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Abstract. In a traitor tracing (TT) system for n users, every user has
his/her own secret key. Content providers can encrypt messages using a
public key, and each user can decrypt the ciphertext using his/her secret
key. Suppose some of the n users collude to construct a pirate decoding
box. Then the tracing scheme has a special algorithm, called Trace, which
can identify at least one of the secret keys used to construct the pirate
decoding box.

Traditionally, the trace algorithm output only the ‘index’ associated with
the traitors. As a result, to use such systems, either a central master au-
thority must map the indices to actual identities, or there should be
a public mapping of indices to identities. Both these options are prob-
lematic, especially if we need public tracing with anonymity of users.
Nishimaki, Wichs, and Zhandry (NWZ) [Eurocrypt 2016] addressed this
problem by constructing a traitor tracing scheme where the identities of
users are embedded in the secret keys, and the trace algorithm, given a
decoding box D, can recover the entire identities of the traitors. We call
such schemes ‘Embedded Identity Traitor Tracing’ schemes. NWZ con-
structed such schemes based on adaptively secure functional encryption
(FE). Currently, the only known constructions of FE schemes are based
on nonstandard assumptions such as multilinear maps and iO.

In this work, we study the problem of embedded identities TT based on
standard assumptions. We provide a range of constructions based on dif-
ferent assumptions such as public key encryption (PKE), bilinear maps
and the Learning with Errors (LWE) assumption. The different construc-
tions have different efficiency trade offs. In our PKE based construction,
the ciphertext size grows linearly with the number of users; the bilin-
ear maps based construction has sub-linear (

√
n) sized ciphertexts. Both

these schemes have public tracing. The LWE based scheme is a private
tracing scheme with optimal ciphertexts (i.e., log(n)). Finally, we also
present other notions of traitor tracing, and discuss how they can be
build in a generic manner from our base embedded identity TT scheme.
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Foundation Fellowship.



1 Introduction

Traitor tracing (TT) systems, as introduced by Chor, Fiat, and Naor [14], studied
the problem of identifying the users that contributed to building a rogue decoder
in a broadcast environment. In a TT system an authority runs a setup algorithm
on input a security parameter λ, and the number of users n in the system. This
results in generation of a global public key pk, a tracing key key, and n private
user keys (sk1, sk2, . . . , skn). Each private key is distributed to an authorized user
in the system with the guarantee that it can be used to decrypt any ciphertext
ct encrypting a message m under the global public key pk. The first security
property satisfied by such systems is that the message will be hidden from every
unauthorized user, that is one who does not have access to any secret key. The
most salient feature of a traitor tracing system is the presence of an additional
tracing algorithm which is used to identify corrupt/coerced users. Suppose an
attacker corrupts some subset S ⊆ {1, . . . , n} of authorized users and produces
a special decryption algorithm/device D that can decrypt the ciphertexts with
some non-negligible probability. The tracing property of the system states that
the tracing algorithm, on input the tracing key key and oracle access to device
D, outputs a set of users T where T contains at least one user from the colluding
set S (and no users outside of S).

The initial traitor tracing systems [14,34,28,8,15,33,27,29,32,12,1,19,6,30,2]
allowed bounded collusions; we focus on unbounded collusion [9,10,22,20,11,31,26,13].
While the concept of traitor tracing was originally motivated by catching cor-
rupt users in broadcast systems, the notion of traitor tracing has numerous
other applications such as transmitting sensitive information to first responders
(or military personnel etc) on an ad-hoc deployed wireless network, accessing
and sharing encrypted files on untrusted cloud storage etc. This propels us to
study the problem of traitor traitor more finely with a dedicated focus on un-
derstanding the issues that prevent a wider adoptability of such systems.

One major hurdle is that, as per the traditional description of the problem,
the tracing portion (that is identifying the corrupt users) is inherently tied to
the central authority (key generator) in the system. This is due to the fact that
the authority needs to keep track of the users who have been issued private keys,
and thus it needs to maintain an explicit mapping (as a look-up table) between
the user identification information and the indices of their respective private
keys. Otherwise, the output of the tracing algorithm will simply be a subset
T of the user indices which can not be linked to actual users in the system,
thereby introducing the problem of accountability and circumventing the whole
point of tracing traitors. In addition, this not only constrains the authority to
be fully stateful (with the state size growing linear with the number of users) by
necessitating that the authority must record the user information to key index
mapping, but also restricts the authority to be the only party which can perform
any meaningful notion of tracing if (authorized) user privacy/anonymity is also



desired.4 Therefore, even if the TT system achieves public traceability, that is
the tracing key key can be included as part of public parameters, no third party
would be able to identify traitors in system due to lack of a public mapping as
described above.

Furthermore, in certain situations the user information to key index mapping
might be undetermined. For example, suppose all the users in the system obtain
their private decryption keys without revealing any sensitive identification infor-
mation to the key generating authority. (Note that this can be achieved by some
sort of two party computation-based transfer between the user and authority.)
In such a scenario, it is not clear how tracing would work since the authority
would not be able to point to any user in the system as a traitor because the
key index to user identity mapping is unknown, even if the tracing algorithm
correctly outputs an index of some coerced secret key.

These observations lead to the following question —

Is it possible to embed the user identification information in the private
decryption keys such that during tracing the algorithm not only finds the

corrupted key indices, but also extracts the corresponding user identities from
the pirate decoding device?

Formally, this is captured by giving an additional parameter κ as an input to
the setup algorithm, where κ denotes the length of the user identities that can
be embedded in the private keys. The setup now outputs a master secret key
msk, instead of n private user keys, where msk is used to generate private keys
ski,id for any index-identity pair (i, id) ∈ [n]×{0, 1}κ. And the tracing algorithm
outputs a set of ‘user identities’ T ⊆ {0, 1}κ where id ∈ T indicates that id was
one of the corrupted users.5 This interpretation of traitor tracing resolves the
above issues of statefulness, third-party traceability, and maintaining a private
look-up table for providing user anonymity.

The above-stated question of traitor tracing with embedded information in
secret keys was first studied by Nishimaki, Wichs, and Zhandry [31]. Their ap-
proach was to directly work with the existing private linear broadcast encryp-
tion (PLBE) framework [9], however that resulted in solutions based on non-
standard assumptions. Concretely, they assume existence of an adaptively-secure
collusion-resistant public-key functional encryption (FE) scheme with compact
ciphertexts. Currently all known instantiations are either based on multilinear
maps [21,16,23,17], or indistinguishability obfuscation [4,5]. An important open
question here is whether the above problem of embedded information traitor

4 Although the problem of statefulness can be avoided by posting the identity of all
authorized users along with their respective (decryption key) indices on a public-
bulletin board, such a solution is particularly undesirable in practice as the user
identities might include highly sensitive information such as passport information,
driving license number, etc.

5 Note that the tracing algorithm could be additionally asked to output the corre-
sponding user index along with the identity, but since the index i ∈ [n] could itself
be encoded in the identity id using only log(n) bits therefore this seems unnecessary.



tracing can be solved from standard assumptions such as one-way functions, bi-
linear assumptions, learning with errors etc. In this work, we study this question
and provide a general framework for solving this problem with a wide range of
parameter choices and assumption families.

Our Results. We give new constructions for traitor tracing systems with embed-
ded identity tracing under the following assumptions.6

Public-key encryption. Our first construction is that of an embedded iden-
tity TT scheme with public traceability that relies only on regular PKE
schemes. The ciphertext size and length of public key grows linearly in both
the number of users n as well as the length of embedded identities κ. This is
a natural generalization of the basic TT scheme based on PKE, and is pro-
vided to serve as a baseline benchmark for comparing efficiency with other
instantiations.

Bilinear maps. Second, we show that using a more algebraic approach via bi-
linear maps we can build an embedded identity TT scheme with a square-root
speed-up w.r.t. the PKE-based scheme. Concretely, the size of ciphertexts
and length of public key grows linearly in

√
n and

√
κ. And the scheme still

achieves public traceability.
Learning with errors. Lastly, we build a compact embedded identity TT scheme

secure under the learning with errors (LWE) assumption. Here compactness
means that the size of ciphertexts and public key scales polynomially with
log(n) and κ. On the flip side, the tracing key needs to be private, that is it
only achieves private key traceability.

These are summarized in Table 1. In the next section we elaborate more on our
framework and general methodology for breaking down the problem. Below we
discuss our results in more detail.

Assumption |ct| |pk| |sk| Tr. Mode Unbdd.

PKE n · κ · poly(λ) n · κ · poly(λ) κ · poly(λ) Pub. No

Bilinear
√
n · κ · poly(λ)

√
n · κ · poly(λ) logn+ κ+ poly(λ) Pub. No

LWE (logn+ κ) · poly(λ) poly(λ) (logn+ κ) · poly(λ) Priv. Yes
Table 1. Embedded Identity Traitor Tracing. The ‘Tr. Mode’ column indicates whether
tracing is public or private.

