
Interactive Non-Malleable Codes

Nils Fleischhacker1?, Vipul Goyal2??, Abhishek Jain3? ? ?,
Anat Paskin-Cherniavsky4, and Slava Radune4,5

1 Ruhr University Bochum, Bochum, Germany
2 Carnegie Mellon University, Pittsburgh, USA
3 Johns Hopkins University, Baltimore, USA

4 Ariel University, Ariel, Israel
5 The Open University of Israel, Ra’anana, Israel

Abstract. Non-malleable codes (NMC) introduced by Dziembowski et
al. [ICS’10] allow one to encode “passive” data in such a manner that
when a codeword is tampered, the original data either remains completely
intact or is essentially destroyed.
In this work, we initiate the study of interactive non-malleable codes
(INMCs) that allow for encoding “active communication” rather than
passive data. An INMC allows two parties to engage in an interactive
protocol such that an adversary who is able to tamper with the protocol
messages either leaves the original transcript intact (i.e., the parties are
able to reconstruct the original transcript) or the transcript is completely
destroyed and replaced with an unrelated one.
We formalize a tampering model for interactive protocols and put forward
the notion of INMCs. Since constructing INMCs for general adversaries is
impossible (as in the case of non-malleable codes), we construct INMCs
for several specific classes of tampering functions. These include bounded
state, split state, and fragmented sliding window tampering functions.
We also obtain lower bounds for threshold tampering functions via a
connection to interactive coding. All of our results are unconditional.

1 Introduction

Error correcting codes allow a message m to be encoded into a codeword c,
such that m can always be recovered even from a tampered codeword c′ if
the tampering is done in a specific way. More formally, the class of tampering
functions, F , tolerated by traditional error correction codes are ones that erase
or modify only a constant fraction of the codeword c. However, no guarantees are
provided on the output of the decoding algorithm when the tampering function

? Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

?? Vipul Goyal is supported in part by NSF grant 1916939, a gift from Ripple, a gift
from DoS Networks, a JP Morgan Faculty Fellowship, and a Cylab seed funding
award.

? ? ? Abhishek Jain is supported in part by NSF SaTC grant 1814919 and Darpa Safeware
grant W911NF-15-C-0213.

f /∈ F . A more relaxed notion, error detecting codes, allows the decoder to
also output a special symbol ⊥ when m is unrecoverable from c′. But here too,
the codes can not tolerate many simple tampering functions such as a constant
function.

Non-malleable Codes. The seminal work of Dziembowski, Pietrzak, and Wichs
[36] introduced the notion of non-malleable codes (NMC). Informally, an encoding
scheme code := (Enc,Dec) is an NMC against a class of tampering functions, F ,
if the following holds: given a tampered codeword c′ = f(Enc(m)) for some f ∈ F ,
the decoded message m′ = Dec(c′) is either equal to the original message m or
the original message is essentially “destroyed” and m′ is completely unrelated to
m. In general, NMCs cannot exist for the set of all tampering functions Fall. To
see this, observe that a tampering function that simply runs the decode algorithm
to retrieve m and then encodes a message related to m trivially defeats the
requirement above. In light of this observation, a rich line of works has dealt
with constructing non-malleable codes for different classes of tampering attacks
(see Section 1.2 for a discussion).

While non-malleable codes have the obvious advantage that one can obtain
meaningful guarantees for a larger class of tampering functions (compared to
error correcting codes), they have also found a number of interesting applications
in cryptography. In particular, NMCs have found a number of applications in
tamper-resilient cryptography [36,60,40,41] and they have also been useful in
constructing non-malleable encryption [29]. Recently, non-malleable codes were
also used to obtain a round optimal protocol for non-malleable commitments
[53], as well to build non-malleable secret sharing schemes [51,52].

Interactive Non-Malleable Codes. In this work, we seek to generalize the notion
of non-malleable codes. Regular non-malleable codes can be seen as dealing with
“passive” data in that data is encoded and, upon being tampered, the data either
remains completely intact or is essentially destroyed. Now consider the following
scenario. Two parties, each holding their own inputs are interested in running a
protocol to perform some task involving their inputs, such as computing a joint
function on them. Now, say an adversary is able to somehow get access to their
communication channel and modify messages being sent in the protocol. We would
like to have a similar guarantee: either the original transcript of the underlying
protocol remains fully recoverable from the encoded communication, or, very
informally, the original transcript is essentially “destroyed” and any transcript
possibly recovered is “unrelated” to the interaction that was originally supposed
to take place. Hence, we are concerned with encoding “active communication”
rather than passive data.

An interesting special case of the above scenario could also occur in terms of
computation being performed on a piece of hardware. Suppose several different
chips on an integrated circuit board are communicating via interconnecting wires
to perform some computation on the secrets stored within them. An adversary
could tamper in some way with the communication going through those wires.
We would like to require that either the computation remains intact, or that the

2

original computation is “destroyed” and whatever computation takes place is
completely unrelated.

Of course, this basic idea raises a number of questions: What does it actually
mean for a computation to be “unrelated” to another computation. How much
power can the tampering adversary reasonably be allowed to have? Are we
concerned with the secrecy of inputs in this setting?

In the setting of non-interactive non-malleable codes (INMCs), “unrelated” is
easily defined as independent of the original message. However, in the interactive
setting, things are a bit more complicated since there exists more than one input.
Indeed, there are multiple notions of non-malleability that we can envision in the
interactive setting. Below, we discuss possible notions of non-malleability.

Suppose, Alice and Bob are holding inputs x and y respectively and they
jointly execute a protocol that results in a transcript τ when not tampered with.
Now suppose an adversary tampers with the messages sent over the communi-
cation channel and Alice and Bob recover transcripts τ1 and τ2, respectively.
Then, our first notion of non-malleability requires that either τ1 = τ (i.e., the
original transcript remains intact) or, the distribution of τ1 should be completely
independent of the distribution of Bob’s input y.

We note that this notion still allows an adversary to simply “cut off” Bob
from the communication and essentially execute the protocol honestly, but with a
different input y′. Clearly, this is not an attack on the notion described above, since
y′ and thereby the resulting transcript τ1 is distributed completely independently
of y. Nevertheless, one might want to prevent this as well, since the output after
tampering still depends on one of the inputs.

To this end we consider a strengthening of the above basic definition where a
party must receive either the correct transcript τ or ⊥. This notion is achievable
if the tampering function is not strong enough to cut off and impersonate one
of the parties. It is easy to see that this notion is stronger than error detection:
whether or not a party receives ⊥ must not depend on the inputs (x, y), i.e. input
dependent aborts must be prevented.6

We do not explicitly model any secrecy requirements for the inputs (x, y). We
view non-malleability of codes in the interactive setting as a separate property and
as such it should be studied independently. However, our definitions of encodings
work by defining them using simulators relative to an underlying protocol. This
formalization ensures that any security properties such as secrecy of inputs of
the underlying protocol are preserved under the encoding.

Relationship to Non-Malleable Codes. Consider the message transfer functionality
where the transcript is simply the transferred message x. An interactive non-
malleable coding protocol for this functionality gives the following guarantee:
Bob either receives x from Alice or a value x′ unrelated to x. It is easy to see that
a one round interactive non-malleable coding protocol for this message transfer
functionality is the same as a non-malleable code (encoding message x) for the

6 This is similar in spirit to the definition of non-malleable codes where, whether or
not the decoder gets ⊥, can also not depend upon the original message m.

3

same class of tampering functions. Indeed, the question that we consider in our
work can be seen as generalizing non-malleable codes to more complex protocols
potentially involving multiple rounds of interaction and both inputs x and y.

Our notion of INMCs is harder to achieve in one sense since more complex
functionalities are involved, and yet, is easier to achieve in another sense since
one is allowed multiple rounds of interaction and the order of messages introduces
a natural limit on the power of an adversary, since she cannot tamper depending
on “future” messages.

Similar to non-malleable codes, INMCs are impossible to achieve for arbitrary
tampering functions. Very roughly, consider the first message of the protocol
transcript which contains non-trivial information about the input x of Alice. The
adversary at this point decodes and reconstructs this partial information about
the input x, chooses a related input x′ consistent with the partial information
and simply executes the protocol honestly with Bob from this point onwards
(cutting Alice off completely). A similar argument can also be made for the other
direction. In fact, we even rule out INMCs for a more restricted class of threshold
tampering functions using a very similar argument in Section 4. This suggests
that, similar to non-malleable codes, we must focus on specific function classes
for building INMCs.

One seemingly obvious approach of constructing INMCs even for multi-round
protocols would be to directly use non-malleable codes. I.e., encode each message
of an underlying protocol independently. The hope would be that this results
in an INMC that allows at least independent tampering of each message under
the same class of tampering functions as the original NMC. However, this näıve
approach fails to produce INMCs for any meaningful class of functions.

As a counter example consider the following protocol: Alice has inputs (x, y)
and sends these to Bob in two separate messages. Bob receives the messages
and outputs (x, y). With the above approach, x and y would be encoded sepa-
rately as Enc(x),Enc(y). Let f be any tampering function, such that decoding
Dec(f(Enc(x)) 6= x. Such functions exist within the class of tampering functions
against which the NMC is supposed to be secure, unless the NMC is in fact error
correcting. A valid tampering function against the supposed INMC could then
tamper with the first message using f and not tamper with the second message
at all. This would result in Bob receiving z 6= x and y and outputting (z, y).
Clearly (z, y) and (x, y) are related. Therefore, the protocol is not non-malleable.
This counter example works even when more complex constructions such as the
NMC against streaming space-bounded tamperings by Ball et al. [11] are used.

An interesting additional hurdle that needs to be overcome when constructing
INMCs when compared to non-malleable codes is inherent leakage. Because
messages in the protocol are tampered successively, a tampering function can
use conditional aborts to communicate some information to future tampering
functions. Let F be some class of tampering functions. Say a tampering function
f ∈ F looks at message mi sent in round i of the protocol and aborts unless mi

is “good” in some sense. In future rounds, even if the definition of F precludes
f from having any knowledge of mi, the tampering function still learns that

4

mi must have been “good”, since the protocol would have otherwise aborted.
We deal with this inherent leakage by bounding the leakage and using leakage
resilient tools.

Relationship to Interactive Coding. Our notion can be seen as inspired by the
notion of interactive coding (IC) [64,65,66]. Essentially, INMCs are to non-
malleable codes what IC is to error correcting codes. In interactive coding, we
require that the original transcript must remain preserved in face of an adversary
tampering the message over the communication channel. INMCs only require
something weaker, namely, that either the transcript must remain preserved or
that the original transcript be destroyed and any possibly reconstructed transcript
be independent of the inputs to the protocol.

