
(Pseudo) Random Quantum States with Binary
Phase?

Zvika Brakerski1 and Omri Shmueli2

1 Weizmann Institute of Science??
2 Tel-Aviv University? ? ?

Abstract. We prove a quantum information-theoretic conjecture due
to Ji, Liu and Song (CRYPTO 2018) which suggested that a uniform
superposition with random binary phase is statistically indistinguishable
from a Haar random state. That is, any polynomial number of copies of
the aforementioned state is within exponentially small trace distance
from the same number of copies of a Haar random state.
As a consequence, we get a provable elementary construction of pseu-
dorandom quantum states from post-quantum pseudorandom functions.
Generating pseudorandom quantum states is desirable for physical ap-
plications as well as for computational tasks such as quantum money.
We observe that replacing the pseudorandom function with a (2t)-wise
independent function (either in our construction or in previous work),
results in an explicit construction for quantum state t-designs for all t.
In fact, we show that the circuit complexity (in terms of both circuit size
and depth) of constructing t-designs is bounded by that of (2t)-wise inde-
pendent functions. Explicitly, while in prior literature t-designs required
linear depth (for t > 2), this observation shows that polylogarithmic
depth suffices for all t.
We note that our constructions yield pseudorandom states and state de-
signs with only real-valued amplitudes, which was not previously known.
Furthermore, generating these states require quantum circuit of restricted
form: applying one layer of Hadamard gates, followed by a sequence of
Toffoli gates. This structure may be useful for efficiency and simplicity
of implementation.

1 Introduction

Randomness is one of the most fundamental resources for computation, and is
indispensable for algorithms, complexity theory and cryptography. It is also a
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foundational tool for science in general, for purposes of describing and modeling
natural phenomena. As our understanding of nature expands to quantum phe-
nomena, the importance of understanding the uniform distribution over quantum
states, and being able to sample from it, naturally emerges.

Quantum states can be described as unit vectors in a high-dimensional com-
plex Hilbert space. Thus, a random quantum state is just a random unit vector
on this abstract sphere. This distribution is also referred to as the Haar measure
over quantum states. We note that this is a continuous distribution, even if the
Hilbert space is finite dimensional (i.e. can be described by a finite number of
qubits). Since quantum states cannot be duplicated, the ability to generate ran-
dom quantum states refers to the ability to generate multiple copies of the same
random state vector. (In fact, a single copy of a quantum random state is iden-
tical to a classical random state.) Haar random quantum states have numerous
computational and physical applications. The former includes optimal quantum
communication channels [8], efficient quantum POVM measurements [14] which
are in turn useful in quantum state tomography, and gate fidelity estimation
[4]. The latter includes constructing physical models of quantum thermalization
[13].

Since random states have infinitely long descriptions (and super-exponential
even if restricting to some finite precision), there is extensive literature study-
ing approximate notions and specifically the notion of ε-approximate t-designs.
These are distributions whose t-tensor (i.e. taking t copies of a sample from
this distribution) are ε indistinguishable from (a t-tensor of) Haar (using the
standard notion for statistical indistinguishability known as trace distance). We
adopt the standard asymptotic convention and require by default that ε is negli-
gible in our “security parameter”, which we associate with the logarithm of the
dimension of the Hilbert space. In this work we focus on quantum states over n
qubits (i.e. 2n dimensional Hilbert space), so we associate our security parame-
ter with n. However, our methods are extendable to any finite-dimensional space
(with efficient representation). There is extensive literature studying (approxi-
mate) designs with bounded t, which also carry physical significance, see e.g.
[2,4,5,10,9,7]. Indeed, it is possible to efficiently generate t-designs using quan-
tum circuits of size poly(t, n). Up to asymptotics, this matches the information
theoretic bound (however, the important aspect of the depth complexity of gen-
erating t-designs remained open, to the best of our knowledge), and one cannot
hope to efficiently generate t-designs for super-polynomial t.

Asymptotically Random States, Pseudorandom States and the JLS
Conjecture. Ji, Liu and Song [6] (henceforth JLS) recently proposed to extend
the notion of approximate designs. They proposed the notion of a pseudoran-
dom quantum state (PRS) which has a finite description but is computationally
indistinguishable from Haar given a t-tuple, for any t = poly(n). Thus, for any
computationally bounded purpose (experiment, naturally occurring process) a
PRS is indistinguishable from a Haar state, regardless of the number of copies.
They also showed that PRS are useful for cryptographic applications such as
quantum money.
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Furthermore, [6] proposed an insightful template for constructing PRS. They
start by showing that given quantum RAM access to exponentially many classical
random bits, it is possible to construct a negl(n)-approximate nω(1)-design. Let
us call such a distribution ARS, for Asymptotically Random State.3 An ARS is a
statistical notion of PRS which has asymptotic limitations but no computational
restrictions. Then, replacing the exponential random string with a quantum-
query-resistant classically-computable pseudorandom function (PRF), the PRS
construction naturally follows from ARS. The existence of such PRF is implied
by the existence of quantum secure one-way functions [15].

The ARS construction of JLS is quite straightforward to describe. Generate
a uniform superposition over all strings x ∈ {0, 1}n. This is described in the
standard Dirac notation as

∑
x |x〉 (with some normalization factor). Then, as-

sign a random quantum phase to each component x, i.e. generate
∑
x αx|x〉 for

random independent roots of unity αx. To cope with finite precision, αx is taken

to a finite but exponential resolution αx = ω
f(x)
2n , where f : {0, 1}n → [2n] is a

random function and ω2n is the 2n-th root of unity. Given RAM access to the
truth table of f , this state can be efficiently computed using Quantum Fourier
Transform (QFT) modulo 2n.

JLS then conjecture (but were unable to prove) that a much simpler con-
struction, where αx = (−1)f(x), should also imply ARS. That is, replacing the
“high-resolution” random phase, by the simplest binary phase. While this is only
one of a few conjectures made in that work, it is the only one relevant to our
work and we thus refer to it simply as the JLS conjecture.

Conjecture 1.1 ([6], restated). The distribution over n-qubit quantum states de-
fined by

2−n/2
∑

x∈{0,1}n
(−1)f(x)|x〉

where f : {0, 1}n → {0, 1} is a random function, is an ARS.