In this work, we provide three new pathways for realizing embedded iden-
tity TT systems, and notably the first constructions relying only on standard
assumptions. Our first two constructions from public-key encryption and bilin-
ear maps are novel, where our bilinear map based scheme draws ideas from the

6 Nishimaki, Wichs, and Zhandry [31] used the term “flexible” traitor tracing to refer
to schemes where the space of identities that can be traced is exponential. Here we
call such TT systems as embedded identity TT schemes (or EITT for short).



trace and revoke scheme of Boneh-Waters [10]. And, for building an LWE-based
solution we adapt the recently introduced Mixed Functional Encryption (Mixed
FE) schemes [26,13] in our framework to get the desired results.

Furthermore, a very important and useful piece of our approach is that it
allows us to avoid subexponential security loss in the transformation (due to
complexity leveraging) if we allow an exponential number of users in the system
and the intermediate primitives used are only selectively-secure. Particularly,
this is used in our LWE-based solution which relies on mixed FE for which most
of the current constructions are only known to achieve selective security. (For
example, the first mixed FE construction by Goyal, Koppula, and Waters [26]
and two of three follow-up constructions by Chen et al. [13] were proven to
be only selectively-secure.) Therefore, our approach also answers the question
whether adaptivity is necessary for building embedded identity TT schemes if
the system is required to support an unbounded number of users. Note that
in the prior work of Nishimaki, Wichs, and Zhandry [31], it was crucial that
they start with an ‘adaptively-secure’ FE scheme for security purposes, but here
our approach helps in bypassing the adaptivity requirement. Next, we provide a
detailed technical overview of our results.

2 Technical Overview

We start by formally defining the notion of embedded identity traitor tracing
(EITT) systems. In order to capture a broader class of traitor tracing systems,
we consider three different variants for embedded identity tracing — (1) indexed
EITT, (2) bounded EITT, and (3) full (unbounded) EITT. Although the notion
of full/unbounded EITT is the most general notion we define and therefore it is
also likely the most desirable notion, we believe that both indexed and bounded
EITT systems will also find many direct applications as will be evident later
during their descriptions. In addition, we also show direct connections between
all three notions by providing different transformations among these notions.

Next, we move on to realizing these EITT systems under standard assump-
tions. To that end, we first introduce a new intermediate primitive which we call
embedded-identity private linear broadcast encryption (EIPLBE) that we even-
tually use to build EITT schemes. As the name suggests, the notion of EIPLBE
is inspired by and is an extension of private linear broadcast encryption (PLBE)
schemes introduced in the work of Boneh, Sahai, and Waters (BSW) [9]. BSW
introduced the notion of PLBE schemes as a stepping stone towards building
general TT systems. In this work, we show that the above-stated extension of
PLBE systems can be very useful in that it leads to new solutions for the em-
bedded identity traitor tracing problem.

Finally, we provide multiple instantiations of EIPLBE schemes that are se-
cure under a variety of assumptions (PKE, Bilinear, and LWE). Using these
EIPLBE schemes in the aforementioned transformation, we can build various
EITT systems with appropriate efficiency metrics.



2.1 Embedded Identity Traitor Tracing Definitions

Let us first formally recall the notion of standard traitor tracing (i.e., without
embedding identities in the secret keys). A traitor tracing system consists of four
poly-time algorithms — Setup, Enc, Dec, and Trace. The setup algorithm takes
as input security parameter λ, and number of users n and generates a public key
pk, a tracing key key, and n private keys sk1, . . . , skn. The encryption algorithm
encrypts a message m using public key pk, and the decryption algorithm decrypts
a ciphertext using any one of the private keys ski. The tracing algorithm takes
tracing key key, two messages m0,m1 as input, and is given (black-box) oracle
access to a pirate decoding algorithm D.7 It outputs a set S ⊆ [n] of users
signalling that the keys skj for j ∈ S were used to create the pirate decoder D.
The security requirements are as described in the previous section.

Let us now look at how to embed identities in the private user keys such
that the tracing algorithm outputs a set of identities instead. Below we describe
the identity embedding abstractions considered in this work. Throughout this
sequel, κ denotes the length of identities embedded (that is, identity space is
{0, 1}κ).

Indexed EITT. We begin with indexed EITT as the simplest way to introduce
identity embedding functionality in the standard TT framework is as follows.
The setup algorithm takes both n and κ as inputs and outputs a master secret
key msk. Such systems will have a special key generation algorithm that takes as
input msk along with an index-identity pair (i, id) ∈ [n]×{0, 1}κ, and outputs a
user key ski,id. When the ith user requests a key then it can supply its identity
id, and the authority runs key generation on corresponding inputs to sample a
secret key for that particular user.

Encryption, decryption, and tracing algorithms remain unaffected with the
exception that the tracing algorithm outputs a set of user identities S ⊆ {0, 1}κ
instead.8 Now the IND-CPA and secure tracing requirements very naturally ex-
tend to indexed EITT systems with one caveat that the adversary can only
obtain a user key for each index at most once in the traitor tracing game. Com-
paring this with standard TT schemes in which each corrupted user receives a
unique private key depending on its index, this constraint on set of corruptible
keys is a natural translation.

Looking carefully at the above abstraction, we observe that using such in-
dexed systems in practice would seem to resolve the ‘look-up table’ problem
thereby allowing third party tracing, but the problem of statefulness is not yet

7 Traditionally, the tracing algorithm was defined to work only if the decoder box
could decrypt encryptions of random messages. However, as discussed in [24], this
definition does not capture many practical scenarios. Therefore we work with a
broader abstraction where the trace algorithm works even if the decoder can only
distinguish between encryptions of two specific messages.

8 Although one could ask the tracer to output a set of index-identity pairs instead of
only identities, this seems unnecessary as the user index can always be embedded in
its identity.



completely resolved. Concretely, the key generating authority still needs to main-
tain a counter (that is log(n) bits) which represents the number of keys issued
until that point. Basically each time someone queries for a secret key for iden-
tity id, the authority generates a secret key for identity id and index being the
current counter value, and it increments the counter in parallel. This constraint
stems from the fact that for guaranteeing correct tracing it is essential that the
adversary receives at most one key per index i ∈ [n]. Although for a lot of appli-
cations indexed EITT might already be sufficient, it is possible that for others
this is still restrictive. To that end, we define another EITT notion to completely
remove the state as follows.

Bounded EITT. The idea behind bounded EITT is that now the input n given to
the setup algorithm represents an upper bound on the number of keys an adver-
sary is allowed to corrupt while the system still guarantees correct traceability.
And importantly, the key generation algorithm now only receives an identity id
as input instead of an index-identity pair. Thus, the authority does not need to
maintain the counter, that is it does not need to keep track of number of users
registered. Another point of emphasis is that in a Bounded EITT system if the
number of keys an attacker corrupts exceeds the setup threshold n, the attacker
may avoid being traced; however, even in this scenario tracing procedure will
not falsely indict an non-colluding user. In addition to being a useful property
in its own right, the non-false indictment property will be critical in amplifying
to Unbounded EITT.

Interestingly, we show a generic transformation from any indexed EITT
scheme to a bounded EITT scheme with only a minor efficiency loss. More de-
tails on this transformation are provided towards the end of this section. Looking
ahead, this transformation only relies on the existence of signatures additionally.

Unbounded EITT. Lastly the most general notion of embedded identity traitor
tracing possible is of systems in which the setup algorithm only takes κ the
length of identities as input, thus there is no upper bound on the number of
admissible corruptions set during setup time. Therefore, the adversary can pos-
sibly corrupt an arbitrary (but polynomial) number of users in the system. In
this work, we additionally provide an efficient unconditional transformation from
bounded EITT schemes to unbounded EITT schemes thereby completely solving
the embedded identity tracing problem. More details on this transformation are
also provided towards the end of this section.

Next, we move on to building the indexed EITT schemes under standard as-
sumptions. As discussed before, we first introduce the intermediate notion of
EIPLBE.

2.2 Embedded-Identity Private Linear Broadcast Encryption

Let us start by recalling the notion of private linear broadcast encryption (PLBE) [9].
Syntactically, a PLBE scheme is same as a traitor tracing scheme as in it con-



sists of setup, key generation, encryption, decryption algorithms with the excep-
tion that instead of tracing algorithm it provides an additional encryption algo-
rithm usually referred to as index-encryption algorithm. In PLBE systems, the
setup algorithm outputs a public, master secret, and index-encryption key tuple
(pk,msk, key). As in TT systems, the key generation uses master secret key to
sample user private keys skj for any given index j ∈ [n], while the PLBE encryp-
tion algorithm uses the public key to encrypt messages. The index-encryption
algorithm on the other hand uses the index-encryption key to encrypt messages
with respect to an index i. Now such a ciphertext can be decrypted using skj
only if j ≥ i, thus one could consider such ciphertexts as encrypting messages
under the comparison predicate ‘≥ i’. The security requirements are defined in
an ‘FE-like’ way; that is, if an adversary does not have a key for index i, then
index-encryption of any message m to index i should be indistinguishable from
index-encryption of m to index i + 1. Additionally, public key encryptions of
any message m should also be indistinguishable from index-encryptions of same
message for index 1 (even if adversary is given all keys). And finally, index-
encryptions to index n + 1 should completely hide any information about the
encrypted message.