An obvious advantage of such a weaker notion is that one could hope to
achieve it for a larger class of tampering functions compared to ICs. Indeed, ICs
are achievable only for threshold adversaries, namely, an adversary which only
tampers with a fixed threshold number of bits of the communication (typically a
constant fraction of the entire communication). All guarantees are lost in the case
an adversary tampers with more bits than allowed by this threshold. However,
as we discuss later, INMCs are achievable for adversaries which could potentially
tamper with every bit going over the communication channel. For the specific
case of threshold tampering functions, however, we are able to show that lower
bounds on the fraction of the communication that can be tampered with transfer
from ICss to INMCs.

1.1 Our Results and Techniques

In this work we initiate the study of INMCs. We formalize the tampering model
and put forward a notion of securityfor INMC. Since achieving INMC for general
adversaries is impossible, we turn our attention to specific classes of tampering
functions.

We show both positive and negative results. We first establish a negative result
for threshold tampering functions by showing that INMCs for threshold tampering
imply ICs for the same class of tampering functions, thereby transferring lower
bounds from interactive coding to INMCs. We then provide several positive results
for specific classes of tampering functions by constructing general (unconditional)
compilers Σ that can encode an arbitrary underlying protocol Π in a non-
malleable fashion (for the appropriate class of tampering functions).

Threshold Tampering Functions. A threshold tampering function is not restricted
in its knowledge of the protocol transcript or in its computational power, but can
only modify a fixed fraction (say 1/4) of the bits in the transcript. For this class,
lower bounds are known for the case of interactive coding. Specifically Braverman
and Rao [18] showed that non-adaptive IC can tolerate tampering with at most
1/4 of the transcript, and Ghaffari, Haeupler, and Sudan [50] showed that an
adaptive IC can tolerate tampering with at most 2/7 of the transcript. When
looking for stronger classes of tampering functions, the first natural question to

5

ask is therefore whether the weaker notion of INMCs might allow us to circumvent
these lower bounds. However, it turns out that this is not the case.

We show that any INMC for a class of threshold tampering functions that
allows only a negligible non-malleability error in fact implies an IC for the same
class of functions in the common reference string (CRS) model and with parties
running in super-polynomial time. While the resulting IC is not efficient and
requires a CRS, it turns out that the lower bounds of Braverman and Rao [18]
and Ghaffari, Haeupler, and Sudan [50] also apply in this setting, therefore ruling
out the existence of such INMCs. This result can be found in Section 4. In fact,
this impossibility even holds if we apply the notion of INMC to a weaker notion
of encodings which does not imply knowledge-preservation. Recall that we are
using a strong notion of protocol encoding that ensures that security guarantees
of the underlying protocol are preserved. On the flip side, positive results for IC
only translate to the positive result for this weaker notion of INMC. Getting
meaningful positive result for our stronger INMC definition is an interesting open
problem.

Interestingly (and fortunately), the above connection only holds for threshold
tampering functions. Indeed, for the remaining families of tampering functions
we consider in this paper, IC is naturally impossible and yet we are able to get
positive results for INMC.

Bounded State Tampering Functions. For our first positive result we consider
the class of tampering functions which can keep a bounded state. In more detail,
the adversary is assumed to be arbitrarily computationally powerful, and we do
not limit the size of the memory available for computing the tampering function.
Instead, a limit is only placed on the size of the state that can be carried over
from tampering one message to tampering with the next. That is, an adversary in
this model can iteratively tamper with each message depending on some function
of all previous messages, but the size of this information is limited to some fixed
number of bits s. It is easy to see that achieving the notion of error correction is
impossible for such a tampering function family since an adversary even with no
storage can change every protocol message to an all zero string.

Adversaries with limited storage capabilities constitute a very natural model
and similar adversaries have been considered before in many settings, starting
with the work by Cachin and Maurer [19] on encryption and key exchange
secure against computationally unbounded adversaries. In a seemingly related
recent work, Faust et al. [39] studied non-malleable codes against space-bounded
tampering. However in their setting, a limit is placed on the size of memory
available to compute the tampering function (indeed it is meaningless to consider
the state carried over from one message to the next in the non-interactive setting).

We give an unconditional positive result for this family of tampering functions:
Any underlying protocol Π can be simulated by a protocol Σ which is an
INMC against bounded state tampering functions. A näıve way of trying to
construct such a compiler would be to try and encode each message of Π using a
suitable (non-interactive) non-malleable code. However, this is doomed to fail.
For a single message setting, our tampering adversary simply translates to an

6

unbounded general adversary for which designing non-malleable codes is known
to be impossible. Hence, getting a positive result inherently relies on making use
of additional interaction.

The key technical tool we rely on to construct our compiler is the notion of
seedless 2-non-malleable extractors introduced by Cheraghchi and Guruswami
[25] as a natural generalization of seeded non-malleable extractors [34]. However,
finding an explicit construction of such extractors was left as an open problem
by Cheraghchi and Guruswami even for the case when both the sources are
uniform. Such a construction was first given by Chattopadhyay, Goyal, and Li
[22]. The construction in [22] requires one of the sources to be (almost) uniform,
while the other source could have smaller min-entropy. We crucially rely upon
a construction of seedless 2-non-malleable extractors where at least one of the
sources could have small min-entropy. Our construction can be found in Section 5.

Split-State Tampering Functions. The second class we consider are split-state
tampering functions where, very roughly, the transcript is divided into two disjoint
sets of messages and each set is tampered independently. In more detail, the
adversary can decide for each message of the protocol to be either in the first
set or the second one. To compute an outgoing message, the tampering function
takes all messages (so far) in any one set of its choice as input.

We are able to achieve interactive non-malleability for a strong class of these
tampering functions, namely c-unbalanced split-state tampering functions. A
c-unbalanced split-state tampering functions can split the transcript into two
arbitrary sets, as long as each set contains at least a 1/c fraction of the messages
(where c can be any polynomial parameter).

This notion is inspired by a corresponding notion in the non-interactive setting.
Split-state tampering functions for non-interactive NMC are one of the most
interesting and well studied classes of tampering functions in that setting. It was
already introduced in the seminal work of Dziembowski, Pietrzak, and Wichs [36]
and has since then been studied in a large number of works [60,35,3,25,24,2,26].

We give an unconditional positive result for this family of tampering functions:
Any underlying protocol Π can be simulated by a protocol Σ which is an INMC
against split-state tampering functions. The key technical tool we rely on in this
case is a new notion of tamper evident n-out-of-n secret sharing we introduce in
this work. Such a secret sharing scheme essentially guarantees that any detectable
tampering with the shares can be detected when reconstructing the secret. Our
construction can be found in Section 6.

Sliding Window Tampering Function. In the sliding window model, the tampering
function “remembers” only the last w messages. In other words, the tampering
function gets as input the last w (untampered) messages of the protocol transcript
to compute the tampered message. The sliding window model is very natural and
has been considered in a variety of contexts, such as error correcting codes [48]
including convolution codes, streaming algorithms, and even in data transmission
protocols such as TCP [55].

7

Our results in fact extend to a stronger model in which we can handle what
we call fragmented sliding window tampering functions. Functions in this class
are allowed to remember any w of the previous protocol messages (rather than
just the w most recent ones). Thus in some sense, the window of message being
stored by the tampering function is not continuous but “fragmented”.

Comparing this class of functions with bounded-state tampering functions, we
can see, that here the tampering function can no longer retain some information
about all previous messages, but instead all of the information about some
previous messages. Because there is no hard bound on the size of the state, but
instead on the number of messages which potentially differ in length, this means
that the two models are incomparable.

Comparing this class with c-unbalanced split-state tampering functions, we
notice that here the maximum size of the window is fixed and does not scale
with the number of messages in the protocol. On the other hand, however, the
different sets of messages which the tampering can depend on are not required
to be disjoint. E.g., the tampering of each single protocol messages could depend
on the first message of the protocol, something that would not be possible in the
case of split-state functions.

While this model has important conceptual differences to the our split state
model, the techniques used to achieve both of them are almost identical. In
particular, essentially the same protocol as in the case of c-unbalanced split-state
tampering functions also works in this case, however the proof of security differs
slightly. Our construction can be found in Section 7.

A Common Approach. A common theme in all of our constructions is the
following: We only attempt to transfer a single message in a non-malleable way
and then use this message to secure the rest of the protocol. In more detail, Alice
and Bob essentially exchange a random key k possibly using multiple rounds of
interaction such that the following holds. The two parties either agree on the
correct key k or receive completely independent keys k1 and k2, (or, ⊥ which
leads them to abort the protocol). Subsequently, all future protocol messages will
be encrypted with a one-time pad and authenticated with a one-time message
authentication code using k (assuming k is long enough). This allows us to achieve
non-malleability as long as we can ensure that the tampering function is not
capable of predicting the exchanged key in any round. The reason is as follows: as
long as the key remains (almost) uniformly distributed from the point of view of
the tampering function f , the computation of f cannot depend on the encrypted
messages, and any modification of the encrypted messages would be caught by
the MAC and cause an abort independently of the inputs. The exact way in
which we are able to prevent f from gaining any knowledge of k depends strongly
upon the class of tampering functions. This leads to very different constructions
of the key-exchange phase using different technical tools.

Given the common approach described above, it may be tempting to abstract
a non-malleable key-exchange protocol as a new building block. Intuitively, this
would allow us to easily extend our construction to new classes of tampering
functions simply by designing a new key exchange protocol for said class. However,

8

(maybe counter-intuitively) it turns out that it is very unclear how this abstraction
would work. The class of tampering functions F1 allowed for the full INMC differs
a lot from the class F2 the key-exchange would need to tolerate. Even worse, it is
not clear how F2 can be generically identified from F1. Or, the other way round,
given a key-exchange that is non-malleable relative to a class F2, it is not clear
against which class of functions the full protocol would then be non-malleable.
In fact, our constructions for split-state and for sliding-window show that F1 can
be the result of a complex interplay between the properties of F2 and the round
complexities of both the key-exchange and the original protocol itself.

1.2 Related Works

Non-malleable Codes. To the best of our knowledge, there has been no prior work
studying non-malleable codes in the interactive setting. In the non-interactive
setting, however, there exists a large body of works studying non-malleable
codes for various classes of tampering functions as well as various variants of
non-malleable codes. We provide a brief, but non-exhaustive, survey here.

The most well-studied class in the non-interactive setting are split-state
tampering functions [60,35,3,25,24,2,26,59,57,58,4]. But other classes of tamper-
ing functions have been studied such as tampering circuits of limited size or
depth [42,10,23,11,8], tampering functions computable by decision trees [12],
memory-bounded tampering functions [39] where the size of the available mem-
ory is a priori bounded, bounded polynomial time tampering functions [9] and
non-malleable codes against streaming tampering functions [11]. Non-malleable
codes were also generalized in several ways, such as continuously non-malleable
codes in [40,31,29,61,38,30,4] and locally decodable and updatable non-malleable
codes [33,21,32].