To highlight the gap between the conjecture and the provable ARS construc-
tion of JLS, let us describe a crucial point in the analysis of JLS. The analysis
is based on an equivalence relation between t-tuples of n-bit strings, which nat-
urally arises from the expression for statistical distance from Haar. The tuples
(x1, . . . , xt), (y1, . . . , yt) are equivalent if their histograms (i.e. the number of
times each n-bit string appears) are equal modulo 2n. Since t < 2n this condi-
tion is equivalent to requiring that the tuples are permutations of each other,
which makes it possible to analyze the equivalence classes of this relation and
for the analysis to go through.

In the binary setting, the equivalence relates tuples whose histograms are
equal modulo 2. Thus the equivalence classes can no longer be described simply
as a set and all of its permutations, and they don’t even have the same size

3 Actually, their ARS, as well as the one proven in this work, is even stronger: they
show that for all t, their distribution is O(t2)/2n-approximate t-design.
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anymore. This creates many additional terms in the so called density matrix
of the state (which is a complex matrix of exponential dimensions 2tn × 2tn).
In order to prove the conjecture, one will have to show that the effect of these
exponentially many new terms on the spectrum of the matrix is negligible and
there seems to be no straightforward handle for this analysis. We resolve this
problem in this work.

Our Results – Proving the Conjecture. We prove the JLS conjecture, in
fact we prove that the binary ARS implied by the conjecture has comparable
properties to the prior construction (that used complex phase).

Theorem 1.2 (Main Result). The distribution over n-qubit quantum states
defined by

2−n/2
∑

x∈{0,1}n
(−1)f(x)|x〉

where f : {0, 1}n → {0, 1} is a random function, is a 4t2

2n -approximate t-design
for all t, and thus an ARS.

This result has various implications that we describe below. We furthermore hope
that our techniques will be useful for analyzing similarly complicated quantum
states.

We make two additional observations that refer to the requirement from a
function f to be plugged into either our theorem or that of JLS in order to imply
PRS and quantum t-designs.

1. If we wish to obtain a PRS, the requirement of using a full-fledged quan-
tum secure PRF can be relaxed. In fact, it is sufficient to have a function
f that is indistinguishable from random while allowing only uniform super-
position queries (as opposed to arbitrary superposition queries). This leads
to a quantum notion which is somewhat analogous to the classical notion of
weak pseudorandom functions [11], an object that can be of interest for inde-
pendent investigation and possibly more efficient constructions than PRFs.

2. If we only wish to obtain a t-design, it is sufficient to replace f with a
(2t)-wise independent function, using the fact that given t-quantum-query
access, a (2t)-wise independent function is perfectly indistinguishable from
a completely random function [15].

Implications. We find the JLS conjecture compelling from aesthetic, concep-
tual and perhaps even practical reasons. In terms of aesthetics, it is bothersome
that one would need to go into exponentially fine-grained resolution on the phase
in order to generate an ARS/PRS, being able to achieve the same parameters
with a more coarse resolution (and as we show next without compromising on
parameters) seems to be a more desirable state of affairs. Conceptually, the re-
sult shows that ARS, which is for all efficiently observable purposes identical to
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a Haar random state, can be generated using only real-valued phases. Recall-
ing that the Haar distribution is defined over complex vectors, it appears not
obvious that it can be approximated for all observable purposes by real-valued
vectors.

In terms of computational complexity, our construction uses circuits with
restricted structure known in the literature as HT [12]. Concretely, the circuit
contains a single parallel layer of Hadamard gates, followed by a circuit of Toffoli
gates. This model is considered fairly weak, and in particular HT circuits are
weakly classically simulatable (i.e. any distribution samplable by an HT circuit
followed by measurement is also classically samplable). Result shows that even
such a restricted model of quantum computation is enough to approximate the
Haar measure.

Lastly, from a practical standpoint, replacing the function f by an efficient
quantum-resilient PRF yields a very simple construction of a PRS, requiring
only an HT circuit with the same circuit size and depth (up to asymptotics) as
that of the PRF. Prior provable PRS candidates do not enjoy this property and
appear to require a more complicated implementation (that in particular seem
to need performing the Quantum Fourier Transform modulo 2n, or a similar
procedure) to allow for the high-resolution of complex phase.

In the context of generating t-designs, using our aforementioned observation
and replacing f with a (2t)-wise independent function (in either our theorem
or JLS) implies a t-design construction with circuit size poly(t, n) and depth
O(log t · log n). We are not aware of prior constructions of t designs with o(n)
depth for t > 2 in the literature. Moreover, the t-design construction which is
implied by our result can be implemented by an HT circuit with the same circuit
size and depth (up to asymptotics) as that of the (2t)-wise independent function.

Proof High-Level Overview. Formally speaking, the proof follows by bound-
ing the trace norm of the difference between the density matrix of t-copies of
the state with binary phase, and the density matrix of t-copies of the state with
2n roots of unity. However, one needs not know much about density matrices, it
suffices to say that we have a complex Hermitian matrix of dimensions 2tn×2tn,
where the sum of all eigenvalues is 0, and we want to bound the sum of all ab-
solute values of eigenvalues. It is thus sufficient to consider only positive or only
negative eigenvalues.

Each row of the matrix corresponds to a tuple (x1, . . . , xt) ∈ ({0, 1}n)t and
each column corresponds to a tuple (y1, . . . , yt) ∈ ({0, 1}n)t. The entry in lo-
cation (x1, . . . , xt), (y1, . . . , yt) is nonzero if the aforementioned “histogram con-
dition” holds on the tuples.4 In a bit more detail, up to a global 2−tn scaling
factor, if the modulo-2 histogram condition holds but the modulo-2n condition
(i.e. permutation) does not hold then the entry will be 1, but if both hold then
there is a cancellation and the entry will be 0.

4 Recall that the (modulo-2) histogram condition states that (x1, . . . , xt), (y1, . . . , yt)
are equivalent if for all z, the number of times z appears in the first tuple and the
number of times it appears in the second tuple have the same parity.
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We start by observing that the matrix can be decomposed into “combinatorial
blocks”, each representing an equivalence class of the histogram relation. We
analyze the properties of these blocks. We then provide two structural lemmas
that together imply the theorem:

1. We provide a non-trivial upper bound on the rank of the matrix. While
it is tempting to disregard the cancellations and just count the number of
nonzero blocks and their respective rank, this implies an upper bound that
is too coarse. We must therefore carefully take into account the cancellations
induced by permutations in order to obtain a usable bound.