BSW showed that the PLBE framework could be very useful for building TT
systems. At a very high level, their main idea was to use the index-encryption
functionality to build the tracing algorithm. The tracing algorithm, given access
to a decoding algorithm D, estimates the successful decryption probability of
index-encryptions to different indices in 1 to n + 1 when decrypted using algo-
rithm D. If it finds an index i such that the probability estimates corresponding
to index-encryptions to i and i+1 are noticeably far, then the tracing algorithm
includes index i to the set of traitors. In prior works [9,26], it was shown that
such a transformation preserves IND-CPA security as well as guarantees secure
and correct tracing.

An important aspect of the tracing schema described above is that during
tracing the algorithm essentially runs a brute force search over set of user indices
{1, 2, . . . , n} to look for traitors. This turns out to be problematic if we want to
embed polynomial length identities in the secret keys. Because now the search
space for traitors is exponential which turns the above brute force search mech-
anism rather useless. Thus it is not very clear whether the PLBE framework is
an accurate abstraction for ‘embedded identity’ TT.

In this work, our intuition is to extend the PLBE framework such that it
becomes more conducive for implementing the embedded identity tracing func-
tionality in TT systems. Hence, we propose a new PLBE framework called
embedded-identity PLBE. As in PLBE, an EIPLBE scheme consists of a setup,
key generation, encryption, decryption and special-encryption algorithm. (Here
special-encryption algorithm is meant to replace/extend the index-encryption
algorithm provided in general PLBE schemes.) Semantically, the differences be-
tween PLBE and EIPLBE are as follows. In EIPLBE, the user keys are associated
with an index-identity pair (j, id). And, special-encryptions are associated with



a index-position-bit tuple (i, `, b), where position is a symbol in [κ] ∪ {⊥}. The
special-encryption ciphertexts can further be categorized into two types:

(` = ⊥) In this case the special-encryption ciphertext for index-position-bit
tuple (i, ` = ⊥, b) behaves identical to a PLBE index-encryption to index i.
That is, such ciphertexts can be decrypted using skj,id as long as j ≥ i.

(` 6= ⊥) In this case the ciphertext can be decrypted using skj,id as long as
either j ≥ i + 1 or (j, id`) = (i, 1 − b). In words, these ciphertexts behave
same as a PLBE index-encryption to index i, except decryption by the users
corresponding to index-identity pair (i, id) is also disallowed if `th bit of their
id matches bit value b.

In short, the special-encryption algorithm (when compared with PLBE index-
encryption) provides an additional capability of disabling decryption ability of
users depending upon a single bit of their identity. The central idea behind
introducing this new capability is that it facilitates a simple mechanism for
tracing the identity bit-by-bit. The tracing algorithm runs as a two-step process
where the first phase is exactly same as in the PLBE to TT transformation
which is to trace the indices of corrupt users. This can be executed as before by
using the PLBE functionality of disabling each index one-by-one, that is estimate
successful decryption probability of encryptions to indices in 1 to n + 1 while
keeping position variable ` = ⊥. This is followed by the core identity tracing
phase in which the tracing algorithm performs a sub-search on each user index
i where it noticed a gap in first phase. Basically the sub-search corresponds to
picking a target index obtained during first phase, and then sequentially testing
whether the `th bit in the corrupted identity is zero or one for all positions
` ∈ [κ]. And, this is where the above additional disabling capability is used.

Next we discuss the expanded set of security properties required from EIPLBE.
More details on the above transformation are provided afterwards.

normal-hiding. Standard encryptions are indistinguishable from special-encryptions
to (1,⊥, 0).

index-hiding. Special-encryptions to (i,⊥, 0) are indistinguishable from special-
encryptions to (i+ 1,⊥, 0) if an adversary has no secret key for index i.

lower-ID-hiding. Special-encryptions to (i,⊥, 0) are indistinguishable from
special-encryptions to (i, `, b) if an adversary has no secret key for index
i and identity id such that id` = b.

upper-ID-hiding. Special-encryptions to (i+1,⊥, 0) are indistinguishable from
special-encryptions to (i, `, b) if an adversary has no secret key for index i
and identity id such that id` = 1− b.

message-hiding. Special-encryptions to (n+1,⊥, 0) hide the message encrypted.

Building Indexed EITT from EIPLBE. The setup, key generation, encryption
and decryption algorithms for the tracing scheme are same as that for the under-
lying EIPLBE scheme. Let us now look at how to trace identities from the pirate
decoding device. As mentioned before, the tracing proceeds in two phases — (1)
index tracing, followed by (2) identity tracing. The idea is to first trace the set



of indices of the corrupted users, say Sindex ⊆ [n], and then in the second phase
for each index i ∈ Sindex, the tracer will (bit-by-bit) extract the corresponding
identity corrupted. Formally, the tracing proceeds as follows

Phase 1. For i ∈ [n+ 1], do the following:

A. Compute polynomially many special-encryptions to index-position-bit
(i,⊥, 0).

B. Run decoder D on each ciphertext individually to test whether it de-
crypts correctly or not. Let p̂i denote the fraction of successful decryp-
tions.

Let Sindex denote the set of indices i of such that p̂i and p̂i+1 are noticeably
far.

Phase 2. Next, for each i ∈ Sindex and ` ∈ [κ], do the following:

A. Compute polynomially many special-encryptions to index-position-bit
(i, `, 0).

B. Run decoder D on each ciphertext individually to test whether it de-
crypts correctly or not. Let q̂i,` denote the fraction of successful decryp-
tions.

Output Phase. Finally, for each i ∈ Sindex, it sets the associated traced iden-
tity id as follows. For each ` ∈ [κ], if p̂i and q̂i,` are noticeably far, then set
`th bit of id to be 0, else sets it to be 1.

Let us now see why this tracing algorithm works. In the above procedure, the
first phase (index tracing) is identical to the PLBE-based tracing algorithm.
Thus, by a similar argument it follows that if i ∈ Sindex, then it suggests that
the decoder D was created using a key corresponding to index-identity pair (i, id)
for some identity id. (This part of the argument only relies on normal-hiding,
index-hiding and message-hiding security properties.)

The more interesting component of the tracing algorithm is the identity trac-
ing phase (i.e., phase 2). The idea here is to selectively disable the decryption
ability of users for a fixed index if a particular bit in their identities is 0. Re-
call that an adversary can not distinguish between special-encryptions to tuple
(i,⊥, 0) and (i, `, 0) as long as it does not have any secret key for (i, id) such
that id` = 0. This follows from ‘lower-ID-hiding’ property. Similarly, an adver-
sary can not distinguish between special-encryptions to tuple (i + 1,⊥, 0) and
(i, `, 0) as long as it does not have any secret key for (i, id) such that id` = 1.
This follows from ‘upper-ID-hiding’ property. Now whenever i ∈ Sindex we know
that p̂i and p̂i+1 are noticeably far. Also, recall that in indexed EITT tracing
definition the adversary is allowed to key query for at most one identity per in-
dex. Therefore, the estimate q̂i,` will either be close to p̂i or to p̂i+1, as otherwise
one of upper/lower-ID-hiding properties will be violated. Combining all these
observations, we can prove correctness/security of the above tracing algorithm.

Next, we move to standard assumption constructions for EIPLBE schemes.



2.3 Building EIPLBE from standard assumptions

In this section, we provide three different pathways for securely realizing embedded-
identity private linear broadcast encryption systems under standard assump-
tions. Our first instantiation is based only on general public key encryption, and
is provided to serve as a baseline benchmark for comparing efficiency of other
schemes. Our second instantiation is based on Bilinear maps, and provides a
quadratic improvement over the PKE-based scheme. And finally, our third and
last instantiation is based on learning with errors, and it leads to extremely
efficient system parameters. See Table 1 for concrete efficiency comparison. Be-
low we discuss these three approaches in greater detail highlighting the main
challenges and contributions. Throughout this section, we use n to denote the
maximum number of indices and κ to be the length of identities.

EIPLBE via Public Key Encryption We first present a EIPLBE scheme
based on any PKE scheme. In this scheme, the size of the ciphertexts grows
linearly with the maximum number of indices n and the length of identities κ.
To understand the intuition behind the PKE based EIPLBE construction, let
us recall the folklore PLBE construction based on PKE.

PKE-based PLBE scheme. The setup algorithm chooses n PKE keys (pki, ski)i∈[n].
A secret key for index i is simply ski. Standard encryption of message m consists
of n ciphertexts, where the ith ciphertext is an encryption of m under public key
pki. A special-encryption of m for index i∗ consists of n ciphertexts; the first
i∗ ciphertexts are encryptions of a special symbol ⊥ (under the respective pub-
lic keys) while the remaining are encryptions of m (under the respective public
keys). In summary, the ciphertext consists of n independent and disjoint com-
ponents, where each component contains one PKE sub-ciphertext. Thus a user
can perform decryption by only looking at its dedicated PKE component in the
ciphertext. And security follows directly from PKE security since all the PKE
sub-ciphertexts are independently created.

Extending this to EIPLBE. Let us now look at how to extend the simple PLBE
scheme described above to embed identities as well. Once again, we will have n
different strands, and each strand will have 2κ slots. (Here we perform a PKE
setup for each slot in each strand.) A secret key for index i and identity id can
unlock κ out of the 2κ slots of the ith strand, and using these κ unlocked com-
ponents, the decryption algorithm tries to reconstruct a message. In particular,
the secret key (i, id) can unlock each of the {(`, id`)}` slots. This is executed by
giving out the PKE secret keys associated with these slots.