While most work on non-malleable codes deals with the information theoretic
setting, there has also been recent work [1,5,6,11] in the computational setting.
In the computational setting, the work of Chandran et al. [20] on block-wise
non-malleable codes may seem as most closely related to our setting; however,
there are important differences. Firstly, Chandran et. al do not consider the
setting where both parties may have inputs. Instead their notion is similar to the
original notion of non-malleable codes where a single fixed message is encoded.
Indeed, the entire communication is from the sender to the receiver (rather than
running an interactive bi-directional protocol between two parties). Further, their
definitions are weaker, as they inherently allow selective aborts whereas our
definitions do not suffer from this problem.

Interactive Coding. Starting with the seminal work of Schulmann [64,65,66], a
large body of works have studied IC schemes for two-party protocols (see, e.g.,
[18,47,15,43,50,49,54,37,45,17,44]). Most recently, several works have also studied
IC for multiparty protocols [62,56,16,7,46] in various models.

Secure Computation without Authentication. We also mention a related work of
Barak et. al. [13] on secure computation in a setting where the communication

9

channel among the parties may be completely controlled by a polynomial-time
adversary. The setting in their work is therefore inherently computational and
their techniques rely on using bounded concurrent secure multi-party computation
and are unrelated to ours. However, our setting can indeed be seen as being
inspired by theirs.

2 Preliminaries

In this section we introduce our notation and recall some definitions needed for
our constructions and proofs.

Notation. we denote by λ the security parameter. For a distribution D, we denote
by x←$D the process of sampling a random variable x according to D. By U`
we denote the uniform distribution over {0, 1}`. For a set S, x←$S denotes
sampling from S uniformly at random. For a pair D1, D2 of distributions over a
domain X, we denote their statistical distance by

SD(D1, D2) =
1

2

∑
v∈X

∣∣∣ Pr
x←D1

[x = v]− Pr
x←D2

[x = v]
∣∣∣.

If SD(D1, D2) ≤ ε, we say that D1, D2 are ε-close. We denote by replace the
function replace : {0, 1}∗×{0, 1}∗ → {0, 1}∗ that behaves as follows: If the second
input is a singular value s then it replaces any occurrence of same in the first
input with s. If the second input is a tuple (s1, . . . , sn) then it replaces any
occurrence of samei in the first input with si. We will write replace(D,x) for
some distribution D to denote the distribution defined by sampling d←$D and
applying replace(d, x).

Extractors In our constructions we make use of two types of extractors. We first
recall the standard notion of strong two-source extractors. Two source extractors
were first implicitly introduced by Chor and Goldreich [27]. An argument due to
Barak [63] shows that any extractor with a small enough error ε is also a strong
extractor. This means we can instantiate strong extractors for example with the
two-source extractor due to Bourgain [14].

Definition 1 (Strong 2-source Extractor). A function Ext : {0, 1}n ×
{0, 1}n → {0, 1}m is a strong 2-source extractor for sources with min-entropy k
and with error ε if it satisfies the following property: If X and Y are independent
sources of length n with min-entropy k then

Pr
y ←$Y

[SD(Ext(X, y), Um) ≥ ε] ≤ ε and Pr
x←$X

[SD(Ext(x, Y), Um) ≥ ε] ≤ ε.

Seedless 2-non-malleable extractors were first defined by Cheraghchi and Gu-
ruswami [25] but their construction was left as an open problem. The definition
was finally instantiated by Chattopadhyay et al. [22]. Such an extractor allows to
non-malleably extract an almost uniform random string from two sources with a
given min-entropy that are being tampered by a split-state tampering function.

We closely follow the definition from [22].

10

Definition 2 (2-non-malleable Extractor). A function Ext : {0, 1}n ×
{0, 1}n → {0, 1}m is a 2-non-malleable extractor for sources with min-entropy k
and with error ε if it satisfies the following property: If X and Y are independent
sources of length n with min-entropy k and f = (f0, f1) is an arbitrary 2-split-state
tampering function, then there exists a distribution Df over {0, 1}m ∪ {same}
which is independent of sources X and Y , such that

SD
((
Ext(X,Y),Ext(f0(X), f1(Y))

)
,
(
Um, replace(Df , Um)

))
≤ ε

where both Um refer to the same uniform m-bit string.

Tamper Evident Secret sharing We will define a new notion of tamper evident
secret sharing in the following. Such tamper evident secret sharing schemes
behave the same as regular secret sharing, except that we are guaranteed that
the reconstruction algorithm is able to detect any detectable tampering of the
shares that would lead to a different reconstructed message and will reject them
if they have been tampered with.

Intuitively a tampering is detectable if it meets two criteria: First it must
leave at least one of the shares unchanged, since otherwise the shares could
simply be replaced by a completely independent sharing, which is trivially
undetectable. Second, each tampered share must be independent of at least one
of the untampered shares, except for some bounded leakage. This is formally
defined in the following.

Definition 3 (n-out-of-n Secret Sharing). A pair of algorithms (Share,
Reconstruct) is a perfectly private, n-out-of-n secret sharing scheme with message
space {0, 1}` and share length `′, if all of the following hold.

1. Correctness: Given all shares, the secret can be reconstructed. I.e., for any
secret m ∈ {0, 1}`, it holds that Pr[Reconstruct(Share(m)) = m] = 1.

2. Statistical Privacy: Given any strict subset of shares, the secret remains
perfectly hidden. I.e., for any two secrets m0,m1 ∈ {0, 1}` and any set of
indices I ({1, . . . , n} it holds that for any (computationally unbounded)
distinguisher D

Pr
~s←Share(m0)

[D((si)i∈I) = 1] = Pr
~s←Share(m1)

[D((si)i∈I) = 1] .

Definition 4 (Detectable Tampering for Secret Sharing).
Let (Share,Reconstruct) be an n-out-of-n Secret Sharing scheme, let m ∈ {0, 1}`
be a message. A tampering function f for a secret sharing (s1, . . . , sn) of m with
ν bits of leakage is described by functions (f1, . . . , fn), sets of indices I in1 , . . . , I inn
and leakage functions (leak1, . . . , leakn) such that leaki : {0, 1}∗ → {0, 1}ν and

f(s1, . . . , sn) =
(
f1
(
(sj)j∈I in1 , leak1

(
(sj)j 6∈I in1

))
, . . . , fn

(
(sj)j∈I inn , leakn

(
(sj)j 6∈I inn

)))
.

For any fixed secret sharing ~s← Share(m) let M be the set of indices i, such
that s′i 6= si for (s′1, . . . , s

′
n) := f(s1, . . . , sn). A tampering function f is called

detectable for ~s if it holds that for all i ∈M we have M∪I ini ({1, . . . , n}. We
define the predicate Dtct(~s, f) to be 1 iff f is detectable for ~s.

11

This now allows us to formally define tamper evident n-out-of-n secret sharing.

Definition 5 (Tamper Evident n-out-of-n Secret Sharing). A perfectly
private secret sharing scheme (Share,Reconstruct) is said to be ε(λ)-tamper evident
for up to ν bits of leakage if the reconstruction algorithm will reject shares with
overwhelming probability if they have been tampered detectably with up to ν bits
of leakage. I.e., for all m ∈ {0, 1}` and all detectable tampering functions f with
ν bits of leakage it holds that

Pr
~s←Share(m)

[Dtct(~s, f) = 1 ∧ Reconstruct(f(~s)) 6∈ {m,⊥}] ≤ ε(λ)

Please refer to the full version of this paper for an instantiation of this notion from
XOR-based secret sharing and an information theoretic message authentication
code. The concept of tamper evident secret sharing may seem superficially similar
to non-malleable secret sharing [51] but the two concepts are in fact incomparable.
The guarantee of tamper evident secret sharing is very strong, requiring that the
secret cannot be changed except to ⊥, but only holds against a weak class of
tamperings that must leave at least one share unchanged. In contrast, NM-secret
sharing provides a weaker guarantee, namely that a tampered secret must be
unrelated, but against a stronger class of tampering functions.

3 Definitions

In this section we first formally define interactive protocols and encodings of
interactive protocols. We then introduce our notions of non-malleability for
encodings of interactive protocols.

3.1 Interactive Protocols

We consider protocols Π between a pair of parties P0, P1 (also called Alice and
Bob, respectively, for convenience) for evaluating functionalities g = (g0, g1) of
the form gb : X × Y → Z, where X,Y, Z are finite domains. Alice holds an input
x ∈ X, and Bob holds y ∈ Y , and the goal of the protocol is to interactively
evaluate the functionality, such that at the end of the protocol Alice outputs
g0(x, y) and Bob outputs g1(x, y). The interactive protocol consists of r rounds,
in each of which a single message is sent. Without loss of generality we assume
that the parties in Π alternate in sending their messages and that Alice always
sends the first message. Formally, an interactive protocol Π between two parties
is described by a pair of “next message” functions π0, π1 (or πA, πB) and a pair
of output functions outA and outB .The next message function πA (πB) takes the
input x (y), round number i, and message sequence sent and received by Alice
(Bob) so far transA (transB) and outputs the next message to be sent by Alice
(Bob). For simplicity of notation, we assume πA, πB always output binary strings.
Furthermore, we assume that each message output by πA, πB is always of the
same length `. The output function outA (outB) takes as input x (y) and the

12

final message sequence sent and received by Alice (Bob) transA (transB) and
outputs Alice’s (Bob’s) protocol output. We denote by Trans(x, y) the function
mapping inputs x, y to the transcript of an honest execution of Π between A(x)
and B(y). Note that in this setting we do not explicitly consider probabilistic
protocols. However, this is not a limitation, since any probabilistic protocol can
be written as a deterministic protocol with additional random tapes given as
input to the two parties A and B.

This now allows us to define both correctness of a protocol as well as encodings
of interactive protocols.

Definition 6 (Correctness). A protocol Π, is said to ε-correctly evaluate a
functionality (g0, g1) if it holds that without tampering the output of each party
outb(xb, transb) = gb(x0, x1) with probability ≥ 1− ε.

Definition 7 (Encoding of an Interactive Protocol). An encoding Π ′ of a
protocol Π = (A,B) is defined by two simulators S0, S1 with black-box access to
stateful oracles encapsulating the next message functions of A and B respectively.
The protocol Π ′ = (SA0 , S

B
1) is an ε-correct encoding of protocol Π = (A,B) if

for all inputs x, y, Π ′ = (S
A(x)
0 , S

B(y)
1) ε-correctly evaluates the functionality

(Trans(x, y),Trans(x, y)).

