proposition 3. The puzzle problem P of Construction 7 is computationally
easy. Moreover, if G is an ensemble of groups in which the matrix DDH as-
sumption of Definition 14 holds, then the corresponding permuted puzzle problem
Perm(P) is computationally hard.

We note that P is computationally easy in an extremely strong sense: a
polynomial-sized adversary can obtain advantage 1−negl (λ) in the distinguish-
ing game. The proof of Proposition 3 is deferred to the full version.

6 Statistical Query Lower Bound

In this section we discuss a specific permuted puzzle toy problem introduced
by [BIPW17], and study its hardness against a large class of potential adver-
sarial algorithms called statistical-query algorithms. We first define this class of
algorithms in Section 6.1, then present the toy problem in Section 6.2 and prove
it is secure against such algorithms.
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6.1 Statistical Query Algorithms

Definition 15 (Statistical Query Algorithms). Let P = (K, {Πk}k∈K) be a
puzzle problem. A statistical q-query algorithm for Gdist,s[P] is a stateful adversary
A using an “inner adversary” ASQ as follows.

1. Upon receiving the public key pk, A forwards it to ASQ.
Recall that pk is part of the key k, and denote Πk = (n,Σ,D0,D1).

2. The following is repeated q times:
(a) ASQ outputs a boolean-valued function f .6

(b) A requests a sample x← Db from the challenger (where b ∈ {0, 1} is the
challenger’s secret bit), computes f(x) (this is a single bit), and forwards
f(x) to ASQ.

3. When ASQ outputs a “guess” bit b′, A forwards b′ to the challenger.

Remark 8. We consider only statistical query algorithms for the simplified dis-
tinguishing game Gdist,s of Definition 8 because our lower bounds (proven in
Section 6.2) hold for puzzle problems in which weak computational hardness
(i.e., hardness of Gdist,s) is equivalent to computational hardness (i.e., hardness
of the more standard distinguishing game Gdist of Definition 4) by Lemma 2.

Statistical Query (SQ) algorithms constitute a broad class of distinguishing
algorithms, that is incomparable in power to polynomial-time algorithms. For
example, an SQ algorithm can distinguish between a PRG output and a uni-
formly random string with a single query. On the other hand, SQ algorithms
cannot distinguish between a distribution that is uniform on {0, 1}n and one
that is uniform on a random high-dimensional subspace of {0, 1}n. These dis-
tributions can be distinguished (given many samples) in polynomial time by a
simple rank computation.

Still, in the context of distinguishing problems, SQ algorithms seem to be a
powerful class of adversarial algorithms. In fact, except for the aforementioned
examples of algorithms which exploit algebraic structure, we are not aware of
any natural distinguishing algorithms that cannot be simulated by statistical
query algorithms. A challenging and important open problem, which we leave
for future work, is to formalize a class of algorithms that use algebraic structure
(or even only linear algebra), possibly together with statistical queries, and to
prove lower bounds against this class.

6.2 The Toy Problem and Lower Bound

The works [CHR17,BIPW17] base the security of their DE-PIR schemes on the
PermRM conjecture, for which they also discuss different variants (e.g., noisy
versions). Boyle et al. [BIPW17] also put forth a toy version of the problem, for
which we will prove a lower bound against SQ algorithms. We first recall the
PermRM conjecture and its toy version.

6 We do not assume any bound on the description size or complexity of f , which will
not matter for our lower bounds.
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Conjecture 1 (PermRM, Conjecture 4.2 in [BIPW17]). Let m ∈ N be a dimen-
sion parameter, let λ ∈ N be a security parameter, let d = dm (n) be the minimal
integer such that n ≥

(
m+d
d

)
, and let F be a finite field satisfying |F| > dλ + 1.

Define a probabilistic algorithm Samp (b, π, v) that operates as follows:

– If b = 0:
1. Select m random degree-λ polynomial p1, . . . , pm ← F[X] such that for

every 1 ≤ i ≤ λ, pi(0) = v. Notice that these polynomials determine a
curve γ (t) in Fm, given by {(p1(t), . . . , pm(t)) : t ∈ F}.