To encrypt a message m, one first creates n copies of the message, and secret
shares each copy (independently) into κ shares. Let {ri,`}`∈[κ] denote the κ

shares of the ith copy. In the ith strand, the (`, 0) and (`, 1) slots encrypt the
same message ri,`. (Here the per-slot per-strand encryption is performed under
the corresponding PKE public key.) As a result, a secret key for index i and



identity id can recover all the {ri,`}` components, and therefore the decryption
algorithm can reconstruct the message m.

A special-encryption for index-position-bit tuple (i∗, `∗, b∗) is more involved.
In the first i∗ − 1 strands, it has no information about the message m (it secret
shares ⊥ and puts the shares in the 2κ slots). For all i > i∗, the ith strand is
constructed just as in the standard encryption (secret share message m into κ
shares, and put the `th share in the slots (`, 0) and (`, 1)). The i∗ strand is set
up in a more subtle way; here, the encryption algorithm again breaks down m
into κ shares {ri∗,`}`. It puts ri∗,` in slots (`, 0) and (`, 1) for all ` except `∗. In
slot (`∗, b∗) it puts ⊥, and in slot (`∗, 1− b∗) it puts ri∗,`∗ . As a result, a secret
key for index i∗ and identity id such that id`∗ = b∗ cannot recover ri∗,`∗ , and
therefore cannot reconstruct the message.

The security properties follow directly from IND-CPA security of the under-
lying PKE scheme. Consider, for instance, the index hiding property (special-
encryption to (i,⊥, 0) is indistinguishable from special-encryption to (i+1,⊥, 0)
if an adversary has no secret keys for index i). The only difference between these
two special-encryptions is the ciphertext components in the {(`, 0), (`, 1)}` slots
of ith strand. But since the adversary gets no secret keys for index i, it does not
have any secret keys to unlock these strand i slots, and hence the index-hiding
property holds. The other security properties also follow in a similar manner,
except while arguing that the scheme satisfies upper-ID-hiding security we have
to additionally use the fact that the message is randomly and independently
split in each strand.

The ciphertext size in the above construction grows linearly with both n and
κ. Next, we will see how to achieve better parameters using bilinear maps.

EIPLBE via Bilinear maps When studying EIPLBE, a natural question to
ask is whether it can realized generically from standard PLBE schemes. Since
we already have bilinear-map based PLBE constructions [9,10] in which the size
of ciphertext grows linearly with

√
n, thus a generic transformation from PLBE

to EIPLBE could probably lead to a bilinear-map solution for EIPLBE with
similarly efficiency. Here we consider a very natural such transformation from
PLBE to EIPLBE and discuss the challenges faced in executing this approach in
a black-box way. Starting with this black-box approach we dig deeper into the
existing PLBE schemes and extend them directly to a EIPLBE scheme. More
details follow.

Why generic transformation from PLBE to EIPLBE does not work? Let us first
describe a simple candidate EIPLBE scheme based on PLBE. The starting point
for this transformation is the PKE-based construction described previously. The
intuition is to replace each ‘strand’ sequence in the PKE-based solution with
a single PLBE instantiation while keeping the slot structure intact. That is,
during setup the algorithm now runs PLBE setup 2κ times — once for each
slot in {(`, b)}`,b. The public/master secret key consists of the 2κ public/master

secret keys
{
pk`,b,msk`,b

}
`,b

, one from each slot (`, b) ∈ [κ] × {0, 1}. And, a



secret key for index-identity pair (i, id) consists of κ PLBE secret keys, where
the `th key component is a secret key for index i in the (`, id`) slot (that is,
sk = {sk`}` where sk` ← KeyGen(msk`,id` , i)). Next, let us look at encryption. A
ciphertext consists of 2κ PLBE ciphertexts {ct`,b}`,b. The (standard) encryption

algorithm splits message m into κ shares {r`}`, and then encrypts r` under the
public keys for both (`, 0) and (`, 1) slots, independently. The special-encryption
algorithm on the other hand works as follows — to encrypt m for index-position-
bit tuple (i∗, `∗, b∗), the algorithm as before splits m into κ shares {r`}`, and then
computes all but the (`∗, b∗)-slot of the ciphertext as a PLBE index-encryption
(of the corresponding share) for index i∗. And, the last remaining ciphertext
component (if any9) is a PLBE index-encryption (of the corresponding share)
for index ‘i∗ + 1’. Now decryption can be quite naturally defined. Let us next
try to analyze its security.

A careful inspection of the above scheme shows that it satisfies all requisite
security properties except one which is upper-ID-hiding security.10 Recall that
upper-ID-hiding security requires that special-encryption to (i + 1,⊥, 0) must
be indistinguishable from special-encryption to (i, `, b) if the adversary doed not
get any secret key for (i, id) such that id` = 1− b. Suppose an adversary has two
secret keys ski,id and ski+1,id, for some identity id such that id` = b. Consider

a new secret key s̃k which is equal to ski,id, except that the `th component is

set to be the `th component of ski+1,id. It turns out that this hybrid key s̃k can
decrypt a special-encryption for (i, `, b) but not for (i + 1,⊥, 0), even though
both key queries for index-identity pairs (i, id) and (i+ 1, id) are permissible as
per upper-ID-hiding security game.

As exhibited by the above attack, the main issue with the above (broken)
candidate is that there is no mechanism to tie together the different components
of a particular secret key. Thus such key mixing attacks, which allow rendering
hybrid keys such as s̃k in the aforementioned attack, are unavoidable. In order
to prevent such attacks, we dive into the existing PLBE constructions with the
goal of exploiting the underlying algebraic structure for linking together the
individual PLBE secret keys coming from different subsystems.

Our intuition and fixing [10]. Our starting point is the trace and revoke (broad-
cast) scheme by Boneh and Waters (BW) [10]. We start by presenting a simplified
version of the BW PLBE scheme, and then use that as a building block to build
our EIPLBE scheme. Along the way we uncover a crucial bug in the security
proof provided by BW that renders their theorem as stated incorrect. In this
work, we fix the BW security proof while building our EIPLBE scheme, thereby
restoring the bilinear map based TT (also trace and revoke) schemes to their
original glory.

9 If `∗ = ⊥, then all ciphertext slots have already been filled.
10 Actually there is a pretty simple (related) attack to break the false tracing guarantee

if one uses this transformation to build an indexed EITT scheme from standard
PLBE. Here we only focus on breaking upper-ID-hiding security..



Revisiting BW tracing scheme. Let p, q be primes, G,GT groups of orderN = p·q
with a bilinear map e : G×G→ GT , and let Gp,Gq denote the subgroups of G
of orders p and q respectively. In the BW tracing scheme for n parties, any index
i ∈ [n] is represented as a pair (i1, i2) ∈ [

√
n] × [

√
n]; secret keys and special-

encryptions are for pairs (x, y) ∈ [
√
n]× [

√
n]. We say that (x1, y1) ≺ (x2, y2) if

either x1 < x2 or (x1 = x2 and y1 < y2).
The setup algorithm chooses generator g ← G and gq ← Gq, scalars αx, rx, cx ←

ZN for each x ∈ [
√
n] and sets Ex = grx , Gx = e(g, g)αx and Hx = gcx .

It chooses β ← ZN , sets Eq = gβq , Eq,x = gβrxq and Gq,x = e(gq, gq)
βαx .

The public key consists of {Ex, Gx, Eq, Eq,x, Gq,x, Hx}x (together with some
additional components); the master secret key consists of {αx, rx, cx}x, and
the tracing key is the public key itself. A secret key for index (x, y) is set
to be gαx+rxcy . Special-encryption of message m for index (x∗, y∗) has 4

√
n

components {Ri, Ai, Bi, Ci}i∈[√n]. It chooses sx ← ZN for each x ∈ [
√
n],

t ← ZN . For x > x∗, it sets Rx = Esxq,x = gβrxsxq , Ax = Esxtq = gβsxtq and

Bx = m · Gsxtq,x = m · e(gq, gq)βαxsxt. For x = x∗, it sets Rx = Esxx = grxsx ,
Ax = gsxt and Bx = m · Gsxtx = m · e(g, g)αxsxt. For x < x∗, Rx, Ax, Bx
are random group elements. Next, it sets Cy as follows. For y > y∗, it sets
Cy = Ht

y = gcyt; else it sets Cy = gcyt · hp, where hp is a group element in Gp,
derived from the public parameters.

For correctness, let K = gαx+rxcy be a key for (x, y), ct = {Ri, Ai, Bi, Ci}i
an encryption of m for (x′, y′), where (x′, y′) ≺ (x, y). Consider the terms
(Rx, Ax, Bx, Cx). If x > x′, then Rx = gβrxsxq , Ax = gβsxtq , Bx = e(gq, gq)

βαxrxsxt

for some β, sx, t. On pairing Rx with Cy, one obtains Γ1 = e(gq, gq)
βrxsxtcy . Here,

note that it does not matter whether y < y′ or not, because pairing an element
in Gp with an element in Gq results in identity. Next, pairing Ax with the secret
key K results in Γ2 = e(gq, gq)

βrxsxcyt+αxrxsx . Finally, note that Bx ·Γ1/Γ2 = m.
If x = x′ but y > y′, then pairing Ax and K results in Γ2 = e(g, g)rxsxcyt+αxrxsx ,
and pairing Rx and Cy results in e(g, g)rxsxcyt. Therefore Bx ·Γ1/Γ2 outputs m.