We note that, given a correct encoding Π ′ of protocol Π evaluating functionality
(g0, g1) it is easy to also evaluate (g0, g1). To do so, simply run Π ′ resulting in
output τ = Trans(x, y) and then evaluate outA(x, τ) and outB(y, τ) respectively.
Definition 7 slightly differs from the interactive coding literature [65,15]. In most
of the IC literature, encodings are not defined relative to a stateful oracle, but
instead relative to a next-message function oracle . This difference is significant,
because, as observed by Chung et al. [28] in the context of IC, an encoding as
defined in the IC literature can leak the parties’ inputs under adversarial errors.
I.e., security guarantees of Π are not necessarily preserved under Π ′. In contrast,
under Definition 7, any security guarantee of Π is preserved under Π ′. This
follows from the fact that the encoding is defined using a pair of simulators with
only black-box access to A and B without the ability to know the inputs or
rewind the participants of the underlying protocol. Therefore, access to this oracle
is equivalent to communicating with an actual instance of A (or B respectively).
Any attacker against Π – whether a man in the middle attacker or an attacker
acting as either A or B – always has at least black-box access to the two parties.
This means she can easily simulate Π ′ simply by running S0, S1 herself. Thus
any attack against some arbitrary security property of Π ′ directly corresponds
to an attack against the same property of Π, implying that security guarantees
of Π are preserved under Π ′.

Protocols under Tampering. It may appear tempting to try and define non-
malleability in the interactive setting in the same manner as regular non-
malleability by, e.g, considering tampering on the full transcript of the protocol.
Split-state tampering for an r-round protocol would then for example mean that
an adversary could separately tamper on the first n/2 and the second n/2 of

13

the protocol messages. However, at least in the synchronous tampering setting
we’re focusing on such a definition would be very problematic. It would allow
an adversary to tamper with the first message depending on future messages,
which themselves could depend on the first message, therefore potentially causing
an infinite causal loop, even if we allow such “time-travelling” adversaries. So
instead we make the reasonable restriction that tampering on each message must
happen separately and can only depend on past messages.

We formally describe the process of executing a protocol under tampering with
a tampering function f ∈ F , from some family of tampering functions F . First,
empty sequences of sent and received messages transA = transB = ∅ are initialized.
Lets assume that it is Alice’s turn to send a message in round i. The next message
function πA is evaluated to compute the next message mi := πA(x, i, transA).
Then mi is added to Alice’s transcript transA := transA‖mi. Next the tampering
function is applied to compute the tampered message m′i := f(m1, . . . ,mi)
and m′i is added to transB := transB‖m′i. If it is Bob’s turn the execution
proceeds identically with reversed roles. Finally the output functions of Alice and
Bob are evaluated respectively as outA(x, transA), outB(y, transB). Note that
due to tampering it does not necessarily hold for the sequences of messages
transA = mA

1 , . . . ,m
A
r and transB = mB

1 , . . . ,m
B
r that mA

i = mB
i .

We note that this only models “synchronous” tampering, meaning that the
adversary cannot drop or delay messages or desynchronize the two parties by first
running the protocol with one party and then the other. This choice is partially
inspired by the literature on interactive coding and helps keep our definitions
simple. However, cryptographic primitives such as non-malleable commitments
have been studied in the setting where there is a non-synchronizing man-in-the-
middle adversary. We remark that even in these settings, getting a construction
for the synchronous case is often the hardest (for example, there exist general
compilers for non-malleable commitments to go from synchronous security to
non-synchronous security [67]). We leave the study of more general tampering
models for INMCs as an interesting topic for future work.

3.2 Interactive Non-malleable Codes

In the non-interactive setting, non-malleability intuitively means that after
tampering the result should be either the original input, or the original input
should be completely destroyed, i.e., the output should be independent of the
original input. In the interactive setting, there are two different outputs and two
different outputs and the question is which output (or pair of outputs) should
be independent from which input(s). This leads to an entire space of possible
notions, however we settle for the strongest possible – and arguably most natural –
notion: In this notion we simply call protocol-non-malleability, we require that the
output of Alice and Bob respectively are either the correct transcript Trans(x, y)
or ⊥ and that the product distribution over the two is (almost) completely
independent of the two parties’ respective inputs x and y. It is very important
that the decisions whether to output ⊥ or not must be made independently of
x and y, since otherwise an adversary could potentially force selective aborts

14

and thus learn at least one bit of information about the combined input. This
means that protocol-non-malleability not only implies error detection, but is even
stronger, since in error detection the output distribution over the real output
and ⊥ is not required to be independent of the inputs.

We note, that weaker definitions may still be meaningful and are not necessarily
trivial. In Section 4 we will show that even for a much weaker notion of protocol-
non-malleability strong lower bounds exist in the case of threshold tampering
functions. We formally define protocol-non-malleability in the following.

Definition 8 (Protocol Non-malleability). An encoding Π ′ = (SA0 , S
B
1), of

protocol Π = (A,B) is ε-protocol-non-malleable for a family F of tampering
functions if the following holds: For each tampering function f ∈ F there exists a
distribution Df over {⊥, same}2 such that for all x, y, the product distribution of

S
A(x)
0 ’s and S

B(y)
1 ’s outputs is ε-close to the distribution replace(Df ,Trans(x, y)).

4 Lower Bounds for Threshold Tampering Functions

Threshold tampering functions are classes of tampering functions where the
function is only limited in the fraction of the messages they can tamper with.
For these classes of tampering functions, lower bounds are known in the case of
interactive codes. Specifically Braverman and Rao [18] showed that non-adaptive
interactive codes can tolerate tampering with at most 1/4 of the transcript, and
Ghaffari, Haeupler, and Sudan [50] showed that an adaptive interactive code can
tolerate tampering with at most 2/7 of the transcript. A natural question to
ask is whether one can bypass these lower bounds in the case of non-malleable
interactive codes. Unfortunately, we show in the following that the known lower
bounds for interactive coding translate to identical lower bounds for negl(`)-non-
malleable interactive coding. In fact, we show that the lower bounds even apply
to a much weaker form of protocol-non-malleability, where each party’s output
by itself (rather than the product distribution of both outputs) only needs to be
independent of the other party’s input.

The basic idea of this lower bound is essentially to show that a non-malleable
interactive code is also a regular interactive code. In any encoded protocol, if
the output of one party in the underlying protocol depends non-trivially on
the other party’s input (which should always be the case since otherwise the
communication is completely unnecessary) then information theoretically, the
transcript must leak this information. If the encoding was not error correcting,
then that means that there is a way for a threshold tampering function to cause
at least one of the parties to abort. Since the tampering function is unlimited in
it’s knowledge of the transcript, it can extract the information about one of the
parties’ input and depending on the function of the input thus revealed either
cause the abort or not. This would be an input dependent abort which clearly
means that the encoding is not non-malleable.

However, this straightforward approach does not work. The reason is, that
the information about the input might only be revealed in say the ith message

15

of protocol, while the threshold tampering function requires tampering with
earlier messages to cause the abort. But there is a way around this problem. If
we can cleanly define which message in the protocol is the first message that
reveals information about the input, then we can construct another INMC in
the CRS model, where all previous messages are pushed into the CRS. This is
possible since those messages are “almost” independent of the actual input and
it is possible for the INMC to (inefficiently) sample a consistent internal state,
once it gets the input. This means that now the information about the input
is revealed in the very first protocol message and thus the approach described
above works.

For the lower bound to translate to INMC, we therefore need that the lower
bounds for IC apply also to inefficient interactive encodings in the CRS model.
Luckily, this follows easily from the structure of the results in [18] and [50]. We
discuss the application of the bounds to the CRS model in a bit more detail in
the full version.

As mentioned above, we can in fact show this lower bound for a much weaker
form of non-malleability we formally define in the following.

Definition 9 (Weak Protocol Non-malleability). An encoding Π ′ = (SA0 ,
SB1), of protocol Π = (A,B) is ε-weakly-protocol-non-malleable for a family
F of tampering functions if the following holds: For each tampering function
f ∈ F and for each x (resp. y) there exists a distribution DA

f,x (resp. DB
f,y)

over {⊥, same} ∪ {0, 1}n such that for all y (resp. x), the output distribution of

S
A(x)
0 (resp. S

B(y)
1) is ε-close to the distribution replace(DA

f,x,Trans(x, y)) (resp.

replace(DB
f,y,Trans(x, y))).

It is easy to see, that this notion is strictly weaker than protocol-non-malleability
as defined in Definition 8. If a distribution Df as required by Definition 8 exists,
then DA

f,x and DB
f,y can easily be sampled by sampling from Df and throwing

away half of the output. On the other hand, since DA
f,x can depend on x, it does

not help in sampling a distribution Df that is required to be (almost) independent
of x.

Theorem 1. Let Π = (A,B) be an r-round protocol with inputs x, y ∈ {0, 1}`
such that there exists at least one triple of inputs (x∗1, x

∗
2, y
∗) or (x∗, y∗1 , y

∗
2) such

that Trans(x∗1, y
∗) 6= Trans(x∗2, y

∗) or Trans(x∗, y∗1) 6= Trans(x∗, y∗2) respectively.
Let Π ′ be an δ(`)-correct, negl(`)-weakly-protocol-nonmalleable INMC for protocol
Π for a family F of threshold tampering functions. Then there also exists an
(computationally unbounded) interactive code Π in the CRS model for the same
protocol Π and the same family of threshold tampering functions F .

Due to space constraints, the proof of Theorem 1 is deferred to the full version
of this paper.

Applying the Lower Bound to Other Tampering Functions It is natural
to ask whether the lower bound stated above also applies to other classes of

16

functions. This would be unfortunate, since it would trivially rule out INMCs for
most classes of tampering functions. However, fortunately, this is not the case.

In the proof of Theorem 1, we explicitly use that the tampering function at
any point has complete knowledge of the full transcript so far and is completely
unbounded in the resources necessary to compute the tampering. It then follows
that if the transcript information theoretically reveals anything about the inputs,
then the tampering function can extract this information and cause a conditional
abort, thus allowing for the proof to go through. In each of the classes of tampering
functions we consider in the following sections, however, the tampering functions
are restricted in one way or another in its view of the full transcript. This means
that the proof no longer applies, since even when the full transcript contains
information about the inputs, the tampering function is no longer capable of
extracting it.

In fact, we explicitly exploit this observation in each of our protocols. Our
protocols consist of an initial input-independent phase, where key material is
established. This phase is constructed in such a way that in any future round,
the established key material will be almost uniform from the point of view of
the tampering function. Using information theoretically secure encryption and
authentication we can then execute the underlying protocol in such a way that
the transcript of that execution is remains independent of the input from the
point of view of the tampering function.

5 Bounded State Tampering

The first class of tampering functions we consider are tampering functions with
bounded state. This is a very natural model in which adversaries are assumed to
be arbitrarily powerful, but there exists an a priori upper bound on the size of
the state they can hold. Similar adversaries have been considered before in many
settings, starting with the work by Cachin and Maurer [19] on encryption and
key exchange secure against computationally unbounded adversaries. Recently, in
related work, Faust et al. [39] studied non-malleable codes against space-bounded
tampering. However, the notion of bounded state tampering we introduce in this
section is stronger than one would expect from näıvely extending the notion to
interactive non-malleable codes. In particular we do not limit the size of the
memory available for computing the tampering function. Instead, a limit is only
placed on the size of the state that can be carried over from tampering one
message to tampering with the next. I.e., the idea is, that an adversary in this
model can iteratively tamper with each message depending on some function of
all previous messages, but the size of this information is limited to some fixed
number of bits s. We formally define this in terms of a tampering function in the
following.