2. Sample dλ+ 1 distinct points on the curve γ (t), determined by non-zero
parameters t0, . . . , tdλ ← F.

3. Output the points, in order, where each point is permuted according to
π : Fm → Fm, namely output

(π (p1(ti), . . . , pm(ti)))
dλ
i=0 ∈ (Fm)

dλ+1
.

– If b = 1: sample dλ+1 random points in Fm (w0, . . . , wdλ)← (Fm)
dλ+1

, and
output (w0, . . . , wdλ).

The PermRM conjecture is that for every efficient non-uniform A = (A1,A2)
there exists a negligible function µ(λ) = negl (λ) such that:

Pr


(
1n, 1|F|, aux

)
← A1

(
1λ
)

π ← S(Fm); b← {0, 1}
b′ ← ASamp(b,π,·)

2 (1n, aux)

: b′ = b

 ≤ 1/2 + µ (λ)

Let F = {Fλ}λ∈Z+ denote an ensemble of finite fields with |Fλ| = Θ(λ2). Let
q = qλ denote |Fλ|.

For a function f : X → Y , we define Graph(f) : X × Y → {0, 1} such that

Graph(f)(x, y) =

{
1 if y = f(x)

0 otherwise.

Define the puzzle problem Πλ = (n, {0, 1},D0,D1), where n = q2, and D0

and D1 are defined as follows.

– A sample from D0 is Graph(γ), where γ : F → F is a uniformly random
degree-λ polynomial.

– A sample from D1 is Graph(U), where U : F → F is a uniformly random
function.

Conjecture 2 ([BIPW17]). The permuted puzzle problem P def
= Perm({Πλ}λ∈Z+)

is computationally hard.

Theorem 8. The simplified distinguishing game Gdist,s[P] is hard for statistical-
query algorithms. That is, for all polynomially bounded q(·), the advantage of any
statistical q(λ)-query adversary in Gdist,s[P] is at most e−Ω(λ).
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Proof. We will show that even if we give the statistical query adversary addi-
tional information about π, it cannot distinguish permuted samples from D0

from permuted samples from D1. Specifically, we will give the adversary (for
free) the unordered partition Φ1 ∪ · · · ∪ Φq of F × F, where Φi = π({i} × F).
(Intuitively, Φi is the image under π of all points in which the X coordinate
equals i. In particular, π (Graph (f)) takes value “1” at exactly one coordinate
in Φi.) Note that it is indeed possible for a statistical query adversary to learn

Φ
def
= {Φ1, . . . , Φq}: if (x, y) and (x′, y′) belong to the same Φi, then for a random

sample z ← Db, it is never the case that π(z)(x,y) = π(z)(x′,y′) = 1. However, if
(x, y) and (x′, y′) do not belong to the same Φi, then π(z)(x,y) = π(z)(x′,y′) = 1

with probability at least 1
q2 .

We say that a permutation π respects a partition Φ = {Φ1, . . . , Φq} if {π({i}×
F)}i = Φ. For any partition Φ, we will write PrΦ to denote the probability
space in which a permutation π is sampled uniformly at random from the set of
permutations that respect Φ. Similarly, we will write EΦ to denote expectations
in PrΦ, and we write VarΦ to denote variances in PrΦ.

We will show that there is some negligible function ν : Z+ → R such that
for any function f : {0, 1}n → {0, 1} and any partition Φ, there exists some
pf,Φ ∈ [0, 1] such that for every b ∈ {0, 1}, it holds that

Pr
Φ

[
E

x←Db

[
f(π(x))]− pf,Φ

∣∣ ≥ ν(λ)

]
≤ ν(λ).

Crucially, pf,Φ is independent of the challenge bit b, the specific sample x, and
the secret permutation π (except for its dependence on Φ). Thus, the answer to
a query f can be simulated by computing pf,Φ.