The main intuition behind the index-hiding security proof is that if an adver-
sary does not have a secret key for index i = (x, y), then the hp term multiplied
to Cy component can be undetectably added or removed. In the actual scheme,
the public parameters and the ciphertext includes some additional terms for se-
curity purposes. Here we removed them for simplicity of exposition. Next, let us
look at how to extend BW for building an EIPLBE scheme.

Our EIPLBE scheme based on Bilinear Maps. Our EIPLBE scheme, at a very
high level, is inspired by the 2κ-subsystems idea (described in the attempted
generic transformation from PLBE to EIPLBE) applied to the BW scheme.
However, we will ensure that the adversary cannot mix-and-match different se-
cret keys. Consider 2κ different subsystems of the BW scheme, where all the
subsystems share the same {αx, rx}x∈[√n] values, but each subsystem has its

own {cy}y∈[√n] values. So, the public key has {Ex, Gx, Eq, Eq,x, Gq,x}x (to-

gether with some additional components) as in the BW scheme, but instead
of {Hy}y∈[√n], it now has {Hy,`,b}y∈[√n],`∈[κ],b∈{0,1}, where the setup algorithm



chooses {cy,`,b}y∈[√n] values for the (`, b) subsystem and sets Hy,`,b = gcy,`,b .

The secret key for index i = (x, y) and identity id consists of just one com-
ponent. The key generation algorithm combines the appropriate cy,`,b elements
(depending on id) and multiplies with rx. Let γx,y = rx · (

∑
` cy,`,id`). The key

generation algorithm outputs gαx+γx,y as the secret key. Note that unlike the
PLBE to EIPLBE transformation, here the components from one key cannot be
mixed with the components of another key to produce a hybrid key. An alternate
view of the secret key is that it is the BW key, but with cy value being different
for each identity (for identity id, cy =

∑
` cy,`,id`).

In the ciphertext/special-ciphertext, we have the {Rx, Ax, Bx}x∈[√n] compo-

nents as in the BW scheme. However, instead of {Cy}y∈[√n], we now have 2κ

such sets of components. During decryption, one must first combine the Cy,`,b
components depending on the identity id to obtain a term Cy, which is then used
to carry out BW-like decryption. We will now present the scheme in more detail.

The setup algorithm chooses {cy,`,b}y∈[√n],`∈[κ],b∈{0,1}. It sets Hy,`,b = gcy,`,b

for each (y, `, b) ∈ [
√
n]× [κ]× {0, 1}, and the public key consists of the follow-

ing terms:
{
Ex, Gx, Eq, Eq,x, Gq,x, {Hx,`,b}`,b

}
x
, where the Ex, Gx, Eq, Eq,x, Gq,x

terms are computed as in the BW scheme (outlined above). To compute a se-
cret key for index (x, y) and identity id, the key generation algorithm computes
z = αx + rx · (

∑
i cy,i,idi) and outputs gz as the secret key. Finally, the special-

encryption of m for index (x∗, y∗), position `∗ and bit b∗ is computed as fol-
lows: for each x ∈ [

√
n], the encryption algorithm computes {Rx, Ax, Bx} as in

the BW scheme. In addition to these components, it computes {Cy,`,b} com-
ponents for each y ∈ [

√
n], ` ∈ [κ] and b ∈ {0, 1} as follows: if (y > y∗) or

(y = y∗ and (`, b) 6= (`∗, b∗))t, then Cy,`,b = Ht
y,l,b, else Cy,`,b = Ht

y,l,b ·hp, where
hp is some element in Gp computed using the public parameters.

SupposeK is a key for index (x, y) and identity id, and
{
Rx, Ax, Bx, {Cx,l,b}l,b

}
x

is an encryption of m for ((x∗, y∗), `∗, b∗). Decryption works as follows: first, com-
pute Cy =

∏
l Cy,l,idl ; next, pair Cy and Ax to compute Γ1, pair K and Rx to

compute Γ2, and output Bx · Γ1/Γ2 as the decryption.
The full scheme and security proof is discussed in the full version of our

paper. As an alternate approach for constructing an EIPLBE scheme, one could
use a functional encryption scheme for quadratic functions. Such a scheme was
recently proposed by Baltico et al. [3]. However, one of the contributions of our
work is to fix the BW scheme, and hence we chose to provide a direct construction
for EIPLBE, based on the BW scheme. Note that in the above outline, the size
of ciphertexts grows linearly with

√
n and κ. In the main body, we optimize the

construction such that the size of ciphertexts grows linearly with both
√
n and√

κ. Finally, we will present a scheme with optimal ciphertext size with only
polylogarithmic dependence on n.

EIPLBE via Learning With Errors In a recent work, Goyal, Koppula, and
Waters [26] gave a traitor tracing scheme with compact ciphertexts. Their scheme



is based on a new primitive called Mixed Functional Encryption (Mixed FE),
which can also be used to build an EIPLBE scheme with optimal parameters. A
Mixed FE scheme for a function class F can be seen as an extension of a secret
key FE scheme for F . It has a setup, key generation, encryption and decryption
algorithm (as in a secret key FE scheme). In addition, it also has a public en-
cryption algorithm. For the PLBE and EIPLBE schemes, it helps to have keys
associated with messages and ciphertexts with functions. The setup algorithm
chooses a public key pk and a master secret key msk. The master secret key can
be used to generate a secret key for any message m, and can also be used to en-
crypt any function f . A key for message m can decrypt an encryption of function
f if f(m) = 1. In addition, the public-encryption algorithm can also generate
ciphertexts; it only takes as input the public key pk, and outputs a ciphertext
that ‘looks like’ a secret-key encryption of the ‘all-accepting function’. For secu-
rity, GKW require bounded query FE security, together with the public/secret
key mode indistinguishability.

The work of [26] showed a construction of Mixed FE for log-depth circuits. A
recent work by Chen et al. [13] showed three different constructions for the same.
To construct PLBE, [26] combined a 1-bounded Mixed FE scheme with an ABE
scheme. The PLBE encryption of a message m is simply an ABE encryption
of m for attribute x being a public-mode Mixed FE encryption. The special-
encryption of m for index i∗ is again an ABE encryption of m, but with attribute
x being a secret-key Mixed FE encryption of the (> i∗) function. Finally, to
compute a secret key for index i, the key generation algorithm first computes
a Mixed FE key k for the message i, and then computes an ABE key for a
Mixed FE decryption circuit that has k hardwired, takes a Mixed FE ciphertext
ct as input and outputs Mixed FE decryption of ct using k. Note that for this
transformation, it suffices to only have a Mixed FE scheme that allows the
comparison functionality.

Fortunately (for us), [26] (and later [13]) showed Mixed FE for a much richer
class of functions (log-depth circuits), and this will be useful for our construc-
tion. Our EIPLBE scheme will also follow the Mixed FE+ABE approach (which
is referred to as Mixed FE with messages in [13]). Instead of the comparison
function, the Mixed FE ciphertexts in our scheme will be for more expressive
functions. In particular, it suffices to have a Mixed FE scheme where the func-
tions are parameterized by (y∗, `∗, b∗), and it checks if input (y, id) either satisfies
y > y∗, or y = y∗ and id` 6= b∗. Since such simple functions can be implemented
in log-depth, we can use the ABE+Mixed FE approach for building EIPLBE as
well.

2.4 Indexed Embedded-Identity TT to Bounded Embedded-Identity
TT

In this part, we discuss our transformation from a tracing scheme with indexed
key generation to one where there is no index involved, but the correct trace
guarantee holds only if total number of keys is less than an apriori set bound.
For technical reasons we require the bounded EITT system to provide a stronger



false tracing guarantee, which states there should be no false trace even if the ad-
versary obtains an unbounded (but polynomial) number of keys. Looking ahead,
this property will be crucial for the transformation from bounded EITT to its
unbounded counterpart.

The high-level idea is to have λ different strands, and in each strand, we have
a separate indexed-system with a large enough index bound (that depends on
the bound on number of keys n). When generating a key, we choose λ random
indices (within the index bound) and generate λ different keys for the same
identity in the different strands using the respective randomly chosen indices.
Now, we will set the index bound to be n2, and as a result, at least one strand
has all distinct indices (with overwhelming probability). To (special-)encrypt
a message, we secret-share the message in the λ different strands, and encrypt
them separately. This approach satisfies the correct-trace guarantee, but does not
satisfy the false-trace guarantee. In particular, note that the false-trace guarantee
should hold even if the number of key queries is more than the query bound.
This means the underlying indexed scheme should not report a false trace even
if there are multiple identities for a index, which is a strictly stronger false-trace
guarantee for the underlying system (and our system does not satisfy it).

There is an elegant fix to this issue. Instead of generating keys for the queried
identity id, the key generation algorithm now generates a signature on id, and
generates keys for (id, σ). This fixes the false-trace issue. Even if an adversary
queries for many secret keys, if it is able to produce a decoding box that can
implicate a honest user, then that means this box is able to forge signatures,
thereby breaking the signature scheme’s security. We describe the scheme a lit-
tle more formally now.