Definition 10 (Bounded State Tampering Functions). Functions of the
class of s-bounded state tampering functions Fsbounded for an r-round interactive
protocols are defined by an r-tuple of pairs of functions ((g1, h1), . . . , (gr, hr))

17

where the range of the functions hi is {0, 1}s. Let m1, . . . ,mi be the messages sent
by the participants of the protocol in a partial execution.The tampering function
for the ith message is then defined as

fi(m1, . . . ,mi) := gi
(
mi, hi−1

(
mi−1, hi−2(mi−2, . . .)

))
.

5.1 Interactive Non-Malleable Code for Bounded State Tampering

We devise a generic protocol-non-malleable encoding Π for bounded state tamper-
ing for any two-party protocol Π0. The basic idea is to first run a key exchange
phase in which Alice and Bob exchange enough key material that they can
execute the original protocol encrypted under one-time pad and authenticated
with information theoretically secure MACs. The main challenge is to craft the
key-exchange phase in such a way, that the adversary’s limitations, i.e., having
bounded state, preclude her from both, learning any meaningful information
about the exchanged key material, as well as influencing the key material in a
meaningful way. For bounded state tampering functions, we achieve this using
2-non-malleable extractors. The idea behind this is that each party chooses
two random sources that are significantly longer than the size of the bounded
state and sends it to the other party. Both parties then apply a 2-non-malleable
extractor to each pair of sources and thus extract a key they can use to secure the
following communication using information theoretic authenticated encryption.
A tampering function with bounded state will not be able to “remember” enough
information about the two sources to predict the exchanged key with a any
significant probability and thus will not be able to change the authenticated
ciphertexts without being caught. Formally this is stated in the following theorem.

Theorem 2. Let Π0 denote a correct, r-round protocol, with length-` messages.
We assume wlog that Alice sends both the first and last message in Π0 Let
s ∈ N be any bound as defined in Definition 10. Let λ′ be the target security
parameter, then we set λ = max(`, λ′). Let MAC : {0, 1}2λ × {0, 1}λ → {0, 1}λ
be a 2−λ-secure information theoretic message authentication code. Let Ext :
{0, 1}n × {0, 1}n → {0, 1}r`+(2r+4)λ be a 2-non-malleable extractor for sources
with min-entropy n− (s+ λ) and with error ε. Then there exists a r + 7-round
encoding Π of Π0 that is 5ε+ 4 · 2−λ-protocol-non-malleable against Fsbounded.

Note that the required extractor can be instantiated using the construction of
Chattopadhyay et al. [22], while the MAC can be instantiated with a family of
pair-wise independent hash functions.

Proof of Theorem 2. The protocol Π is specified in Algorithm 1. We need to
argue that the protocol is correct and protocol-non-malleable.

Correctness: The correctness of Π follows from the fact that the extractor is
deterministic and the message authentication code is correct. Since the extractor
is deterministic, both parties will extract the same string k. The correctness of

18

Algorithm 1: Protocol Π against bounded state tampering functions
We compile Π0 into Π below. Let Ext and Π0 be as in Theorem 2. The communication proceeds in
three phases, a key exchange phase, a key confirmation phase and a protocol execution phase. All
messages in the following protocol have a fixed length. Whenever a party in the protocol aborts, she
outputs ⊥ instead of a transcript.
Key Exchange Phase: Alice chooses two strings α1, α2 and Bob chooses two strings β1, β2 all of
length n. The two parties then alternatingly send the two strings.
1. First Alice then sends α1, then Bob sends β1, Alice sends α2, and Bob finally sends β2.
2. Both parties use the extractor to extract k1 := Ext(α1, α2) and k2 := Ext(β1, β2) and set k := k1 ⊕ k2.

They then split k = kA‖kB‖kauth1 ‖kenc1 ‖ . . . ‖kauthr ‖kencr into substrings, where |kA| = |kB | =
∣∣kauthi

∣∣ = 2λ
and |kenci | = `.

Key Confirmation Phase: Alice and Bob verify that they agree on the exchanged key.
1. Bob chooses a random challenge cB ←$ {0, 1}λ and sends it to Alice.
2. Alice computes tB := MAC(kB , cB), chooses a challenge cA ←$ {0, 1}λ, and sends tB , cA to Bob.
3. If Vf(kB , cB , tB) = 1, then Bob sends tA := MAC(kA, cA) to Alice. Otherwise he aborts.
4. If Vf(kA, cA, tA) = 1 then Alice proceeds to the next phase. Otherwise she aborts.
Protocol Execution Phase: Both parties initialize their view of the underlying protocol as an empty
list transA = ∅ and transB = ∅. Starting with Alice’s first message Alice and Bob proceed as follows for
each message:
1. In the ith round, if it is Alice’s (resp. Bob’s) turn to send a message she invokes the next-message

function of the underlying protocol mi := π0
A(i, x, transA) (resp. mi := π0

B(i, y, transB)) and adds the
message to her view transA := transA‖mi (resp. transB := transB‖mi).

2. Next the party computes the one-time pad encryption ci := mi ⊕ kenci of mi as well as an authentication
tag ti := MAC(kauthi , ci) and sends ci, ti to the other party.

3. If the authentication tag verifies, i.e., Vf(kauthi , ci, ti) = 1 the other party decrypts mi := ci ⊕ kenci and
adds the message to their view, i.e., transA := transA‖mi or transB := transB‖mi.

4. Finally the underlying protocol terminates and both parties output their respective transcripts transA or
transB or ⊥ if they aborted at any point during the protocol.

the message authentication code then implies neither party will ever abort during
the protocol. Further, since the one-time pad is correct it follows that messages of
the underlying protocol will always be decrypted correctly and thus both parties
are faithfully executing an honest instance of Π0. Thus at the end of the protocol
the collected transcripts correspond to an honest execution of Π0.

Protocol-non-malleability: Let f be an s-bounded state tampering function
described by ((g1, h1), . . . , (gr, hr)). To prove that the coding scheme is protocol-
non-malleable, we need to prove that a distribution Df as in Definition 8 exist.

The distribution Df When sampling from Df we need to deal with the problem
that in addition to the s bits of state f can keep by design, it can learn additional
information by making use of conditional aborts. I.e., in round i the function gi
can force an abort in the protocol unless the message sent in round i is “good”.
In any future round j > i, even if it’s s bit state does not retain any information
about mi the function gj therefore “remembers” that mi must have been “good”,
since otherwise the protocol would have aborted.

Technically the tampering function can use conditional aborts to leak an
arbitrary amount of information. However, this comes at the expense of having
to abort with high probability. Let 1− δ(λ) be the probability of f causing either
party to abort before the last message in the protocol is sent. Then this allows the
tampering function to leak at most log δ−1(λ) additional bits to future rounds.
Note that causing an abort by tampering with the very last message cannot add
any additional leakage, since there are no more future rounds to consider. Further

19

Algorithm 2: Sampler of distribution Df for Algorithm 1

1. Sample four strings α1, α2, β1, β2 ←$ {0, 1}n.
2. Apply the tampering function to the messages as α′

1 := f1(α1), β′
1 := f2(α1, β1), α′

2 := f3(α1, β1, α2),
α′
2 := f4(α1, β1, α2, β2) and extract k1 := Ext(α1, α2) and k2 := Ext(β1, β2) as well as k′1 := Ext(α′

1, α
′
2)

and k′2 := Ext(β′
1, β

′
2). Set k := k1 ⊕ k′2 and k′ := k′1 ⊕ k2.

3. If k′ 6= k output (⊥,⊥) and stop.
4. If k′ = k, then simulate a protocol execution tampered with f as follows

(a) Replace all messages with random strings of appropriate length and apply the tampering function to
those messages.

(b) If for any index 7 < i < r + 7 it holds that mi 6= fi(m1, . . . ,mi) output (⊥,⊥) and stop.
(c) If it holds that mr+7 6= fr+7(m1, . . . ,mr+7) output (same,⊥) and stop.

5. If the simulated interaction completed successfully, output (same, same).

note, that either party aborting before the last message is sent automatically
causes both parties to output ⊥ in the synchronized setting.

We use the above observation to sample from Df by sampling differently
depending on δ(λ). If δ(λ) ≤ 2−λ, the distribution Df is sampled by simply
outputting (⊥,⊥). Clearly this distribution is 2−λ close to the real distribution,
since f causes both Alice and Bob to abort and output ⊥ with probability at least
1− 2−λ. If δ > 2−λ, the distribution Df is sampled as shown in Algorithm 2. The
difference between Df and the real tampered transcript distribution is captured
by the event in which the sampler aborts the execution in steps 4b or 4c, but
the real execution continues. To see why Df is close to the tampered transcript
distribution, consider the four cases.

1 The tampering function did not change (α1, α2) or (β1, β2): This is
the simplest case. Note that the tampering function may store a bounded
function of the messages seen so far. That is, the tampering function stores
γ = h4(β2, h3(α2, h2(β1, h1(α1)))) where hi denotes a memory bounded function
as described above. We claim that given γ and up to log δ−1(λ) = λ many bits
of additional leakage due to conditional aborts, (k1, k2) and hence k is 2ε-close
to uniform. This follows from the property of strong extractors. Conditioned on
γ and the leakage, the sources (α1, α2) are still independent and have sufficient
min-entropy. This may not be immediately apparent, since future tampering can
depend on γ, which technically constitutes joint leakage over (α1, α2). However,
we can see that this particular joint leakage is not an issue for a 2-nonmalleable
extractor by switching to a different but equivalent viewpoint. If we fix h1(α1),
then α1 is no longer uniformly distributed but it is still a source with a distribu-
tion with at least n− s bits of min-entropy. This is ensured by the fixed upper
bound on the size of the leakage. From this viewpoint, since h1(α1) is fixed, γ is
no longer joint leakage over (α1, α2) but merely bounded leakage over α2. The
same applies to additional potential leakage due to conditional aborts, leaving
us with a source α1 with at least n− (s+ λ) bits of min-entropy. Similarly, the
same holds for sources (β1, β2).

Now it follows that if the tampering function changes any message in the
protocol execution phase, the MAC verification will fail (up to the error 2−λ)
causing the receiving party to abort. Unless the tampered message was the one
sent in round r + 7 this in turn automatically causes the other party to abort
as well (corresponding to step 4b). If the tampered message was the one sent in
round r + 7 then only Bob would abort (corresponding to step 4c). Furthermore,

20

by the property of one-time pads, the probability of the tampering function
changing any message is independent of the message itself.