2. We provide an upper bound on the absolute value of each negative eigenvalue.
We do this by computing the characteristic polynomial of the matrix (the
polynomial whose roots are the eigenvalues), which amounts to a product
of the characteristic polynomials of the blocks. Within each block we obtain
a closed form formula for the characteristic polynomial and show that its
root cannot exceed a bound that is determined by the cardinality of the
respective equivalence class (properly normalized).

Combining the two lemmas by multiplying the rank bound with the eigen-
value absolute value bound implies the theorem.

Paper Organization. We use standard quantum and cryptographic notations
and definitions, essentially following [6], see short summary in Section 2. Our
construction is presented in Section 3 and proven in Section 4.

2 Preliminaries

For m ∈ N, we denote [m] := {1, · · · ,m}. For a natural number N , denote by

ωN := e
2πi
N the complex root of unity of order N . Also for N , denote by S(N) the

set of unit vectors in CN , by D(N) the set of N×N density matrices over C, and
by U(N) the set of N ×N unitary matrices over C. Note that for n ∈ N, S(2n)
is the set of n-qubit pure quantum states, D(2n) is the set of n-qubit mixed
states, and U(2n) is the set of n-qubit unitaries. When we consider quantum
algorithms, we usually think of them as a uniform family of quantum circuits.

When we consider eigenvalues and singular values of matrices throughout
this paper, we implicitly refer to eigenvalues and singular values that possibly
repeat, e.g. λ1 ≥ λ2 ≥ · · · ≥ λn for matrix with n, possibly identical eigenvalues.

The trace distance, defined below, is a generalization of statistical distance
to the quantum setting and represents the maximal distinguishing probability
between quantum states.

Definition 2.1 (Trace distance). Let ρ1, ρ2 ∈ D(2n) be two density matrices
of n-qubit mixed states. The trace distance between them is

TD(ρ1, ρ2) :=
1

2
‖ρ1 − ρ2‖1 ,

where for a hermitian matrix M , ‖M‖1 =
∑
i |λi|, where λi are the eigenvalues

of M .
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The following is a basic fact that shows that classical circuits are a subset
of quantum circuits. Recall that the Toffoli gate implements the 3-qubit unitary
defined by |x, y, z〉 → |x, y, z ⊕ xy〉.

Proposition 2.2 (Toffoli gate is universal for classical computation).
Let f : {0, 1}n → {0, 1}m be a function and let C be a classical circuit that
computes f . Define the unitary Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉. Then there exists a
quantum circuit of size O(|C|) consisting only of Toffoli gates that computes Uf
(possibly using auxiliary |0〉 qubits).

HT circuits are quantum circuits of a restricted structure, defined as follows.

Definition 2.3 (HT Circuit). A quantum circuit C is an HT circuit if the
first layer of the circuit consists of only Hadamard gates on a subset of the qubits,
and the rest of the circuit consists of only Toffoli gates.

2.1 Pseudorandom Functions and k-Wise Independent Functions

Here we define pseudorandom functions with quantum security (QPRFs).

Definition 2.4 (Quantum-Secure Pseudorandom Function (QPRF)).
Let K = {Kn}n∈N be an efficiently samplable key distribution, and let PRF =
{PRFn}n∈N, PRFn : Kn × {0, 1}n → {0, 1}n be an efficiently computable func-
tion. We say that PRF is a quantum-secure pseudorandom function if for every
efficient non-uniform quantum algorithm A that can make quantum queries there
exists a negligible function negl(·) s.t. for every n ∈ N,∣∣∣∣ Pr

k←Kn
[APRF(k,·)() = 1]− Pr

f←({0,1}n)({0,1}n)
[Af () = 1]

∣∣∣∣ ≤ negl(n) .

In [15], QPRFs were proved to exist under the assumption that post-quantum
one-way functions exist.

We define k-wise independent functions are keyed functions s.t. when the
key is sampled uniformly at random, then any k different inputs to the function
generate k-wise independent random variables.

Definition 2.5 (k(n)-Wise Independent Function). Let k(n) : N → N be
a function, K = {Kn}n∈N be a key distribution, and let f = {fn}n∈N, fn :
Kn×{0, 1}n → {0, 1}n be a function. Thus, f is a k(n)-wise independent function
if for all n, for every distinct k(n) input values x1, · · · , xk(n) ∈ {0, 1}n,

∀y1, · · · , yk(n) ∈ {0, 1}n : Pr
s←Kn

[f(s, x1) = y1∧· · ·∧f(s, xk(n)) = yk(n)] = 2−n·k(n) .

It is not a part of the standard definition, but it is usually the case that we
consider K to be efficiently samplable and f to be efficiently computable.
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2.2 Quantum Randomness and Pseudorandomness

The Haar Measure on Quantum States. Intuitively, the Haar measure
on quantum states is the quantum analogue of the classical uniform distribution
over bit strings, that is, we can think of it as the uniform (continuous) probability
distribution on quantum states. Recall that an n-qubit quantum state can be
viewed as a unit vector in C2n , thus the Haar measure on n qubits is the uniform
distribution over all unit vectors in C2n .

Formally, the density matrix representing the distribution of drawing a ran-
dom Haar vector and outputting t copies of it is given below.

Definition 2.6 (n-Qubits, t-Copy Random Haar State). Let t, n ∈ N, we
define the n-qubits t-copy random Haar mixed state to be

ρ(t,n,H) := E|ψ〉←µ(2n)
[
(|ψ〉〈ψ|)⊗t

]
,

where µ(2n) is the continuous distribution over C2n that is invariant under uni-
tary transformations (it is known that there is only one such distribution).

Approximate Quantum State t-Designs. Approximate t-designs are quan-
tum distributions that are approximately random when the number of output
copies of the sampled state is restricted. The formal definition follows.

Definition 2.7 (n-Qubits, ε-Approximate State t-Design). Let ε ∈ [0, 1], t ∈
N, and let Q be a quantum distribution over n-qubit states. We say that Q is an
ε-approximate state t-design if

TD
(
E|ψ〉←Q[(|ψ〉〈ψ|)⊗t], ρ(t,n,H)

)
≤ ε .

For the sake of completeness, we give a definition for quantum state t-design
generators.