To build a tracing scheme with bound n, the setup algorithm chooses λ
different public/secret/tracing keys for the indexed scheme with index bound
set to be n2. The setup algorithm also chooses a signature key/verification key.
It sets the λ different public keys and the verification key to be the new public
key, and similarly the master secret key has the λ different master secret keys and
the signature key. Encryption of a message m works as follows: the encryption
algorithm chooses λ shares of the message, and then encrypts the ith share under
the ith public key. To compute a secret key for identity id, the key generation
algorithm first chooses λ different indices j1, . . . , jλ. It then computes a signature
σ on id, and generates a key for (id, σ) using each of the λ master secret keys with
the corresponding indices. The tracing algorithm uses the underlying indexed
scheme’s trace algorithm to obtain a set of (id, σ) tuples. It then checks if σ is a
valid signature on id; if so, it outputs id as a traitor.

Now, suppose an adversary queries for t(< n) secret keys, and outputs a
decoding box D. Let ji,k denote the kth index chosen for the ith secret key.
With high probability, there exists an index k∗ ∈ [λ] such that the set of indices
{j1,k∗ , j2,k∗ , . . . , jt,k∗} are all distinct. As a result, using the correct-tracing guar-
antee of the underlying tracing scheme for the k∗ strand, we can extract at least
one tuple (id, σ).



Next, we need to argue the false trace guarantee. This follows mainly from
the security of the signature scheme. Suppose an adversary receives a set of
keys corresponding to an identity set I, and outputs a decoding box D. If trace
outputs an identity id /∈ I, then this means the sub-trace algorithm output a
tuple (id, σ) such that σ is a valid signature on id. As a result, σ is a forgery on
message id (because the adversary did not query for a key corresponding to id).

2.5 Bounded Embedded-Identity TT to Unbounded
Embedded-Identity TT

The final component is to transform a tracing system for bounded keys to one
with no bound on the number of keys issued. For this transformation to be
efficient, it is essential that the underlying bounded EITT scheme to have ci-
phertexts with polylogarithmic dependence on the key bound n. The reason is
that our core idea is to have λ (bounded) EITT systems running in parallel,
where the ith system runs the bounded tracing scheme with bound ni = 2i, and
if the ciphertext size does not scale polylogarithmically with the bound ni, then
this transformation would not work.11

More formally, the setup algorithm runs the bounded system’s setup λ times,
the ith iteration run with bound ni = 2i. It sets the public key (resp. master
secret key and the tracing key) to be the λ public keys (resp. the λ different
master secret keys and the tracing keys). The encryption algorithm secret shares
the message into λ shares, and encrypts the ith share using the ith public key. The
key generation algorithm computes λ different secret keys. Finally, the tracing
algorithm runs the bounded system’s trace algorithm, one by one, until it finds a
traitor. First, note that since the adversary is polynomially bounded, if it queries
for t keys, then there exists some i∗ such that t ≤ 2i

∗
< 2t. As a result, the trace

is guaranteed to find a traitor in the i∗th system, and hence it runs in time
poly(2i

∗
) = poly(t). Second, since every underlying bounded system’s false trace

guarantee holds even if the adversary queries for more keys than permitted, thus
none of the premature sub-traces result in a false trace. At a very high level, the
central observation here that allows us in avoiding the need for adaptive security
is that: while tracing we simply perform the “tighest” fit search for finding the
smallest polynomial bound on keys corrupted and then carry out the tracing
procedure rather than tracing on an exponential sized space directly. Similar
techniques of combining different bounded adversary instances, and invoking the
security of the instance with just high enough security were used previously
in [7,18].

2.6 Comparing Techniques

We conclude by giving some further comparisons between the techniques we
introduce and those from the earlier work of NWZ [31]. The closest point for

11 Due to similar reasons, it is essential that the running time of all algorithms (except
possibly the tracing algorithm) grows at most polylogarithmically with n.



comparisons are the techniques they use to trace an identity of arbitrary size κ
while keeping ciphertexts possibly smaller than κ bits. (We modify their variable
names to more closely match ours.) Here they introduce a sub-primitive called
private block linear broadcast encryption (PBLBE) which can be used as follows.
A private key for identity id = (id1, id2 · · · , idκ) will be associated with a ran-
domly chosen tag s from an exponential sized space. It is then organized into i
blocks where each block is associated with the pair (s, idj) which is embedded by
the value 2s+ idj . Given a decoding algorithm D the tracing algorithm will per-
form a search procedure on each individual block to recover the set of corrupted
tag/identity bit values on each one. The process will essentially perform a search
on the j-th block values while leaving all blocks k 6= j alone. At the end, the
tracing process will look for a tag s∗ that is present in all the individual block
searches and use that to reconstruct the traitor identity. An analysis is needed
to show that such a tag exists so that one is not just stuck with fragments of
many different identities.

At a high level our indexed EITT two part structure (consisting of an index
i and identity id) is similar to the two part structure of [31] consisting of a tag
s along with the identity. However, there exists some important differences that
are closely linked to our goal of realizing embedded traitor tracing from standard
assumptions.

– First, our tracing procedure searches in a qualitatively different manner
where it first performs a search across the index space (without regard)
to identity bits and only when an index is found does it perform a dive into
extracting the identity. This is in contrast to the NWZ approach of perform-
ing tag/index search per each identity bit, and then combining the identity
bits (corresponding to every unique tag) to reconstruct traitor identities. We
believe the current way is simpler and has less tracing overhead. In addition,
our indexed EITT interface is intended to be a minimalistic which in general
helps for realization from more basic assumptions as opposed to full blown
functional encryption.

– We consider indices of small range while the tag spaces of NWZ are exponen-
tial size. This enables us to access a wider class of traitor tracing realizations
from PKE and bilinear maps. There are no known PLBE schemes for expo-
nentially large identity spaces from these assumptions.

– We achieve our scheme for unbounded identities by amplifying from smaller
index sized schemes along with an analysis that finds the “tightest fit”. The
work of [31] requires adaptive security of the underlying primitive. The only
known scheme from standard assumptions that can handle exponentially
large identity space is the [13] which builds the core “Mixed FE” component
from lockable obfuscation [25,35]. It is notable that the private constrained
PRF-based construction of [13] and the earlier [26] construction of Mixed FE
only offer selective security. This suggests that adaptive security may in gen-
eral be hard to come by and developing techniques to avoid it a worthwhile
goal.



Lastly, NWZ also studied the problem in the bounded collusion setting,
wherein they provided constructions from regular public-key encryption (instead
of full blown FE) where the size of ciphertexts and parameters grew at least lin-
early in the collusion size. If one sets the collusion size to be the number of users
n, then their bounded collusion constructions could be interpreted as collusion-
resistant constructions for our indexed EITT notion. However, that approach
leads to much less efficient constructions.

3 Traitor Tracing with Embedded Identities

3.1 Indexed Embedded-Identity Traitor Tracing

In this section, we will present the syntax and definitions for traitor tracing
with embedded identities where the number of users is bounded, and the key
generation is ‘indexed’.

Let T be a (indexed keygen, public/private)-embedded identity tracing scheme
for message space M = {Mλ}λ∈N and identity space ID = {{0, 1}κ}κ∈N. It
consists of five algorithms Setup,KeyGen,Enc,Dec and Trace with the following
syntax:

Setup(1λ, 1κ, nindx) → (msk, pk, key): The setup algorithm takes as input the
security parameter λ, the ‘identity space’ parameter κ, index space [nindx],
and outputs a master secret key msk, a public key pk, and a tracing key key.

KeyGen(msk, id ∈ {0, 1}κ, i ∈ [nindx]) → ski,id: The key generation algorithm
takes as input the master secret key, identity id ∈ {0, 1}κ and index i ∈
[nindx]. It outputs a secret key ski,id.

Enc(pk,m ∈ Mλ) → ct: The encryption algorithm takes as input a public key
pk, message m ∈Mλ and outputs a ciphertext ct.

Dec(sk, ct) → z: The decryption algorithm takes as input a secret key sk, ci-
phertext ct and outputs z ∈Mλ ∪ {⊥}.

TraceD(key, 1y,m0,m1) → T ⊆ {0, 1}κ. The trace algorithm has oracle access
to a program D, it takes as input key (which is the master secret key msk
in a private-key tracing scheme, and the public key pk in a public tracing
algorithm), parameter y and two messages m0,m1. It outputs a set T of
index-identity pairs, where T ⊆ {0, 1}κ.

Correctness. A traitor tracing scheme is said to be correct if there exists a
negligible function negl(·) such that for all λ, κ, n ∈ N, m ∈ Mλ, identity id ∈
{0, 1}κ and i ∈ [n], the following holds

Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ, n);

sk← KeyGen(msk, id, i);
ct← Enc(pk,m)

 ≥ 1− negl(λ).