2 The tampering function changed (α1, α2) (i.e., changed at least one of
them) but not (β1, β2): We claim that k1 := Ext(α1, α2) is ε-close to uniform
given γ and up to λ many bits of additional leakage due to conditional aborts,
k′1 := Ext(α′1, α

′
2), and (β1, β2). This follows from the fact that k1 is ε-close to

uniform given k′1, γ and λ bits of leakage (by the property of 2-non-malleable
extractors), and, that (β1, β2) are independent of (α1, α2). This also implies that
k1 is ε-close to uniform given γ, k′1, (β1, β2), k2, and λ bits of leakage since k2 is
entirely determined by (β1, β2). This in turn implies that k1 is ε-close to uniform
given γ, k′1, (β1, β2), k2, k′2, and λ bits of leakage since k′2 = k2. This implies that
k = k1 ⊕ k′2 is ε-close to uniform conditioned on γ, k′1, (β1, β2), k2 and leakage.
This finally implies that k is ε-close to uniform conditioned on γ, k′ = k′1⊕k2 and
leakage. Thus, the MAC verification will fail for Alice in the key confirmation
phase (up to the error 2−λ) causing both parties to output ⊥.

3 The tampering function changed (β1, β2) but not (α1, α2): This case is
symmetric to the previous case.

4 The tampering function changed both (α1, α2) and (β1, β2): The only
difference between this case and case 2 is that now k′2 may not be equal to k2.
As in the previous case, k1 is almost uniform given γ, k′1, (β1, β2), k2 and leakage.
But note that k′2 is entirely determined by (β1, β2), γ and the (fixed) tampering
function. Hence, k1 is almost uniform given γ, k′1, (β1, β2), k2, k

′
2 and leakage.

Overall using a union bound over the errors of the extractor and the MAC,
we get an upper bound on the statistical distance between Df and the outputs
of a real execution of 5ε+ 4 · 2−λ. ut

6 Split-State Tampering

Split-state tampering functions are one of the most interesting and well studied
families of tampering functions for regular non-malleable codes and were already
considered by Dziembowski, Pietrzak, and Wichs [36] in their seminal paper. A
2-split-state tampering function independently tampers on two fixed disjoint parts
of a codeword. Transferring this idea to the interactive setting is straightforward.
We can divide the transcript of a protocol into two disjoint sets of messages and
allow the tampering function to tamper independently on those two sets.

However, we are actually able to achieve protocol non-malleability for a
stronger class, namely c-unbalanced split-state tampering functions. In the regular
split state setting, the encoding scheme determines the “split”. In contrast, a
c-unbalanced split-state tampering function can split the transcript into two
arbitrary sets, as long as each set contains at least a 1/c fraction of the messages.

Definition 11 (c-Unbalanced Split-State Tampering Functions). Func-
tions of the class of c-unbalanced 2-split-state tampering functions Fcstrong-split for
an r-round interactive protocols are defined by an r-tuple of functions (g1, . . . , gr)
and two disjoint sets I0, I1 such that min(|I0| , |I1|) ≥ r/c and I0 ∪ I1 =

21

{1, . . . , r}. Let m1, . . . ,mi denote the messages sent by the participants of the
protocol in a partial execution. The tampering function for message mi is then

fi(m1, . . . ,mi) :=

{
gi((mj)j∈I0,j≤i) if i ∈ I0
gi((mj)j∈I1,j≤i) if i ∈ I1

As a special case functions in F2
strong-split must split the messages into two equal

size sets. These functions are also alternatively simply called split-state tampering
functions, since the split is not unbalanced.

6.1 INMC for Split-State Tampering

We devise a generic protocol-non-malleable encoding Π for c-unbalanced split-
state tampering functions for any two-party protocol Π0. The basic idea of the
encoding will seem similar to the protocol for bounded state tampering functions,
however the instantiation is quite different. We again first run a key exchange
phase in which enough key material is exchanged to execute the original protocol
encrypted under one-time pad and authenticate all messages with information
theoretically secure MACs. The main difference is in the implementation of the
key exchange phase. Unlike before, where we relied on non-malleable extractors,
we use a notion of tamper-evident n-out-of-n secret sharing in this case. The idea
behind this is that both parties contribute to the key material k = Ext(k1, k2)
and share their part of the key-material into many shares that are sent in separate
messages. If we are able to enforce that the tampering function must jointly
tamper with almost all of the messages in the key-exchange phase to be able
to predict the key with any significant probability, then we can scale the key
exchange phase to make sure that such a function would not be c-unbalanced.
The tamper-evidence of the secret sharing scheme allows us to ensure that
either party’s shares must be tampered with jointly to learn anything about
the reconstructed secret. However, this is not enough. We must also ensure that
the other party’s messages must also be tampered jointly. We achieve this via
a use of MACs with “successively revealed keys.” I.e., each message must be
authenticated using a key that is only revealed if one has knowledge of all of the
other party’s previous messages. In this way, each message is “chained” to the
other party’s previous messages and any successful tampering must necessarily
tamper with the full key-exchange phase in a joint manner.

Theorem 3. Let Π0 denote a correct, r-round protocol, with length-` messages.
Let (Share,Reconstruct) be a d((c−1)(r+5)+1)/2e-out-of-d((c−1)(r+5)+1)/2e
perfectly private, ε′-tamper evident secret sharing scheme for up to λ/2 bits of
leakage with message length `′′ and share length `′ Let λ′ be the target security
parameter, then we set λ = max(`, `′, λ′). Let MAC : {0, 1}2λ × {0, 1}λ be a 2−λ-
secure information theoretic message authentication code. Let Ext : {0, 1}`′′ ×
{0, 1}`′′ → {0, 1}r`+(2r+4)λ be a strong two-source extractor for sources with min-
entropy `′′ − λ/2 with error ε′′. We assume without loss of generality that Alice

22

Algorithm 3: Protocol Π against c-unbalanced split-state tampering functions
We compile Π0 into Π below. Let (Share,Reconstruct), and Π0 be as in Theorem 3. The communication
proceeds in three phases, a key exchange phase, a key confirmation phase, and a protocol execution
phase. All messages in the following protocol have a fixed length. Whenever a party in the protocol
aborts, she outputs ⊥ instead of the transcript.
Key Exchange Phase: The number of rounds in the key exchange phase depends on the number of
rounds r of the underlying protocol and on the parameter c that determines how unbalanced the states
are allowed to be. Let d = d((c− 1)(r + 5) + 1)/2e.
1. Alice and Bob choose `′′-bit strings k1, k2 ←$ {0, 1}`

′′
respectively and secret share them into d shares

each as sA1 , . . . , s
A
d ← Share(k1) and sB1 , . . . , s

B
d ← Share(k2).

2. Alice chooses d random strings rA1,1, . . . , r
A
1,d ←$ {0, 1}2λ and sends mA

1 = (rA1,1, . . . , r
A
1,d) to Bob.

3. For every 1 ≤ i ≤ d Alice and Bob proceed as follows
(a) Bob chooses d− i+ 1 random string rBi,i, . . . , r

B
i,d ←$ {0, 1}2λ, computes the tag

tBi := MAC(rA1,i ⊕ . . .⊕ rAi,i, sBi) and sends mB
i = (sBi , r

B
i,i, . . . , r

B
i,d, t

B
i) to Alice.

(b) Alice verifies that Vf(rA1,i ⊕ · · · ⊕ rAi,i, sBi , tBi) = 1 and aborts otherwise.
(c) Alice chooses d− i random strings rAi+1,i+1, . . . , r

A
i+1,d ←$ {0, 1}2λ (note that once i = d this means

no random string at all), computes the tag tAi := MAC(rB1,i ⊕ . . .⊕ rBi,i, sAi) and sends
mA
i+1 = (sAi , r

A
i+1,i+1, . . . , r

A
i+1,d, t

A
i) to Bob.

(d) Bob verifies that Vf(rB1,i ⊕ · · · ⊕ rBi,i, sAi , tAi) = 1 and aborts otherwise.
4. Once all the shares have been exchanged, Alice reconstructs k′2 := Reconstruct(sB1 , . . . , s

B
d). If k′2 = ⊥,

she aborts. Otherwise she extracts k = Ext(k1, k
′
2). Bob reconstructs k′1 := Reconstruct(sA1 , . . . , s

A
d). If

k′1 = ⊥, he aborts. Otherwise he extracts k = Ext(k′1, k2).
5. Both parties then split k = kA‖kB‖kauth1 ‖kenc1 ‖ . . . ‖kauthr ‖kencr into substrings, where
|kA| = |kB | =

∣∣kauthi

∣∣ = 2λ and |kenci | = `.
Key Confirmation Phase: Alice and Bob verify that they agree on the exchanged key.
1. Bob chooses a random challenge cB ←$ {0, 1}` and sends it to Alice.
2. Alice computes tB := MAC(kB , cB), chooses a challenge cA ←$ {0, 1}`, and sends tB , cA to Bob.
3. If Vf(kB , cB , tB) = 1, Bob computes tA := MAC(kA, cA) and sends tA to Alice. Otherwise he aborts.
4. If Vf(kA, cA, tA) = 1, Alice proceeds to the next phase. Otherwise she aborts.
Protocol Execution Phase: Both parties initialize their view of the underlying protocol as a empty
lists transA = transB = ∅. For each protocol message the parties then proceed as follows:
1. In the ith round, if it is Alice’s (resp. Bob’s) turn to send a message she invokes the next-message

function of the underlying protocol mi := π0
A(i, x, transA) (resp. mi := π0

B(i, y, transB)) and adds the
message to her view transA := transA‖mi (resp. transB := transB‖mi).

2. Next the party computes the one-time pad encryption ci := mi ⊕ kenci of mi as well as an authentication
tag ti := MAC(kauthi , ci) and sends ci, ti to the other party.

3. If Vf(kauthi , ci, ti) = 1 the other party decrypts mi := ci ⊕ kenci and adds the message to their view, i.e.,
transA := transA‖mi or transB := transB‖mi.

Finally the underlying protocol terminates and both parties output their respective transcripts transA
or transB or ⊥ if they aborted at some point.

sends both the first and last message in Π0 Then for any c there exists a c(r+ 5)-
round encoding Π of Π0 that is ε(λ) = 2ε′+3ε′′+(c−1)(r+5)+3)·2−λ/2+2−λ+1-
non-malleable against Fcstrong-split.

The tamper evident secret sharing scheme can be instantiated using the construc-
tion described in the full version of this paper, the MAC can be instantiated
with a family of pairwise-independent hash functions and the strong 2-source
extractor can be instantiated with the extractor due to Bourgain [14].

Proof of Theorem 3 The protocol Π is specified in Algorithm 3. We need to
argue that the protocol is correct and protocol-non-malleable.