Definition 2.8 (ε(n)-Approximate State t(n)-Design Generator). Let ε(n) :
N→ [0, 1], t(n) : N→ N be functions. We say that a pair of quantum algorithms
(K,G) is an ε(n)-approximate state t(n)-design generator if the following holds:

– Key Generation. For all n, K(1n) always outputs a classical key k.
– State Generation. For all n and for all k in the image of K(1n), there

exists an n-qubit pure state |φk〉 s.t. G(1n, k) = |φk〉.
– Approximate Quantum Randomness. For all n, the distribution |φk〉k←K(1n)

is an n-qubit, ε(n)-approximate state t(n)-design.

Note that we define the generator as two algorithms instead of one, to highlight
the fact that a state that is sampled can be generated multiple times on demand.

For the purposes of this work it is convenient to define the notion of Asymp-
totically Random States (ARS) as follows.

Definition 2.9 (Asymptotically Random State (ARS)). An Asymptoti-
cally Random State (ARS) is shorthand for an asymptotic sequence of negl(n)-
approximate nω(1)-designs.
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Quantum Pseudorandomness. The notion of pseudorandom quantum states
was introduced in [6], was shown to be implied by QPRFs, and is defined below.

Definition 2.10 (Pseudorandom Quantum State (PRS)). A pair of quan-
tum polynomial-time algorithms (K,G) is a Pseudorandom State Generator (PRS
Generator) if the following holds:

– Key Generation. For all n, K(1n) always outputs a classical key k.
– State Generation. For all n and for all k in the image of K(1n), there

exists an n-qubit pure state |φk〉 s.t. G(1n, k) = |φk〉.
– Security. For any polynomial t(·) and a non-uniform efficient quantum al-

gorithm A there exists a negligible function negl(·) such that for all n ∈ N,∣∣∣∣ Pr
k←K(1n)

[A
(
|φk〉⊗t(n)

)
= 1]− Pr

|ψ〉←µ
[A
(
|ψ〉⊗t(n)

)
= 1]

∣∣∣∣ ≤ negl(n) ,

where µ is the Haar measure on S(2n).

If the above holds, we say that the ensemble PRS = {PRSn}n∈N, where PRSn is
the distribution |φk〉k←K(1n), is a Pseudorandom Quantum State (PRS) which
is generated by (K,G).

In the above definition, the number of qubits in the pseudorandom states can also
be parameterized (i.e. G(1n, k) can output m(n)-qubit states and not necessarily
n-qubit states), but in the current work we will ignore this.

3 Construction

The following construction will be the base of both our pseudorandom state and
quantum state t-design constructions.

Definition 3.1 (Binary Phase State Generator for F ). Let K = {Kn}n∈N
be a key space and let F = {Fn}n∈N be a keyed (boolean) function Fn : Kn ×
{0, 1}n → {0, 1}. GFbin is the procedure that takes as input a k ∈ Kn and outputs
the superposition

|φk〉 := 2−n/2
∑

x∈{0,1}n
(−1)Fk(x)|x〉 .

The following claim establishes that GFbin is efficiently implementable when
F is.

Claim. If F is computable by a classical circuit of size s(n) and depth d(n), then
GFbin is computable by an HT circuit of size O(s(n)) and depth d(n) + 1.

Proof. The algorithm of GFbin will get as input a key k and generate the state
|+〉⊗n|−〉 by performing (n + 1) Hadamard gates (in parallel) H⊗(n+1) on the
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ancillary classical state |0〉⊗n|1〉, then execute the Fk circuit (which can be real-
ized quantumly by Toffoli gates) on the state |+〉⊗n|−〉. After the execution of
Fk, the state is

2−n/2
∑

x∈{0,1}n
(−1)Fk(x)|x〉|−〉,

thus by tracing out the last qubit we get the output state |φk〉.

We note that previous candidates required a more involved generation process
which required applying quantum Fourier transform modulo 2n, or a similar
procedure.

3.1 Our Pseudorandom Quantum State (PRS) Generator and its
Properties

Recall the definition of a PRS (see Definition 2.10) and of a QPRF (Defin-
tion 2.4). We present our construction of a PRS candidate with binary phase as
follows.

Claim. If F is a QPRF then GFbin (along with the key generation algorithm of
F ) is a secure PRS generator.

Proof. First, it’s clear that the key generation algorithm K of our PRS is the
key generation algorithm of F (that for input 1n, samples k ← Kn), and that
the state generation algorithm G of our PRS is GFbin.

Now, we argue that by the quantum-security of F , for any polynomial number
of copies t(n), the distribution |φk〉k←Kn is computationally indistinguishable (by
quantum adversaries) from a random binary phase state, that is, the distribution
over n-qubit quantum states defined by

2−n/2
∑

x∈{0,1}n
(−1)f(x)|x〉 ,

where f : {0, 1}n → {0, 1} is a truly random function.
By Theorem 1.2, a random binary phase state is an ARS (Definition 2.9),

which in particular means that a random Haar state and a random binary phase
state are computationally indistinguishable for any polynomial number of copies.
By the the triangle inequality of computational indistinguishability, we deduce
that for any polynomial number of copies, the quantum distribution |φk〉k←Kn
and the Haar distribution are computationally indistinguishable, which com-
pletes our proof.

Remark 3.2. We note that in our security proof we did not use the full power
of quantumly secure PRFs. Indeed, if we consider the QPRF unitary UPRFk :
|x〉|y〉 → |x〉|y ⊕ PRFk(x)〉, then in order for the PRS to be secure, it is only
needed that the QPRF will be secure when the input register is in the uniform
superposition |+〉⊗n (and moreover, the output register is |−〉). In particular,
we don’t even need the QPRF to be secure against chosen classical queries. This
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can be thought of as a quantum analog of the classical notion of weak PRFs
[11]. In the classical setting, it is conjectured that weak PRFs reside in a lower
complexity class than full fledged PRFs [1]. If similar behavior can be shown in
the quantum case it could improve the efficiency of PRS constructions.

We leave the investigation of this new notion (which we propose to call quan-
tumly weak PRFs) to future works.

We conclude with observing that by our result, the complexity of PRSs is no
greater than that of QPRFs, and is moreover implementable by HT circuits.

Corollary 3.3. Let PRF = {PRFn}n∈N be a QPRF. Thus there is a PRS gener-
ator construction (K,G) implemented by HT circuits, where K is implemented
by circuits of the same size and depth as that of the key sampling algorithm
of PRF, and G is implemented by circuits of the same size and depth (up to
asymptotics) as that of PRF.

