
On Perfectly Secure 2PC in the
OT-Hybrid Model

Bar Alon and Anat Paskin-Cherniavsky

Department of Computer Science, Ariel University
alonbar08@gmail.com, anatpc@ariel.ac.il

Abstract. A well known result by Kilian (ACM 1988) asserts that gen-
eral secure two computation (2PC) with statistical security, can be based
on OT. Specifically, in the client-server model, where only one party – the
client – receives an output, Kilian’s result shows that given the ability
to call an ideal oracle that computes OT, two parties can securely com-
pute an arbitrary function of their inputs with unconditional security.
Ishai et al. (EUROCRYPT 2011) further showed that this can be done
efficiently for every two-party functionality in NC1 in a single round.
However, their results only achieve statistical security, namely, it is al-
lowed to have some error in security. This leaves open the natural ques-
tion as to which client-server functionalities can be computed with per-
fect security in the OT-hybrid model, and what is the round complexity
of such computation. So far, only a handful of functionalities were known
to have such protocols. In addition to the obvious theoretical appeal of
the question towards better understanding secure computation, perfect,
as opposed to statistical reductions, may be useful for designing secure
multiparty protocols with high concrete efficiency, achieved by eliminat-
ing the dependence on a security parameter.
In this work, we identify a large class of client-server functionalities
f : X×Y 7→ {0, 1}, where the server’s domain X is larger than the client’s
domain Y, that have a perfect reduction to OT. Furthermore, our reduc-
tion is 1-round using an oracle to secure evaluation of many parallel invo-
cations of

(2
1

)
-bit-OT, as done by Ishai et al. (EUROCRYPT 2011). Inter-

estingly, the set of functions that we are able to compute was previously
identified by Asharov (TCC 2014) in the context of fairness in two-party
computation, naming these functions full-dimensional. Our result also
extends to randomized non-Boolean functions f : X×Y 7→ {0, . . . , k − 1}
satisfying |X | > (k − 1) · |Y|.

1 Introduction

In the setting of secure two-party computation (2PC), the goal is to allow two
mutually distrustful parties to compute some function of their private inputs.
The computation should preserve some security properties, even in the face
of adversarial behavior by one of the parties. The two most common types of
adversaries are malicious adversaries (which may instruct the corrupted party
to deviate from the prescribed protocol in an arbitrary way), and semi-honest

adversaries (which must follow the instructions of the protocol, but may try to
infer additional information based on the view of the corrupted party).

Oblivious transfer (OT) is a two-party functionality, fundamental to 2PC
and the more general secure multiparty computation (MPC). It was first intro-
duced by Rabin [28] and Even et al. [13]. In the setting of

(2
1
)
-bit-OT, there

is a receiver holding a bit b ∈ {0, 1}, and a sender holding two bit-messages
a0, a1 ∈ {0, 1}. At the end of the interaction, the receiver learns ab and nothing
else, and the sender learns nothing. It turns out that OT can be used in the
construction of protocols, both in 2PC and MPC with various security guaran-
tees [22, 32, 14, 6]. Moreover, giving to the parties access to an ideal process
that computes OT securely, is potentially useful. Constructing protocols in this
model, called the OT-hybrid model, could be used for optimizing the complexity
of real-world, computationally secure protocols for several reasons. First, us-
ing the OT-precomputation paradigm of Beaver [4], the heavy computation of
OT can many times be pushed back to an off-line phase. This off-line phase is
performed before the actual inputs for the computation (and possibly even the
function to be computed) are known. Later, as the actual computation takes
place, the precomputed OTs are very cheaply converted into actual OT interac-
tions. Furthermore, the OT-extension paradigm of [5] offers a way to efficiently
implement many OTs using a relatively small number of base OTs. This can be
done using only symmetric-key primitives (e.g., one-way functions, pseudoran-
dom generators). Furthermore, it can also be used to implement

(2
1
)
-s-string-OT

using a sub-linear (in the security parameter) number of calls to
(2

1
)
-bit-OT and

some additional sub-linear work, assuming a strong variant of PRG [17]. Addi-
tionally, there is a variety of computational assumptions that are sufficient to
realize OT [27], or even with unconditional security under physical assumptions
[10, 26, 11, 31, 21].

An interesting family of two-party functionalities are the client-server func-
tionalities, where only one party – the client – receives an output. In addition
to the OT functionality mentioned earlier, client-server functionalities include
many other examples. Securely computing some of theses functionalities could
be useful for many interesting applications, both in theory and in practice.

For client-server, a well known result due to Kilian [22], asserts that OT is
complete. That is, any two-party client-server functionality can be computed
with unconditional security in the OT-hybrid model. Ishai, Prabhakaran, and
Sahai [18] further showed that the protocol can be made efficient. Later, it was
shown by Ishai et al. [19], that in the OT-hybrid model, every client-server
functionality can be computed using a single round. Furthermore, the protocol’s
computational and communication complexity are efficient for functions in NC1.
However, all of the results achieve only statistical security, namely, it is allowed
to have some error in security.

For the case of perfect security in this setting much less is known. Given access
to (many parallel) ideal computations for

(2
1
)
-bit-OT, Brassard et al. [8] showed

how to compute the functionality
(
n
1
)
-s-string-OT, and Wolf and Wullschleger

[30] showed how to compute
(2

1
)
-bit-TO, which is the same as

(2
1
)
-bit-OT where

2

the roles of the parties are reversed. Furthermore, the former protocol has a
single round, in which the parties invoke the OT, and with no additional bits
to be sent over the channel between the parties. The latter protocol requires an
additional bit to be sent by the server.