Efficiency. Let T-s, T-e, T-k, T-d, T-t, S-c, S-k be functions. A (indexed keygen,
public/private)-embedded identity tracing scheme is said to be (T-s, T-e, T-k,
T-d, T-t, S-c, S-k)- efficient if the following efficiency requirements hold:

– The running time of Setup(1λ, 1κ, nindx) is at most T-s(λ, κ, nindx).
– The running time of Enc(pk,m) is at most T-e(λ, κ, nindx).
– The running time of KeyGen(msk, id) is at most T-k(λ, κ, nindx).
– The running time of Dec(sk, ct) is at most T-d(λ, κ, nindx).
– The number of oracle calls made by TraceD(key, 1y,m0,m1) to decoding box
D is at most T-t(λ, κ, nindx, y).

– The size of the ciphertext output by Enc(pk,m) is at most S-c(λ, κ, nindx).
– The size of the key output by KeyGen(msk, id) is at most S-k(λ, κ, nindx).

Definition 1. A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is said to
have public tracing if the tracing algorithm Trace uses the public key.

Security As in the traditional traitor tracing definitions, we have two security
definitions. The first security definition (IND-CPA security) states that any PPT
adversary should not distinguish between encryptions of different messages. This
definition is identical to the INDCPA definition in traditional traitor tracing. The
second definition states that if there exists a pirate decoder box, then the tracing
algorithm can trace the identity of at least one of the secret keys used to build
the decoding box, and there are no ‘false-positives’.

Definition 2 (IND-CPA security). Let T = (Setup,KeyGen,Enc,Dec,Trace)
be a (indexed keygen, public/private)-embedded identity tracing scheme. This
scheme is IND-CPA secure if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following probability is at
most 1/2 + negl(λ):

Pr

[
A(ct) = b :

(1κ, 1nindx)← A(1λ); (msk, pk, key)← Setup(1λ, 1κ, nindx);
b← {0, 1}; (m0,m1)← A(pk); ct← Enc(pk,mb)

]
Definition 3 (Secure tracing). Let T = (Setup,KeyGen,Enc,Dec,Trace) be a
(indexed keygen, public/private)-embedded identity tracing scheme. For any non-
negligible function ε(·) and PPT adversary A, consider expt. Expt-TT-emb-indexTA,ε(λ)
defined in Figure 1.

Based on the above experiment, we now define the following (probabilistic)
events and the corresponding probabilities (which are a functions of λ, parame-
terized by A, ε):

– Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,ε(λ) = Pr[Good-Decoder].

– Cor-Tr : T 6= ∅ ∧ T ⊆ SID
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].

– Fal-Tr : T 6⊆ SID
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr].



Experiment Expt-TT-emb-indexTA,ε(λ)

– 1κ, 1nindx ← A(1λ)
– (msk, pk, key)← Setup(1λ, 1κ, nindx)
– (D,m0,m1)← AO(·)(pk)
– T ← TraceD(key, 11/ε(λ),m0,m1)

Each oracle query made by the adversary A consists of an index-
identity pair (i, id) ∈ [nindx] × {0, 1}κ. Let SID the set of identities
queried by A. Here, oracle O(·) has msk hardwired and on query (i, id)
it outputs KeyGen(msk, id, i) if index i is distinct from all previous
queries made by the adversary, otherwise it outputs ⊥. In other words,
for each index i ∈ [nindx], the adversary is allowed to make at most
one key query. However, for different indices i, i′ ∈ [nindx], the identity
can be same (that is, (i, id) and (i′, id) are valid queries if i 6= i′).

Fig. 1. Experiment Expt-TT-emb-index

A scheme T is said to be ind-secure if for every PPT adversary A, polynomial
q(·) and non-negligible function ε(·), there exists negligible functions negl1(·),
negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).

Remark 1. We want to point out that in both IND-CPA and secure tracing
games we require the adversary to output the index bound nindx in unary in-
stead of binary (i.e., A outputs (1κ, 1nindx) instead of (1κ, nindx)). Now since the
running time of the adversary A is bounded by a polynomial, thus it can only
select a polynomially-bounded value for index bound nindx. However, the setup
algorithm is given the input nindx in binary. This distinction will later be useful
in our constructions and security proofs.

4 A New Framework for Embedded-Identity Traitor
Tracing

4.1 Embedded-Identity Private Linear Broadcast Encryption

We introduce the notion of embedded-identity private linear broadcast encryp-
tion (EIPLBE) as a generalization of private linear broadcast encryption scheme
which was introduced by Boneh, Sahai and Waters [9] as a framework for con-
structing traitor tracing schemes. There are five algorithms in a EIPLBE scheme
— Setup,KeyGen,Enc,SplEnc,Dec. The setup algorithm outputs a master secret
key and a public key. The key generation algorithm is used to sample private
keys for index-identity pairs (j, id). The public key encryption algorithm can
be used to encrypt messages, and ciphertexts can be decrypted using any of
the private keys via the decryption algorithm. In addition to these algorithms,
there is also a special-encryption algorithm SplEnc. This algorithm, which uses



the master secret key, can be used to encrypt messages to any index-position-
value tuple (i, `, b). A secret key for user (j, id) can decrypt a ciphertext for
index-position-value tuple (i, `, b) only if (1) j ≥ i + 1, or (2) (i, `) = (j,⊥) or
(i, id`) = (j, 1− b).

Belowe we first provide the EIPLBE syntax, and then present the security
definitions.

Syntax. A EIPLBE scheme EIPLBE = (Setup,KeyGen,Enc,SplEnc,Dec) for mes-
sage space M = {Mλ}λ∈N and identity space ID = {{0, 1}κ}κ∈N has the fol-
lowing syntax.

Setup(1λ, 1κ, n)→ (msk, pk, key) . The setup algorithm takes as input the se-
curity parameter λ, the ‘identity space’ parameter κ, index space n, and
outputs a master secret key msk and a public key pk.

KeyGen (msk, id ∈ {0, 1}κ, i ∈ [n])→ sk. The key generation algorithm takes as
input the master secret key, an identity id ∈ {0, 1}κ and index i ∈ [n]. It
outputs a secret key sk.

Enc(pk,m)→ ct. The encryption algorithm takes as input a public key pk, mes-
sage m ∈Mλ, and outputs a ciphertext ct.

SplEnc(key,m, (i, `, b))→ ct. The special-encryption algorithm takes as input a
key key, message m ∈Mλ, and index-position-value tuple (i, `, b) ∈ [n+1]×
([κ]∪{⊥})×{0, 1}, and outputs a ciphertext ct. (Here the scheme is said to
be public key EIPLBE scheme if key = pk. Otherwise, it is said to be private
key EIPLBE scheme.)

Dec(sk, ct)→ z. The decryption algorithm takes as input a secret key sk, cipher-
text ct and outputs z ∈Mλ ∪ {⊥}.

Correctness. A EIPLBE scheme is said to be correct if there exists a negligible
function negl(·) such that for all λ, κ, n ∈ N, m ∈ Mλ, and i ∈ [n + 1], j ∈ [n],
id ∈ {0, 1}κ, ` ∈ ([κ] ∪ {⊥}) and b ∈ {0, 1}, the following probabilities are at
least 1− negl(λ):

Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ, n)

sk← KeyGen(msk, id, j)
ct← Enc(pk,m)


(j ≥ i+ 1) ∨(

(i, `) = (j,⊥) ∨
(i, id`) = (j, 1− b)

)
⇒ Pr

Dec(sk, ct) = m :
(msk, pk, key)← Setup(1λ, 1κ, n)

sk← KeyGen(msk, id, j)
ct← SplEnc(key,m, (i, `, b))

 .
Efficiency. Let T-s, T-e, T-̃e, T-k, T-d, S-c, S-k be functions. A EIPLBE scheme
is said to be (T-s, T-e, T-̃e, T-k, T-d, S-c, S-k)- efficient if the following efficiency
requirements hold:

– The running time of Setup(1λ, 1κ, n) is at most T-s(λ, κ, n).
– The running time of Enc(pk,m) is at most T-e(λ, κ, n).
– The running time of SplEnc(key,m, (i, `, b)) is at most T-̃e(λ, κ, n).
– The running time of KeyGen(msk, id, i) is at most T-k(λ, κ, n).



– The running time of Dec(sk, ct) is at most T-d(λ, κ, n).
– The size of the ciphertexts is at most S-c(λ, κ, n).
– The size of the key is at most S-k(λ, κ, n).

q-query EIPLBE Security Now we provide the security definitions for EIPLBE
as a generalization of the PLBE q-query security [26]. Also, see Remark 1.

Definition 4 (q-query Normal Hiding Security). Let q(·) be any fixed
polynomial. A EIPLBE scheme is said to satisfy q-query normal hiding security
if for every stateful PPT adversary A, there exists a negligible function negl(·)
such that for every λ ∈ N, the following probability is at most 1/2 + negl(λ):

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct0 ← Enc(pk,m)
ct1 ← SplEnc(key,m, (1,⊥, 0))


with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ))
the index j must be equal to 1.

– KeyGen Oracle: A can make at most one query for each index position j.
That is, let (j1, id1), . . . , (jk, idk) denote all the key queries made by A, then
ja and jb must be distinct for all a 6= b.

Definition 5 (q-query Index Hiding Security). Let q(·) be any fixed poly-
nomial. A EIPLBE scheme is said to satisfy q-query index hiding security if for
every stateful PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N, the following probability is at most 1/2 + negl(λ):

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ct) = b :

(1κ, 1n, i)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct← SplEnc(key,m, (i+ b,⊥, 0))


with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ))
the index j must be equal to either i or i+ 1.