3.2 Shallow-Circuit Approximate t-Design Generators

We note that by a simple observation, we can replace the truly random function
f in Theorem 1.2 with a 2t-wise independent function to gain an elementary and
efficient construction of quantum state approximate t-designs. Formally, we use
the following fact.

Fact 3.4 ([15], Fact 2) The behavior of any quantum algorithm making at
most q queries to a 2q-wise independent function is identical to its behavior
when the queries are made to a random function.

This implies that when f is a 2t-wise independent function, then the state from

Theorem 1.2 is a 4t2

2n -approximate t-design. We note that this observation can
also be applied to the ARS from [6], and it would imply a different (but seemingly
less efficient) construction of t-designs.

Corollary 3.5. The distribution over n-qubit quantum states defined by

2−n/2
∑

x∈{0,1}n
(−1)f(x)|x〉

where f : {0, 1}n → {0, 1} is a 2t-wise independent function, is a 4t2

2n -approximate
t-design.

More explicitly, combining the above with Claim 3 implies that that when
f is a 2t-wise independent function, Gfbin is an approximate t-design generator
(along with the key generation algorithm of f). The following corollary relates the
complexity of t-design generators with that of the 2t-wise independent functions.

Corollary 3.6. Let t(n) : N → N be a function and let f = {fn}n∈N, fn :
Kn × {0, 1}n → {0, 1} be a (2t(n))-wise independent function. Thus there is an
O(t(n)2)

2n -approximate quantum state t(n)-design generator (K,G) implemented
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by HT circuits, where K is implemented by circuits of the same size and depth
as that of the key sampling algorithm of f , and G is implemented by circuits of
the same size and depth (up to asymptotics) as that of f .

Finally, we can instantiate with known construction of k-wise independent
functions to obtain the following.

Corollary 3.7. For every function t(n) : N→ N, there exists a O(t(n)2)
2n -approximate

quantum state t(n)-design generator, implemented by HT circuits of poly(t(n), n)
size and O(log t(n) · log n) depth.

Proof. We recall the most elementary construction of k-wise independent dis-
tributions over 2n variables. Consider the field F = F2n and recall that F ele-
ments correspond to degree (n− 1) formal polynomials with binary coefficients.
Thus there is a natural bijection between F and {0, 1}n that allows to represent
F elements as elements in {0, 1}n. This representation allows to perform field
arithmetic operations using circuits of size poly(n) and depth O(log n).

A k-wise independent distribution over FF is defined by the evaluations of a
random degree (k−1) polynomial over F, on all elements in F. The computational
complexity of evaluating such a polynomial is poly(k, n) and its depth is O(log k ·
log n). Plugging in k = 2t completes the proof (note that we only require 2t-wise
independence over {0, 1}F so our instantiation is actually a slight overkill).

4 Proof of Theorem 1.2

We introduce the following notation.

Notation 4.1 (Complex phase state by f) For a function f : {0, 1}n →
[2n] we denote

|f〉(2n) := 2−n/2
∑

x∈{0,1}n
ω
f(x)
2n |x〉 .

when it is clear from the context, the subscript 2n will be dropped from |f〉(2n).

Notation 4.2 (Binary phase state by f) For a function f : {0, 1}n → {0, 1}
we denote

|f〉(2) := 2−n/2
∑

x∈{0,1}n
(−1)f(x)|x〉 .

when it is clear from the context, the subscript 2 will be dropped from |f〉(2).

Notation 4.3 (t-copy random complex phase mixed state) For t, n ∈ N,
denote

ρ(t,n,2n) := Ef [(|f〉(2n)〈f |(2n))⊗t] ,

where the expectation is taken over a uniformly random function f : {0, 1}n →
[2n].



(Pseudo) Random Quantum States with Binary Phase 13

Notation 4.4 (t-copy random binary phase mixed state) For t, n ∈ N,
denote

ρ(t,n,2) := Ef [(|f〉(2)〈f |(2))⊗t] ,

where the expectation is taken over a uniformly random function f : {0, 1}n →
{0, 1}.

In [6] It is shown that the random complex phase state is an ARS.

Lemma 4.5 ([6], Lemma 2). Let n, t ∈ N, then

TD
(
ρ(t,n,2n), ρ(t,n,H)

)
=

∏
i∈[t−1]

(
1− i

2n

)
−

∏
i∈[t−1]

(
1− 2 · i

2n + i

)
.

We will show that a random binary phase state is asymptotically statistically
close to a random complex phase state. More precisely, we will prove the following
lemma.

Lemma 4.6. Let n, t ∈ N, then

TD
(
ρ(t,n,2), ρ(t,n,2n)

)
≤

∏
i∈[t−1]

(
1 +

i

2n

)
−

∏
i∈[t−1]

(
1− i

2n

)
.

Using the triangle inequality of trace distance and Lemmas 4.5 and 4.6 (be-
low, in the first inequality), we show that a random binary phase state is an

ARS. In the following, assume that t <
√
2n

2 , otherwise the upper bound on the
trace distance trivially holds:

TD
(
ρ(t,n,2), ρ(t,n,H)

)
≤

∏
i∈[t−1]

(
1 +

i

2n

)
−

∏
i∈[t−1]

(
1− 2 · i

2n + i

)
≤

(
1 +

t

2n

)t
−

(
1− 2 · t

2n + t

)t
≤

(
1 +

t

2n

)t
−

(
1− 2 · t

2n

)t
≤
(∗)

1 +
2 · t2

2n
−

(
1− 2 · t

2n

)t
≤
(∗∗)

1 +
2 · t2

2n
−

(
1− 2 · t2

2n

)
=

4 · t2

2n
,

where (∗) is due to one variant of Bernoulli’s inequality (∀r > 1, x ∈ [0, 1
2(r−1) ) :

(1+x)r ≤ 1+2rx), and (∗∗) follows from the more popular variant of Bernoulli’s
inequality (∀r /∈ (0, 1), x ≥ −1 : (1 + x)r ≥ 1 + rx).

Therefore, all that remains is to prove Lemma 4.6, which will require most
technical effort.
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4.1 Proof of Lemma 4.6

Denote the difference matrix ρn := ρ(t,n,2) − ρ(t,n,2n). The proof of the lemma
contains two main components. First, an upper bound on the number of non-zero
eigenvalues of ρn.