Correctness: The correctness of Π follows from the correctness of the secret
sharing scheme and the message authentication code. The correctness of the
secret sharing scheme implies that when no tampering takes place, Bob and
Alice will both reconstruct the correct string k1 or k2 respectively. Thus, they

23

Algorithm 4: Sampler of distribution Df for Algorithm 3

1. Sample k1, k2 ←$ {0, 1}`
′′

and share them as sA1 , . . . , s
A
d ← Share(k1) and sB1 , . . . , s

B
d ← Share(k2).

2. Sample d2 + d strings rA1,1, . . . , r
A
1,d, r

A
2,2, . . . , r

A
2,d, . . . , r

A
d,d ←$ {0, 1}2λ

rB1,1, . . . , r
B
1,d, r

B
2,2, . . . , r

B
2,d, . . . , r

B
d,d ←$ {0, 1}2λ.

3. Let mA
i := (rA1,1, . . . , r

A
1,d) and apply the tampering function as m̄A

i = (r̄A1,1, . . . , r̄
A
1,d) := g1(mA

1).
4. For 1 ≤ i ≤ d perform the following steps

(a) Compute tBi := MAC(r̄A1,i ⊕ · · · ⊕ r̄Ai,i, sBi) and let mB
i := (sBi , r

B
i,i, . . . , r

B
i,d, t

B
i).

(b) Apply the tampering function as m̄B
i = (s̄Bi , r̄

B
i,i, . . . , r̄

B
i,d, t̄

B
i) := g2i(m

A
1 ,m

B
1 ,m

A
2 , . . . ,m

B
i).

(c) If Vf(rA1,i ⊕ · · · ⊕ rAi,i, s̄Bi , t̄Bi) = 0, output (⊥,⊥).
(d) Compute tAi := MAC(r̄B1,i ⊕ · · · ⊕ r̄Bi,i, sAi) and let mA

i+1 := (sAi , r
A
i+1,i+1, . . . , r

A
i+1,d, t

A
i).

(e) Apply the tampering function as m̄A
i+1 = (s̄Ai , r̄

A
i+1,i+1, . . . , r̄

A
i+1,d, t̄

A
i) := g2i+1(mA

1 ,m
B
1 , . . . ,m

A
i+1).

(f) If Vf(rB1,i ⊕ . . .⊕ rBi,i, t̄Ai , s̄Ai) = 0, output (⊥,⊥).
5. Reconstruct k̄1 := Reconstruct(s̄A1 , . . . , s̄

A
d) and k̄2 := Reconstruct(s̄B1 , . . . , s̄

B
d). If k̄1 = ⊥ or k̄2 = ⊥,

output (⊥,⊥).
6. If Ext(k1, k2) 6= Ext(k̄1, k2) or Ext(k1, k2) 6= Ext(k1, k̄2), stop and output (⊥,⊥).
7. Else, if Ext(k̄1, k2) = Ext(k1, k̄2) = Ext(k1, k2), simulate a protocol execution tampered with f

(a) Replace all messages with random strings of appropriate length and apply the tampering function to
those messages.

(b) If for any index 2d+ 4 < i < c(r + 5) it holds that mi 6= fi(m1, . . . ,mi) then output (⊥,⊥).
(c) If mc(r+5) 6= fc(r+5)(m1, . . . ,mc(r+5)) then output (same,⊥), otherwise output (same, same).

will compute the same key k. Combined with the correctness of the message
authentication code, this means that neither party will ever abort during the
protocol. Further, since the one-time pad is correct it follows that messages of
the underlying protocol will always be decrypted correctly and thus both parties
are faithfully executing an honest instance of Π0. Thus at the end of the protocol
the collected transcripts correspond to an honest execution of Π0.

Protocol Non-Malleability: Let f be a c-unbalanced split state tampering function
described by (g1, . . . , gc(r+5)) and I0, I1 (refer to Definition 11). To prove that
the coding scheme is protocol-non-malleable, we show that a distributions Df as
in Definition 8 exists.

The distribution Df : When sampling from Df we again need to deal with the
problem that the tampering function can communicate information through
conditional aborts. I.e., in round i with i ∈ Ib, the function gi can force an abort
in the protocol unless the message sent in round i is “good”. In any future round
j > i, even if j ∈ I1−b the function gj therefore has the information that the
message in round i must have been “good”. This implies leakage between the
two split states. To deal with this problem we sample differently depending on
the probability of f causing an abort during a protocol execution. Let 1− δ(λ)
be the probability of f causing either party to abort before the last message in
the protocol is sent. If δ(λ) ≤ 2−λ/2, the distribution Df is sampled by simply
outputting (⊥,⊥). Clearly this distribution is 2−λ/2 ≤ ε(n) close to the real
distribution, since f causes both parties to abort and output ⊥ with probability
at least 1 − 2−λ/2. If δ > 2−λ/2, the distribution Df is sampled as shown in
Algorithm 4.

Analysis. It remains to show that Df is 2ε′+3ε′′+(c−1)(r+5)+3)·2−λ/2+2−λ+1

close to the tampered transcript distribution. We first note that the protocol Π
overall has ((c−1)(r+5)+1)+r+4 = c(r+5) rounds, of which (c−1)(r+5)+2

24

form the key exchange phase, 3 the key confirmation phase, and r the protocol
execution phase. We therefore have that |Ib| ≤ (1− 1/c) · c(r+ 5) ≤ (c− 1)(r+ 5).
As noted above, we need to deal with leakage due to conditional aborts for every
message being tampered. I.e., the tampered message m̄i in round i with i ∈ Ib
can, in addition to all previous messages in Ib, also depend on some joint leakage
over all previous messages in I1−b due to conditional aborts, simply by observing
that the protocol has not aborted.

Claim 4. The tampered message m̄i in round i with i ∈ Ib can depend on at
most λ/2 bits of joint leakage over {mj |j ∈ I1−b ∧ j ≤ i}.

Proof. We know that f does not cause an abort with probability at least δ(λ) =
2−λ/2. Therefore, the tampering function gi learns at most log δ−1(λ) = log 2λ/2 =
λ/2 bits of joint leakage over previous messages in I1−b. ut

We will argue that conditioned on the protocol not having aborted and the
complete view of any tampering function gi in the key confirmation and protocol
execution phase the key k = Ext(k1, k̄2) computed by Alice in the key exchange
phase remains ε′′ close to uniform. For this we first note that up to step 5 in
Algorithm 4 the sampler acts identically to a real execution of the protocol.

Lemma 5. If Alice, or respectively Df , does not abort during the key exchange
phase, then k̄2 = k2 except with probability ε′ + (d+ 1) · 2−λ/2.

Due to space constraints, the proof of Lemma 5 is deferred to the full version. A
completely symmetric argument can be made for k̄1 = k1, where otherwise Bob
aborts with probability 1− ε′ − (d+ 1) · 2−λ/2, causing Alice to also abort. This
means that if Alice does not abort, we have that k = Ext(k1, k̄2) = Ext(k̄1, k2) =
Ext(k1, k2) with probability at least 1− 2(ε′ − (d+ 1) · 2−λ/2).7

Now, consider how much information about k1 and k2 a tampering function gi
can learn. Let Ib be the set of indices, such that i ∈ Ib. Clearly, gi has complete
knowledge of all shares sBj with 2j ∈ Ib and all shares sAj with 2j + 1 ∈ Ib.
Further, gi receives joint leakage over shares in I1−b simply by observing the
fact that the protocol has not yet aborted. This leakage is however bounded
by Claim 4 by λ/2 bits. By the perfect privacy of the secret sharing scheme, it
follows that λ/2 bits of joint leakage over all shares can reveal at most λ/2 bits
of the secret.

Since a set of indices with |Ib| ≥ 2d+ 1 would be too large for a c-unbalanced
split state tampering function, Ib cannot possibly contain all the shares. Thus,
the maximum amount of information the tampering function gi can gain about
k1 and k2 is exactly one of the two strings and λ/2 bits of the other string. Since
Ext is a strong 2-source extractor for sources with min-entropy `′′ − λ/2, this
implies that in this case with probability at least 1−ε′′ the extracted key-material
remains ε′′ close to uniform. Overall, this means that with probability at least

7 Note that the tampering function cannot influence the values k1, k2 at all since they
are sampled independently of the protocol transcript.

25

1− 2 · (ε′ + (d+ 1) · 2−λ/2)− ε′′, k remains ε′′ close to uniform from the point of
view of any tampering function gi.

To recap, if any of the key-shares are tampered with in such a way that the
original keys are not reconstructed, then the sampling algorithm will always
output (⊥,⊥), while the parties in the real protocol will do so with probability at
least 1− 2 · (ε′ + (d+ 1) · 2−λ/2). If the shares were not tampered with and thus
k = Ext(k̄1, k2) = Ext(k1, k̄2) = Ext(k1, k2), then since k is distributed ε′′-close
to uniform – the random messages in the simulated protocol execution phase
are distributed ε′′ close to a real protocol execution. Now, if f tampers with
any message of the key-confirmation or protocol-execution phase except for the
very last one, then the sampling algorithm always outputs (⊥,⊥), whereas if
only the very last message is tampered with the sampling algorithm outputs
(same,⊥). In a real protocol execution when tampering with any message, the
information theoretic MAC must be computed almost independently of k, since k
remains ε′′ close to uniform. Therefore, if any message is tampered with in a real
protocol execution, the receiving party will abort with probability 1− 2−λ − ε′′,
causing both parties to output ⊥, except if it only happens in the very last
message, where only Bob will abort with probability 1− 2−λ − ε′′ and output ⊥
and Alice will retain the correct transcript. On the other hand, if no message is
tampered with, the sampling algorithm outputs (same, same) and both Alice and
Bob in a real protocol execution retain the correct transcript. This follows since
in this case Alice and Bob agree on a key. Overall a union bound then gives us
an upper bound on the statistical distance between Df and the distribution of
both parties’ outputs in a real execution of 2ε′ + 3ε′′ + 2(d+ 1) · 2−λ/2 + 2−λ−1.
With d = d((c − 1)(r + 5) + 1)/2e, this leads to the claimed bound of ε(λ) =
2ε′ + 3ε′′ + ((c− 1)(r + 5) + 3) · 2−λ/2 + 2−λ+1. ut

7 Fragmented Sliding Window Tampering

The sliding window model is a very natural restriction of algorithms and is
considered in a variety of contexts, in particular also for error correcting codes
[48]. The idea of the sliding window is that an adversary can only watch a stream
of data through a window of fixed size. In the context of interactive non-malleable
codes this means that the tampering function “remembers” only the last w
messages. That is, the tampering function gets as input the last w (untampered)
messages of the protocol transcript to compute the tampered message.

We in fact consider a stronger class of functions that we call fragmented
sliding window. Functions with a fragmented window of size w can depend on
any w previous messages, not just the last w. In a sense the adversary is still
watching the transcript through a fixed size window, it can freely choose which
fragments of the window remain transparent and which ones become opaque.