The following two observations are at the core of our proof. Recall that ∆
denotes the Hamming distance. For a pair of functions g, g′ : X → Y , we denote
∆ (g, g′) = |{x ∈ X : g (x) 6= g′ (x)}|.

Claim 1. For any partition Φ, any function g : F→ F, and any fixed permutation
π∗ that respects Φ, the distribution of π(Graph(g)) under PrΦ is identical to the
distribution of π∗(Graph(u)) when u : F→ F is a uniformly random function.

Proof. To sample a random permutation π conditioned on
{
π({i}×F)

}
i

= Φ
def
=

{Φ1, . . . , Φq}, one can sample a uniformly random permutation σ : F→ F and q
independent bijections πi : F→ Φσ(i), and then define π(j, k) = πj(k).

π(Graph(g)) is defined by the set of points {π(j, g(j))}j∈F = {πj(g(j))}. It is
clear that sampling g uniformly at random corresponds to independently picking
each g(j) at random, which produces an identical distribution of π(Graph(g))
as picking the bijections {πj} independently and uniformly at random. Thus,
π∗(Graph(u)) for a fixed π∗ which respects the partition Φ, and a random u, is
distributed identically to π(Graph(g)) for a fixed g and a random π that respects
Φ.
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Claim 2. For any partition Φ, any functions g, g′ : F → F, and any fixed per-
mutation π∗ that respects Φ, the distribution of

(
π(Graph(g)), π(Graph(g′))

)
un-

der PrΦ is identical to the distribution of
(
π∗(Graph(u)), π∗(Graph(u′))

)
, where

u, u′ : F→ F are jointly uniformly random conditioned on ∆(u, u′) = ∆(g, g′).

Proof. We first consider the distribution under PrΦ of (x, x′) =(
π(Graph(g)), π(Graph(g′))

)
, where g and g′ are fixed. Because g and g′

are functions, both x and x′ will consist mostly of zeros, but for each j ∈ F, they
will contain a 1 in exactly one position in Φj . Recall from the proof of Claim 1
that π can be sampled by sampling a uniformly random permutation σ : F→ F
and q independent bijections πi : F → Φσ(i), and defining π(j, k) = πj(k).
Therefore, for any j ∈ F if g(j) = g′(j) then x and x′ will agree on the position
within Φσ(j) at which they contain a 1 entry. Otherwise, they will disagree.
Other than that, the positions are uniformly random within Φσ(j) because πj is
a random bijection. Moreover, since σ is a random permutation, the set of Φi’s
for which x, x′ agree on the 1-entry is a random subset of size ∆ (g, g′).

Now consider the distribution of (y, y′) =
(
π∗(Graph(u)), π∗(Graph(u′))

)
where π∗ is fixed and defined by σ∗ and {π∗i }i∈F. The same arguments show
that for every j ∈ F, y, y′ agree on the positions within Φσ∗(j) at which they
contain a 1 if and only if u(j) = u′(j). Since u, u′ are random and independent,
the positions in Φσ∗(j) in which y, y′ have a 1 are otherwise random because
these positions are π∗j (u(j)) and π∗j (u′(j)), respectively. Additionally, the Φi’s
for which y, y′ agree on the position of the 1 entry is a uniformly random subset
of size ∆ (g, g′) = ∆ (u, u′), because this set is {σ∗(j) : u(j) = u′(j)}, and u, u′

are random and independent.

Claim 3. If g0, g1 : F → F are two independent uniformly random degree-λ
polynomials, then ∆ (g0, g1) is e−Ω(λ)-close to ∆ (g′0, g

′
1) for uniformly random

g′0, g
′
1 : F→ F.

Proof. For i ∈ F, let Xi (respectively, Yi) be indicator of the event that
g0(i) = g1(i) (respectively, g′0(i) = g′1(i)). Then Xi, Yi are λ-wise independent

with E[Xi] = E[Yi] = |F|−1. The claim now follows from Lemma 4 below for
n = |F|.

We now state the lemma used in the proof of Claim 3, the proof is deferred
to the full version.