Lemma 4.7. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}, thus the number of
non-zero eigenvalues of ρn is upper bounded by(

2n + t− 1

t

)
−
(

2n

t

)
.

Second, a lower bound on the minimal (as in most negative) eigenvalue of ρn.

Lemma 4.8. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}, thus for all eigenvalues
λ of ρn we have − t!

2tn ≤ λ.

Note that this will give an upper bound on the absolute values of all negative
eigenvalues of ρn.

Given the last two lemmas, we can prove Lemma 4.6.

Proof. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}5. ρn is a difference between two
density matrices, and because that trace is linear and density matrices have a
trace of 1, the trace of ρn is 0. Also recall that the sum of eigenvalues of a matrix
is equal to its trace, so, the positive and negative eigenvalues of ρn balance each
other to 0, and thus, a bound on the sum of absolute values of all eigenvalues of
ρn can be obtained by bounding the sum of the absolute values of its negative
eigenvalues. Formally:

TD
(
ρ(t,n,2), ρ(t,n,2n)

)
=

1

2
‖ρn‖1 =

1

2
·

∑
λ eigenvalue of ρn

|λ| =
∑

λ negative eigenvalue of ρn

|λ| .

Using Lemma 4.7 and Lemma 4.8, we obtain an upper bound on the last
sum, which yields the wanted inequality.

∑
λ negative eigenvalue of ρn

|λ| ≤

((
2n + t− 1

t

)
−
(

2n

t

))
t!

2tn
=

(2n + t− 1)!

2tn(2n − 1)!
− (2n)!

2tn(2n − t)!
=

(2n)!
(∏

i∈[t−1](2
n + i)

)
2tn(2n − 1)!

−
(2n)!

(∏
i∈[t−1](2

n − i)
)

2tn(2n − 1)!
=∏

i∈[t−1](2
n + i)

2(t−1)n
−
∏
i∈[t−1](2

n − i)
2(t−1)n

=
∏

i∈[t−1]

2n + i

2n
−

∏
i∈[t−1]

2n − i
2n

=

∏
i∈[t−1]

(
1 +

i

2n

)
−

∏
i∈[t−1]

(
1− i

2n

)
.

5 For t ≥ 2n the bound trivially holds: Note that for t ≥ 2n the bound’s expression
is minimized for t = 2n and n = 1, which yields 1 as a trivial bound on any trace
distance.
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4.2 The Structure of the Matrix ρn

We identify the structure of ρn in order to prove Lemma 4.13, which will be used
in both proofs of Lemmas 4.7, 4.8. We do this by first describing ρ(t,n,2n) and
ρ(t,n,2). More precisely, we will derive combinatorial expressions for ρ(t,n,2n) and
ρ(t,n,2), and as a consequence we’ll have an expression for their difference ρn.

The Structure of ρ(t,n,2n). We will start with a formula for the entries of
ρ(t,n,2n) (a similar analysis was done for this matrix in [6]); for convenience, the
definition is restated:

ρ(t,n,2n) = Ef←[2n]{0,1}n
[
(|f〉〈f |)⊗t

]
= Ef←[2n]{0,1}n

[
|f〉⊗t〈f |⊗t

]
.

Observe that for a function f : {0, 1}n → [2n],

|f〉⊗t =

(
2−n/2

∑
x∈{0,1}n

ω
f(x)
2n |x〉

)⊗t
= 2−tn/2

∑
x=(x1,··· ,xt)∈{0,1}n×t

ω
(
∑
i∈[t] f(xi))

2n |x〉 .

Now we can compute ρ(t,n,2n):

ρ(t,n,2n) = Ef
[
|f〉⊗t〈f |⊗t

]
=

Ef

[(
2−tn/2

∑
x=(x1,··· ,xt)∈{0,1}n×t

ω
(
∑
i∈[t] f(xi))

2n |x〉

)
·

(
2−tn/2

∑
y=(y1,··· ,yt)∈{0,1}n×t

ω
(−

∑
i∈[t] f(yi))

2n 〈y|

)]
=

2−tn
∑

x,y∈{0,1}n×t
|x〉〈y| · Ef

[
ω
(
∑
i∈[t] f(xi)−

∑
i∈[t] f(yi))

2n

]
,

So, for x,y ∈ {0, 1}n×t, the (x,y)-th entry of ρ(t,n,2n) is

2−tn · Ef

[
ω
(
∑
i∈[t] f(xi)−

∑
i∈[t] f(yi))

2n

]
.

Now, define:

Definition 4.9 ((t, n) permutations). Let x,y ∈ {0, 1}t×n, and denote x =
(x1, · · · , xt),y = (y1, · · · , yt), where ∀i ∈ [t] : xi, yi ∈ {0, 1}n. We say that x,y,
are (t, n) permutations of each other (or just permutations of each other) if there
exists a permutation π ∈ St s.t.

(x1, · · · , xt) = (yπ(1), · · · , yπ(t)) .
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Note that an equivalent convenient characterization of the two strings x,y being
permutations of each other is that the multisets {x1, · · · , xt}, {y1, · · · , yt} are
equal.

Observe that when x and y are permutations of each other, then for every
f we have

∑
i∈[t] f(xi) =

∑
i∈[t] f(yi) and thus the expected value is 1 and the

entry’s value is 2−tn. We would like to also claim that if x,y are not permutations
of each other then the entry is 0, and it turns out we indeed can. Observe that
if x,y are not permutations of each other then there exists a string s ∈ {0, 1}n
that appears a different number of times in x and y, and we can say that the
(x,y)-th entry is

2−tn · Ef
[
ω
(
∑
i∈[t] f(xi)−

∑
i∈[t] f(yi))

2n

]
= 2−tn · β · Ef

[
ω
a·f(s)
2n

]
,

where β ∈ R is some real number (which we won’t care about) and a ∈
{−t, · · · ,−1, 1, · · · , t} is the (non-zero) difference between the number of ap-
pearances of s in x and y (last equality follows from the fact that the expectation
of a product of independent random variables is the product of expectations).
Now we will use our restriction on t, which is that t is strictly smaller then 2n.
Combined with the fact that a 6= 0, it is necessarily the case that ωa2n 6= 1 (if t
could be as big as 2n then a will be able to be 2n or some integer multiple of it,
which will yield ωa2n = 1). After this restriction we obtain:

Ef
[
ω
a·f(s)
2n

]
=

∑
i∈{0,1,··· ,2n−1}

2−n · ωa·i2n = 2−n ·

(
ωa·2

n

2n − 1

ωa2n − 1

)
= 0 ,

Finally, the above yields a combinatorial description of ρ(t,n,2n):

∀x,y ∈ {0, 1}n×t : ρ(t,n,2n)[x,y] =

{
2−tn x,y are permutations

0 x,y are not permutations
.