– KeyGen Oracle: A can make at most one query for each index position j ∈ [n],
and no key query of the form (i, id). That is, let (j1, id1), . . . , (jk, idk) denote
all the key queries made by A, then ja and jb must be distinct for all a 6= b.
And, ja 6= i for any a.

Definition 6 (q-query Upper Identity Hiding Security). Let q(·) be any
fixed polynomial. A EIPLBE scheme is said to satisfy q-query upper identity
hiding security if for every stateful PPT adversary A, there exists a negligible



function negl(·) such that for every λ ∈ N, the following probability is at most
1/2 + negl(λ):

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n, i, `, β)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct0 ← SplEnc(key,m, (i+ 1,⊥, 0))

ct1 ← SplEnc(key,m, (i, `, β))


with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ))
the index j must be equal to either i or i+ 1.

– KeyGen Oracle: A can make at most one query for each index position j ∈ [n],
and no key query of the form (i, id) such that id` = 1 − β. That is, let
(j1, id1), . . . , (jk, idk) denote all the key queries made by A, then ja and jb
must be distinct for all a 6= b. And, for every a, (ida)` 6= 1− β or ja 6= i.

Definition 7 (q-query Lower Identity Hiding Security). Let q(·) be any
fixed polynomial. A EIPLBE scheme is said to satisfy q-query lower identity
hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following probability is at most
1/2 + negl(λ):

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ctb) = b :

(1κ, 1n, i, `, β)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

m← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct0 ← SplEnc(key,m, (i,⊥, 0))

ct1 ← SplEnc(key,m, (i, `, β))


with the following oracle restrictions:

– SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (j, `, γ))
the index j must be equal to i.

– KeyGen Oracle: A can make at most one query for each index position j ∈
[n], and no key query of the form (i, id) such that id` = β. That is, let
(j1, id1), . . . , (jk, idk) denote all the key queries made by A, then ja and jb
must be distinct for all a 6= b. And, for every a, (ida)` 6= β or ja 6= i.

Definition 8 (q-query Message Hiding Security). Let q(·) be any fixed
polynomial. A EIPLBE scheme is said to satisfy q-query message hiding security
if for every stateful PPT adversary A, there exists a negligible function negl(·)
such that for every λ ∈ N, the following probability is at most 1/2 + negl(λ):

Pr

ASplEnc(key,·,·),KeyGen(msk,·,·)(ct) = b :

(1κ, 1n)← A(1λ)
(pk,msk, key)← Setup(1λ, 1κ, n)

(m0,m1)← ASplEnc(key,·,·),KeyGen(msk,·,·) (pk)
b← {0, 1}; ct← SplEnc(key,mb, (n+ 1,⊥, 0))


with the following oracle restrictions:



– SplEnc Oracle: A can make at most q(λ) queries, and for each query (m, (i, `, γ))
the index i must be equal to n+ 1.

– KeyGen Oracle: A can make at most one query for each index position i.
That is, let (i1, id1), . . . , (ik, idk) denote all the key queries made by A, then
ia and ib must be distinct for all a 6= b.

4.2 Building Indexed EITT from EIPLBE

Construction Consider an EIPLBE scheme EIPLBE = (EIPLBE.Setup, EIPLBE.KeyGen,
EIPLBE.Enc, EIPLBE.SplEnc, EIPLBE.Dec) for message space M = {Mλ}λ∈N
and identity space ID = {{0, 1}κ}κ∈N. Below we provide our embedded identity
TT construction with identical message and identity spaces. (Here we provide a
transformation for TT schemes with secret key tracing, but the construction can
be easily extended to work in the public tracing setting if the special encryption
algorithm in the underlying EIPLBE scheme is public key as well.)

Setup(1λ, 1κ, n) → (msk, pk, key). The setup algorithm runs the EIPLBE setup
as (msk, pk, key) ← EIPLBE.Setup(1λ, 1κ, n), and outputs master secret-
public-tracing key tuple (msk, pk, key).

KeyGen(msk, id, i)→ ski,id. The key generation algorithm runs the EIPLBE key
generation algorithm as ski,id ← EIPLBE.KeyGen(msk, id, i), and outputs
secret key ski,id.

Enc(pk,m) → ct. The encryption algorithm runs the EIPLBE encryption algo-
rithm as ct← EIPLBE.Enc(pk, m), and outputs ciphertext ct.

Dec(sk, ct) → z. The decryption algorithm runs the EIPLBE decryption algo-
rithm as z ← EIPLBE.Dec(sk, ct), and outputs z.

TraceD(key, 1y,m0,m1) → T. Let ε = 1/y. First, consider the Index-Trace al-
gorithm defined in Fig. 2. The sub-tracing algorithm simply tests whether
the decoder box uses the user key for index i where i is one of the in-
puts provided to Index-Trace. Now the tracing algorithm simply runs the
Index-Trace algorithm for all indices i ∈ [n], and for each index i where the
Index-Trace algorithm outputs 1, the tracing algorithm adds index i to the
index-set of traitors T index.12 Next, consider the ID-Trace algorithm defined
in Fig. 3. The identity-tracing algorithm takes as input the index-set T index

and uses the decoder box to find the identity of the particular indexed user.
Next, the tracing algorithm simply runs the ID-Trace algorithm for all in-
dices i ∈ T index, and for each index i where the ID-Trace algorithm does not
output ⊥, the tracing algorithm adds the output of the ID-Trace algorithm
to the identity-set of traitors T .
Concretely, the algorithm runs as follows:

– Set T index := ∅. For i = 1 to n:
• Compute (b, p, q)← Index-Trace(key, 1y,m0,m1, i).

12 Technically, the set T index constains tuples of the form (i, p, q) where i is an index and
p, q are probabilities which are the estimations of successful decryption probability
at index i and i+ 1 (respectively).



• If b = 1, set T index := T index ∪ {(i, p, q)}.
– Set T := ∅. For (i, p, q) ∈ T index:
• Compute id← ID-Trace(key, 1y,m0,m1, (i, p, q)).
• Set T := T ∪ {id}.

– Output T .
Finally, it outputs the set T as the set of traitors.

Algorithm Index-Trace(key, 1y,m0,m1, i)

Inputs: Key key, parameter y, messages m0,m1, index i
Output: 0/1
Let ε = b1/yc. It sets N = λ ·n/ε, and count1 = count2 = 0. For j = 1
to N , it computes the following:

1. It chooses bj ← {0, 1} and computes ctj,1 ←
EIPLBE.SplEnc(key,mbj , (i,⊥, 0)) and sends ctj,1 to D. If D
outputs bj , set count1 = count1 + 1, else set count1 = count1 − 1.

2. It chooses cj ← {0, 1} and computes ctj,2 ←
EIPLBE.SplEnc(key,mcj , (i + 1,⊥, 0)) and sends ctj,2 to D. If D
outputs cj , set count2 = count2 + 1, else set count2 = count2 − 1.

If count1−count2
N

> ε
4n

, output (1, count1
N

, count2
N

), else output (0,⊥,⊥).

Fig. 2. Index-Trace

Algorithm ID-Trace(key, 1y,m0,m1, (i, p, q))

Inputs: Key key, parameter y, messages m0,m1, index i, probabilities
p, q
Output: id ∈ {0, 1}κ
Let ε = b1/yc. It sets N = λ · n/ε, and count` = 0 for ` ∈ [κ]. For
` = 1 to κ, it proceeds as follows:

1. For j = 1 to N , it computes the following:
(a) It chooses bj ← {0, 1} and computes ctj ←

EIPLBE.SplEnc(key,mbj , (i, `, 0)) and sends ctj toD. IfD out-
puts bj , set count` = count` + 1, else set count` = count` − 1.

Next, let id be an empty string. For ` = 1 to κ, do the following:

1. If
p+ q

2
>

count`
N

, set id` = 0. Else set id` = 1.

Finally, output id.

Fig. 3. Index-Trace



Correctness. This follows directly from correctness of the underlying EIPLBE
scheme.

Efficiency. If the scheme EIPLBE = (EIPLBE.Setup, EIPLBE.KeyGen, EIPLBE.Enc,
EIPLBE.SplEnc, EIPLBE.Dec) is a EIPLBE scheme with (T-s, T-e, T-̃e, T-k, T-d,
S-c, S-k)-efficiency, then the scheme TT = (Setup, KeyGen, Enc, Dec, Trace) is a
(indexed keygen, public/private)-embedded identity tracing scheme with (T-s′,
T-e′, T-k′,T-d′,T-t′,S-c′,S-k′)-efficiency, where the efficiency measures are re-
lated as follows:

– T-s′(λ, κ, n) = T-s(λ, κ, n),
– T-k′(λ, κ, n) = T-k(λ, κ, n),
– T-e′(λ, κ, n) = T-e(λ, κ, n),
– T-d′(λ, κ, n) = T-d(λ, κ, n),
– T-t′(λ, κ, n, y) = (2n+ κ) · λ · y · n,
– S-c′(λ, κ, n) = S-c(λ, κ, n),
– S-k′(λ, κ, n) = S-k(λ, κ, n).

Security The security proof is included in the full version of our paper
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