Lemma 4. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be t-wise independent
{0, 1}-valued random variables with t ≥ 2e2, such that for all i ∈ [n], E[Yi] =

E[Xi]
def
= pi, let p denote 1

n ·
∑
i pi, and suppose that p ≤ t

4n . Then the total
variation distance dTV(X,Y ) is at most

(n+ 3) · (4pn/t)t/2∏
i∈[n](1− pi)
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Now, we will show that Ex←D0
[f(π(x))] and Ex←D1

[f(π(x))], viewed as ran-
dom variables that depend on π, have the same expectation and also have very
small (negligible) variance.

Claim 4. For any f : {0, 1}n → {0, 1} and any partition Φ,

E
Φ

[
E

x←D0

[f(π(x))]
]

= E
Φ

[
E

x←D1

[f(π(x))]
]
.

Proof. Consider any f : {0, 1}n → {0, 1} and any partition Φ. By Claim 1, there
is a distribution U that is equal to the distribution (in PrΦ) of π(Graph(g)) for all
functions g : F → F. Let µ denote Ex′←U [f(x′)]. Let Pb denote the probability
mass function of Db. Then for any b ∈ {0, 1},

E
Φ

[
E

x←Db
[f(π(x))]

]
= E

Φ

[∑
x

Pb(x) · f(π(x))

]
=
∑
x

Pb(x) · E
Φ

[f(π(x))]

=
∑
x

Pb(x) · µ

= µ,

which does not depend on b.

Now we analyze the variance. Recall that our goal is to show that
VarΦ

[
Ex←Db [f(π(x))]

]
is negligible for b ∈ {0, 1}. Because of Claim 3, this

follows from the following more general claim.

Claim 5. Let D be any distribution on functions mapping F to F. Suppose that
when g and g′ are sampled independently from D and u, u′ : F → F are inde-
pendent uniformly random functions, the distribution of ∆(g, g′) is statistically
ε-close to that of ∆(u, u′).

Then, for any f : {0, 1}n → {0, 1}, any partition Φ,

Var
Φ

[
E

g←D

[
f
(
π(Graph(g))

)]]
≤ ε.

Proof. Let P denote the probability mass function of D, and let π∗ be an ar-
bitrary permutation in Sn such that {π∗({i} × F)}i = Φ. By the definition of
variance,

Var
Φ

[
E

g←D
[f(π(Graph(g)))]

]
= E

Φ

[
E

g←D
[f(π(Graph(g)))]2

]
−E
Φ

[
E

g←D
[f(π(Graph(g)))]

]2
.
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For the first term, we have

E
Φ

[ E
g←D

[f(π(Graph(g)))]2] = E
Φ

(∑
g

P (g) · f(π(Graph(g)))

)2


=
∑
g,h

P (g) · P (h) · E
Φ

[f(π(Graph(g))) · f(π(Graph(h)))] (Claim 2)

= E
g,h←D

 E
u,v:F→F

∆(u,v)=∆(g,h)

[
f(π∗(Graph(u))) · f(π∗(Graph(v)))

] .
For the second term, we have

E
Φ

[
E

g←D
[f(π(Graph(g)))]

]2
=

(∑
g

P (g) · E
Φ

[
f(π(Graph(g)))

])2

=

(∑
g

P (g) · E
u:F→F

[
f(π∗(Graph(u)))

])2

(Claim 1)

= E
u:F→F

[
f(π∗(Graph(u)))

]2
= E
u,v:F→F

[
f(π∗(Graph(u))) · f(π∗(Graph(v)))

]
= E
g,h:F→F

 E
u,v:F→F

∆(u,v)=∆(g,h)

[
f(π∗(Graph(u))) · f(π∗(Graph(v)))

] (law of total expectation).

The difference between these two expressions is only in the distribution of g
and h over which the (outer) expectation is taken. Furthermore, the value whose
expectation is computed lies in [0, 1] and depends only on the Hamming distance
between g and h. The claim follows.

Theorem 8 follows from Claims 3, 4, and 5, and Chebyshev’s inequality.
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