The Structure of ρ(t,n,2). By the same reasoning as in the case of ρ(t,n,2n),
we obtain that the (x,y)-th entry of ρ(t,n,2) is

2−tn · Ef
[
(−1)(

∑
i∈[t] f(xi)−

∑
i∈[t] f(yi))

]
,

where this time f is a random function from {0, 1}n to {0, 1} (rather than from
{0, 1}n to [2n]). Because (−1) = (−1)−1, the entry is simplified to

2−tn · Ef
[
(−1)(

∑
i∈[t] f(xi)+

∑
i∈[t] f(yi))

]
.

Like in the case of ρ(t,n,2n), we would like a nice and clean combinatorial
predicate to describe the entries of the matrix, and as we’ll see in a bit, the matrix
ρ(t,n,2) indeed have the same general structure as ρ(t,n,2n) but with different
predicate on x,y.

First, define the following:
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Definition 4.10 ((t, n) stabilizations). Let x,y ∈ {0, 1}t×n, and denote x =
(x1, · · · , xt),y = (y1, · · · , yt), where ∀i ∈ [t] : xi, yi ∈ {0, 1}n. We say that x,y,
are (t, n) stabilizations of each other (or just stabilizations of each other) if in
the concatenated string (x y) = (x1, · · · , xt, y1, · · · , yt), for every s ∈ {0, 1}n, s
appears an even number of times (this, of course, includes appearing 0 times).

We note that the stabilization relation (which is all pairs that stabilize each
other) is an equivalence relation over the set {0, 1}n×t (just like the permutation
relation, which we didn’t mention it being an equivalence relation, but it can
easily be seen as one). It is clear that the stabilization relation is reflexive (x is
always stabilizing x), and it is also easy to verify that it is symmetric. To see
why it is also transitive, we will use an additional characterization:

Definition 4.11. For a string z = (z1, · · · , zt) ∈ {0, 1}n×t with ∀i ∈ [t] : zi ∈
{0, 1}n, Odd(z) is the set of strings from {0, 1}n that appear an odd number of
times in the sequence (z1, · · · , zt).

For example, if n = 3 and t = 7 then Odd(101, 111, 101, 000, 011, 111, 111) =
{111, 000, 011}.

We claim that two strings x,y are stabilizations of each other if and only if
Odd(x) = Odd(y). It is easy to verify the correctness of this claim, and also the
fact that this claim implies the transitivity of the stabilization relation.

To identify the elements of ρ(t,n,2) it remains to observe that when x,y are
stabilizations of each other then the entry is 2−tn, and when they are not, then
we have Odd(x) 6= Odd(y) and it can be verified that the entry is 0, which yields
the following description of ρ(t,n,2):

∀x,y ∈ {0, 1}n×t : ρ(t,n,2)[x,y] =

{
2−tn x,y are stabilizations

0 x,y are not stabilizations
.

Conclusion. Note that if x,y are permutations then they necessarily stabilize
each other, but the opposite is not true generally, furthermore, it is fairly easy to
find stabilizing pairs that are not permutations, for instance (111, 000, 101, 101, 000)
and (110, 111, 111, 111, 110). We’ll call a pair of strings that suffice this demand
(i.e. stabilize each other but are not permutations) remotely stabilized, that is:

Definition 4.12 ((t, n) remote stabilizations). Let x,y ∈ {0, 1}t×n, we say
that x,y are (t, n) remote stabilizations of each other (or just remote stabiliza-
tions of each other) if they are stabilizations of each other but are not permuta-
tions of each other.

In contrast to the cases of permutation and stabilization, remote stabilization
is not an equivalence relation, and thus (generally speaking) it is harder to work
with it. The stabilization relation is symmetric, but it is not reflexive, and in
fact it is anti-reflexive, because a string is always a permutation of itself (and
thus not a remote stabilization of itself), and it is also not transitive, because a
(non-empty) relation which is symmetric and anti-reflexive can’t be transitive.
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As said above, two strings that are permutations of each other are necessarily
stabilizations of each other (in other words, the permutation relation is a refine-
ment of the stabilization relation), and we deduce that ρn has no negative terms
and is also binary (scaled by 2−tn). Finally, this proves the characterization
lemma of ρn.

Lemma 4.13. Let n ∈ N and let t ∈ {1, 2, · · · , 2n − 1}, then the entries of ρn
can be given by the following formula:

∀x,y ∈ {0, 1}n×t : ρn[x,y] =

{
2−tn x,y are remote stabilizations

0 x,y are not remote stabilizations
.

4.3 Proof of Lemma 4.7

Proof. We will give an upper bound on the number of non-zero eigenvalues of ρn.
ρn is hermitian (and in particular diagonalizable) and thus the sum of dimensions
of its eigenspaces sums up to the order of the matrix, which is 2tn. Also recall
that the 0-eigenspace of ρn is its kernel, thus by the rank-nullity theorem, the
dimension of the 0-eigenspace plus the rank of ρn equals the order of the matrix,
2tn. This means that the rank of ρn equals the sum of dimensions of non-zero
eigenspaces of ρn, which is exactly the number of non-zero (possibly identical)
eigenvalues of ρn, thus, by giving an upper bound of rank(ρn), we get an upper
bound on the number of non-zero eigenvalues of ρn.

It is a well known fact in linear algebra that elementary row operations does
not change the rank of a matrix, it is also known that the rank of a matrix is
bounded from above by the number of non-zero rows (the rank is the dimension
of the row space, which in turn cannot be more than the number of non-zero
rows), thus our bound on the rank of ρn will come from looking at ρ′n, a row-
equivalent matrix to ρn, and bounding its number of non-zero rows.