Comparing this class with c-unbalanced split-state tampering functions, we
note that the size of the window is now fixed and does not scale with the number
of messages. On the other hand the different sets of messages tampering can
depend on are no longer required to be disjoint. E.g., the tampering of each single

26

message could depend on the first message of the protocol, something that would
not be possible in the case of split-state functions.

Definition 12 (Fragmented Sliding Window Tampering Functions).
Functions of the class of w-size fragmented sliding window tampering functions
Fwfrag for an r-round interactive protocols are defined by an r-tuple of functions
(g1, . . . , gr) and an r-tuple of sets (S1, . . . , Sr) such that S1 = ∅, Si ⊆ Si−1∪{i−1}
and |Si| ≤ w for 1 < i ≤ r. Let m1, . . . ,mi be the messages sent by the participants
of the protocol in a partial execution. The tampering function for message mi is
then defined as fi(m1, . . . ,mi) := gi

(
mi, (mj)j∈Si

)
.

7.1 INMC for Fragmented Sliding Window Tampering

Even though there are important conceptual differences between fragmented
sliding window tampering functions and c-unbalanced split-state tampering
functions, essentially identical protocol can be used to achieve protocol-non-
malleability for fragmented sliding window tampering functions. The difference
is how the key exchange phase scales. The window-size is fixed and does not
depend on the round complexity of the protocol. This means that d – the number
of shares Alice and Bob split their keys into – must scale with w instead of the
underlying protocol’s round complexity.

Theorem 6. Let Π0 denote a correct, r-round protocol, with length-` messages.
Let (Share,Reconstruct) be a w + 2-out-of-w + 2 perfectly private, ε′-tamper
evident secret sharing scheme for up to λ′/2 bits of leakage with message length
`′′ and share length `′ Let λ′ be the target security parameter, then we set λ =
max(`, `′, λ′). Let MAC : {0, 1}2λ×{0, 1}λ → {0, 1}λ be a 2−λ-secure information
theoretic message authentication code. Let Ext : {0, 1}`′′ → r` + (2r + 4)λ be
a strong two-source extractor for sources with min-entropy `′′ − λ/2 with error
ε′′. We assume wlog that Alice sends both the first and last message in Π0.
Then for any w there exists a r + 2w + 8-round encoding Π of Π0 that is
ε(λ) = 3 · 2−λ + 2ε′(λ) + 2ε′′-protocol non-malleable against Fwfrag.

Due to space constraints, the proof of Theorem 6 is deferred to the full version
of this paper.

Acknowledgments

We would like to thank the anonymous reviewers for TCC 2019 for suggesting
a stronger and more natural notion of non-malleability. We would also like to
thank Ran Gelles for helpful comments on an earlier version of our writeup.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran,
M.: Optimal computational split-state non-malleable codes. In: TCC 2016-A. pp.
393–417 (2016)

27

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: 47th ACM STOC. pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: 46th ACM STOC. pp. 774–783 (2014)

4. Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous
non-malleable codes in the 8-split-state model. In: EUROCRYPT 2019. pp. 531–561
(2019)

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: CRYPTO 2015.
pp. 538–557 (2015)

6. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing
compiler for non-malleable codes against bit-wise tampering and permutations. In:
TCC 2015. pp. 375–397 (2015)

7. Alon, N., Braverman, M., Efremenko, K., Gelles, R., Haeupler, B.: Reliable commu-
nication over highly connected noisy networks. In: 35th ACM PODC. pp. 165–173
(2016)

8. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes
for small-depth circuits. In: 59th FOCS. pp. 826–837 (2018)

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable
codes against bounded polynomial time tampering. In: EUROCRYPT 2019. pp.
501–530 (2019)

10. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: EUROCRYPT 2016. pp. 881–908 (2016)

11. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tampering.
In: EUROCRYPT 2018. pp. 618–650 (2018)

12. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. Cryptology
ePrint Archive, Report 2019/379 (2019)

13. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: CRYPTO 2005. pp. 361–377 (2005)

14. Bourgain, J.: More on the sum-product phenomenon in prime fields and its applica-
tions. International Journal of Number Theory 1(01), 1–32 (2005)

15. Brakerski, Z., Kalai, Y.T.: Efficient interactive coding against adversarial noise. In:
53rd FOCS. pp. 160–166 (2012)

16. Braverman, M., Efremenko, K., Gelles, R., Haeupler, B.: Constant-rate coding
for multiparty interactive communication is impossible. In: 48th ACM STOC. pp.
999–1010 (2016)

17. Braverman, M., Gelles, R., Mao, J., Ostrovsky, R.: Coding for interactive com-
munication correcting insertions and deletions. In: ICALP 2016. pp. 61:1–61:14
(2016)

18. Braverman, M., Rao, A.: Towards coding for maximum errors in interactive com-
munication. In: 43rd ACM STOC. pp. 159–166 (2011)

19. Cachin, C., Maurer, U.M.: Unconditional security against memory-bounded adver-
saries. In: CRYPTO’97. pp. 292–306 (1997)

20. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: ICALP 2016. pp. 31:1–31:14 (2016)

21. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: TCC 2016-A. pp. 367–392 (2016)

22. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: 48th ACM STOC. pp. 285–298 (2016)

28

23. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: 49th ACM STOC. pp. 1171–1184 (2017)

24. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state
tampering. In: 55th FOCS. pp. 306–315 (2014)

25. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: TCC 2014. pp. 440–464 (2014)

26. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Transac-
tions on Information Theory 62(3), 1097–1118 (Mar 2016)

27. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and
probabilistic communication complexity (extended abstract). In: 26th FOCS. pp.
429–442 (1985)

28. Chung, K.M., Pass, R., Telang, S.: Knowledge-preserving interactive coding. In:
54th FOCS. pp. 449–458 (2013)

29. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Simpler,
shorter, stronger. In: TCC 2016-A. pp. 306–335 (2016)

30. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. Cryptology ePrint Archive, Report 2019/055 (2019)

31. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: TCC 2015. pp. 532–560 (2015)

32. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds
for leakage-resilient, locally decodable and updatable non-malleable codes. In:
PKC 2017. pp. 310–332 (2017)

33. Dachman-Soled, D., Liu, F.H., Shi, E., Zhou, H.S.: Locally decodable and updatable
non-malleable codes and their applications. In: TCC 2015. pp. 427–450 (2015)

34. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: 41st ACM STOC. pp. 601–610 (2009)

35. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: CRYPTO 2013. pp. 239–257 (2013)

36. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS 2010. pp.
434–452 (2010)

37. Efremenko, K., Gelles, R., Haeupler, B.: Maximal noise in interactive communication
over erasure channels and channels with feedback. In: ITCS 2015. pp. 11–20 (2015)

38. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: ACNS 18. pp. 121–139 (2018)

39. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: CRYPTO 2017. pp. 95–126 (2017)

40. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes.
In: TCC 2014. pp. 465–488 (2014)

41. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: PKC 2015. pp. 579–603 (2015)

42. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: EUROCRYPT 2014. pp. 111–128
(2014)

43. Franklin, M.K., Gelles, R., Ostrovsky, R., Schulman, L.J.: Optimal coding for
streaming authentication and interactive communication. In: CRYPTO 2013. pp.
258–276 (2013)

44. Gelles, R., Haeupler, B.: Capacity of interactive communication over erasure chan-
nels and channels with feedback. SIAM J. Comput. 46(4), 1449–1472 (2017)

45. Gelles, R., Haeupler, B., Kol, G., Ron-Zewi, N., Wigderson, A.: Towards optimal
deterministic coding for interactive communication. In: 27th SODA. pp. 1922–1936
(2016)

29

46. Gelles, R., Kalai, Y.T.: Constant-rate interactive coding is impossible, even in
constant-degree networks. Electronic Colloquium on Computational Complexity
(ECCC), TR17-095 (2017)

47. Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive
communication. In: 52nd FOCS. pp. 768–777 (2011)

48. Gelles, R., Ostrovsky, R., Roytman, A.: Efficient error-correcting codes for sliding
windows. In: SOFSEM 2014. pp. 258–268 (2014)

49. Ghaffari, M., Haeupler, B.: Optimal error rates for interactive coding II: Efficiency
and list decoding. In: 55th FOCS. pp. 394–403 (2014)

50. Ghaffari, M., Haeupler, B., Sudan, M.: Optimal error rates for interactive coding I:
adaptivity and other settings. In: 46th ACM STOC. pp. 794–803 (2014)

51. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: 50th ACM STOC. pp.
685–698 (2018)

52. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: CRYPTO 2018. pp. 501–530 (2018)

53. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
48th ACM STOC. pp. 1128–1141 (2016)

54. Haeupler, B.: Interactive channel capacity revisited. In: 55th FOCS. pp. 226–235
(2014)

55. Jacobson, V., Braden, R., Borman, D.: RFC1323: TCP extensions for high perfor-
mance, http://www.ietf.org/rfc/rfc1323.txt

56. Jain, A., Kalai, Y.T., Lewko, A.B.: Interactive coding for multiparty protocols. In:
ITCS 2015. pp. 1–10 (2015)

57. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: TCC 2017. pp. 344–375 (2017)

58. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. In: EUROCRYPT 2018. pp. 589–617 (2018)

59. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: 49th ACM STOC. pp. 1144–1156 (2017)

60. Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: CRYPTO 2012. pp. 517–532 (2012)

61. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: CRYPTO 2018. pp.
608–639 (2018)

62. Rajagopalan, S., Schulman, L.J.: A coding theorem for distributed computation.
In: 26th ACM STOC. pp. 790–799 (1994)

63. Rao, A.: An exposition of bourgain’s 2-source extractor. Electronic Colloquium on
Computational Complexity (ECCC), TR07-034 (2007)

64. Schulman, L.J.: Communication on noisy channels: A coding theorem for computa-
tion. In: 33rd FOCS. pp. 724–733 (1992)

65. Schulman, L.J.: Deterministic coding for interactive communication. In: 25th ACM
STOC. pp. 747–756 (1993)

66. Schulman, L.J.: Coding for interactive communication. IEEE Transactions on
Information Theory 42(6), 1745–1756 (Nov 1996)

67. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st FOCS. pp. 531–540 (2010)

30

http://www.ietf.org/rfc/rfc1323.txt

	Interactive Non-Malleable Codes
	Introduction
	Our Results and Techniques
	Related Works

	Preliminaries
	Definitions
	Interactive Protocols
	Interactive Non-malleable Codes

	Lower Bounds for Threshold Tampering Functions
	Bounded State Tampering
	Interactive Non-Malleable Code for Bounded State Tampering

	Split-State Tampering
	INMC for Split-State Tampering

	Fragmented Sliding Window Tampering
	INMC for Fragmented Sliding Window Tampering