ρ′n is obtained by the following procedure: Recall that the permutation re-
lation and the stabilization relation are both equivalence relations on {0, 1}t×n
and thus induce equivalence classes. It will be useful (also for the proof of the
next lemma) to define the following:

Definition 4.14 (Sentinel of an Equivalence Class). Let C be an equiva-
lence class of one of the two equivalence relations above (either the permutation
relation or the stabilization relation). We define xC ∈ {0, 1}tn the sentinel of
C to be the element in C with the largest lexicographic order (where the lexico-
graphic order of strings is as usual, with the most significant bit on the left, and
least significant bit on the right).

Observation 1 Let P be a permutation class of {0, 1}tn. Then, every pair in
it x,y ∈ P have the same set of remote stabilizers, and thus have identical rows
in ρn.

This means we can erase a bunch of redundant rows from ρn; for each per-
mutation class P , take the sentinal row xP of P and subtract it from all other
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rows of strings from P . In the obtained matrix ρ′n, the only non-zero rows are
of sentinels.

The number of sentinels is exactly the number of equivalence classes of the
permutation relation, which in turn is the number of different multisets of t
elements from {0, 1}n (note that a permutaion class can be defined by a multiset
from {0, 1}n of size t), and that number is known as common knowledge in

combinatorics, usually referred to as ”n multichoose k”, in our case,
(
2n+t−1

t

)
.

Observation 2 Let P be a permutation class of a multiset of t distinct elements
(essentially, a permutation class of a set of size t with elements from {0, 1}n),
then each of its elements have no remote stabilizers.

The above observation basically says that strings of t distinct elements are a
special case where every stabilizer of them is also a permutation of them. This
observation is useful to us because it means that for every permutation class P
of t distinct elements, all rows of P are zero-rows in the original ρn (and thus so
in ρ′n).

Furthermore, the reason that observation 2 is important to our proof comes
from the fact that there are

(
2n

t

)
such permutation classes, which is an over-

whelming precentage from the total number of permutation classes
(
2n+t−1

t

)
. To

conclude, we said that in ρ′n, only the sentinels can possibly have non-zero rows,

and that there are
(
2n+t−1

t

)
sentinels in total, but now we add the information

that out of these
(
2n+t−1

t

)
sentinels,

(
2n

t

)
have zero rows, and thus, there are at

most (
2n + t− 1

t

)
−
(

2n

t

)
non-zero rows in ρ′n (and as a side note, there are in fact more zero-rows, for
instance, for permutation classes of a multisets of the same element appearing
t times, but we won’t care about these as their precentage is negligible). This
concludes our proof of Lemma 4.7.

4.4 Proof of Lemma 4.8

We will give a lower bound on the most negative eigenvalue of ρn. Recall that
ρn is hermitian and thus has only real eigenvalues. Let λ ∈ R, we know that λ is
an eigenvalue ρn if and only if det(ρn−λI) = 0. Denote by A the set of negative
relative sizes of the permutation classes (along with 0),

A :=

{
−|P |

2tn
| P is a permutation class

}
∪ {0} ,

where for a permutation class, its size is the number of different possible permu-
tations of it, e.g. if P is a permutation class of a multiset of the same element t
times, then |P | = 1, if P is a permutation class of a multiset of t distinct elements
(in this specific case it is also a set) then |P | = t!, and if P is a permutation
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class of a multiset of (t−2) distinct elements plus an additional distinct element
that appears twice, then |P | =

(
t
2

)
· (t − 2)! . We will show that there are no

eigenvalues of ρn smaller then all elements of A, which will give us a lower bound
of (− t!

2tn ) on the minimal eigenvalue of ρn (as this is the minimal element in A).

We prove the eigenvalue lower bound by calculating the determinant det(ρn−
λI) for λ ∈ R \A, and showing that it cannot be 0. Recall that the permutation
relation is a refinement of the stabilization relation, which means that every
stabilization class can be divided into a bunch of permutation classes, also recall
that in the proof of Lemma 4.7 we saw that for some stabilization classes, they
are exactly a single permutation class and not a few (for example, according to
the second observation in the proof, this is the case for permutation classes of
sets of size t) - we’ll call such stabilization classes trivial stabilization classes.

By the observations from Lemma 4.7 and by the restriction λ /∈ A, the
calculation of the determinant is enabled and we obtain that for every λ ∈ (R\A),
the value of the determinant det(ρn − λ · I) is,∏

S trivial stabilization class

(−λ)|S| ·
∏

S non-trivial stabilization class

(
αS · βS · γS

)
,

where,

αS =
∏

x non-sentinel in S

(−λ) ,

βS =
∏

P permutation class in S with P 6= PS

(
− λ− |P |

2tn

)
,

γS = −λ+
(
λ+
|PS |
2tn

)
·

∑
P permutation class in S with P 6= PS

(
|P |
2tn

(λ+ |P |
2tn )

)
.

The full version of this calculation is in [3].

Using The Determinant to Show The Lower Bound. Given the above
determinant result, we can now finally prove Lemma 4.8.

Proof. Assume towards contradiction that there is a real number λ′ < − t!
2tn (note

that this implies λ′ /∈ A) such that it is an eigenvalue of ρn, thus det(ρn−λ′ ·I) =
0 and thus it is necessarily the case that one of the terms in the above product (of
the determinant) has to be 0. Due to λ′ /∈ A, it can be seen that the only terms
that can possibly be 0 in the above product are the terms γS for non-trivial S,
so let’s check what happens in these terms.

Let S be a non-trivial stabilization class, and consider the term γS in the
product above:

−λ′ +

(
λ′ +

|PS |
2tn

)
·

∑
P permutation class in S with P 6= PS

(
|P |
2tn

(λ′ + |P |
2tn )

)
.
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We have,

∀P permutation class in S, including PS : λ′ < −|P |
2tn

,

and thus(
λ′ +

|PS |
2tn

)
< 0,

∑
P permutation class in S with P 6= PS

(
|P |
2tn

(λ′ + |P |
2tn )

)
< 0 ,

which implies(
λ′ +

|PS |
2tn

)
·

∑
P permutation class in S with P 6= PS

(
|P |
2tn

(λ′ + |P |
2tn )

)
> 0 .

Finally, due to −λ′ being in particular positive, the term has to be positive as
well:

−λ′ +

(
λ′ +

|PS |
2tn

)
·

∑
P permutation class in S with P 6= PS

(
|P |
2tn

(λ′ + |P |
2tn )

)
> 0 ,

in contradiction to det(ρn − λ′I) = 0.
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