Observe that the result of [8] implies that any client-server functionality f can
be computed with perfect security against semi-honest corruptions. Indeed, let
n be the number of inputs in the client’s domain, and let s be the number of bits
required to represent an output of f . The server will send to the

(
n
1
)
-s-string-OT

functionality all of the possible outputs with respect to its input, and the client
will send its input. The client then outputs whatever it received from the OT.
Clearly, the protocol is secure against semi-honest adversaries, however, in the
malicious case, this is not true, in general. This is due to the fact that the
server has complete control over the output of the client. For instance, for the
“greater-than” function, the server can force the output of the client to be 1
if and only if y is even. Therefore, we are only interested in security against
malicious adversaries.

Ishai et al. [20] studied perfectly secure multiparty computation in the cor-
related randomness model. They showed that any multiparty client-server func-
tionality can be computed with perfect security, when the parties have access
to a correlated randomness whose correlation depends on the function to be
computed by the parties.

There are also various client-server functionalities that can be computed triv-
ially (even in the plain model). For example, the XOR functionality can be com-
puted by having the server sending its input to the client. These simple examples
suggest that fairness is not a necessary condition for being able to compute a
function perfectly in the client-server model.

Thus, the state of affairs is that most two-party client-server functionalities
remain unclassified as to perfect security in the OT-hybrid model. In this work
we address the following natural questions.

Which client-server functionalities can be computed with perfect security
against malicious adversaries in the OT-hybrid model? What is the round
complexity of such protocols?

The questions have an obvious theoretical appeal to it, and understanding it
could help us gain a better understanding of general secure computation. In
addition, perfect security may be useful for designing multiparty protocols with
high concrete efficiency, achieved by eliminating the dependency on a security
parameter.

We stress that, under the assumption that NP 6⊆ BPP, it is impossible to
achieve completeness theorems in our setting, similar to the completeness theo-
rems of Kilian [22]. Indeed, suppose the parties want to compute an NP relation
with perfect zero-knowledge and perfect soundness. Then it is impossible even
when given access to any ideal functionality with no input (distributing some
kind of correlated randomness) [20]. This is due to the fact that if such a proto-
col does exist, then one can use the simulator to decide the relation, putting it

3

in BPP. Since OT can be perfectly reduced to a suitable no-input functionality,
this implies that no such protocol exist in the OT-hybrid model.

1.1 Our Results

Our main result is that if the parties have access to many parallel ideal computa-
tions of

(2
1
)
-bit-OT, most client-server functionalities, where the server’s domain

is larger than the client’s domain, can be computed with perfect full-security in
a single round. Interestingly, the set of functions that we are able to compute
was previously identified by Asharov [2] in the context of fairness in two-party
computation, naming these functions as full-dimensional.

Let f : X × Y 7→ {0, 1} be a function, where the server’s domain size |X |
is larger than the client’s domain size |Y|. Write X = {x1, . . . , xn} and Y =
{y1, . . . , ym}. We consider the geometric representation of f as |X | points over
R|Y|, where the j-th coordinate of the i-th point is simply f(xi, yj). We then
consider the convex polytope1 defined by these points. The function is called
full-dimensional if the dimension of the polytope is exactly |Y|, e.g., a triangle
in the plane.2 We prove the following theorem:

Theorem 1 (Informal). Let f : X × Y 7→ {0, 1} be a client-server functional-
ity. If f is full-dimensional, then it can be computed with perfect full-security in
the OT-hybrid model in a single round. Furthermore, the number of OT calls is
O (poly (|Y|)).

In fact, we generalize the above theorem, and we give a similar criterion
for randomized non-Boolean functions. The class of functions that our protocol
can compute can be further extended by letting the client have inputs that fix
the output. This class of functions includes many interesting examples, such
as Yao’s “millionaires’ problem” (the “greater-than” function). Here the parties
have inputs that ranges from 1 to n, and the output of the client is 1 if and only
if its input is greater than or equal to the server’s input. The communication
complexity of our protocol is polynomial in the client’s domain size, and not
in its input’s size. For functions with small domain, however, this does improve
upon known construction that achieve statistical security (e.g., the single round
protocol by Ishai et al. [19]).

Theorem 1 identifies a set of client-server functionalities that are computable
with perfect full-security. It does not yield a full characterization of such func-
tions. For example, the status of the equality function 3EQ : {x1, x2, x3} ×
{y1, y2, y3} 7→ {0, 1}, defined as 3EQ(x, y) = 1 if and only if x = y, is currently
unknown. However, for the case of Boolean functions (even randomized), we are
able to show that the protocol suggested in the proof of Theorem 1 computes
only full-dimensional functions. See the full-version for more details.
1 A polytope is a generalization in any number of dimensions of the two-dimensional
polygon and the three-dimensional polyhedron.

2 Observe that if f is full-dimensional then |X | > |Y|, since the polytope requires at
least |Y|+ 1 points to be of dimension |Y|.

4

1.2 Our Techniques

The protocol we suggest is a variation of the protocol of Ishai et al. [19]. Viewing
the protocol abstractly, in addition to the computation of some related function,
the server will also send (via the OT) a proof of correct behavior. The client will
use the OT functionality to learn only a few random bits from the proof so that
privacy is preserved. We next give a technical overview of our construction.

In our construction, we make use of perfect randomized encoding (PRE)[1].
A PRE f̂ of a function f is a randomized function, such that for every input
x and a uniformly random choice of the randomness r, it is possible to decode
f̂(x; r) and compute f(x) with no error. In addition, the output distribution of
f̂ on input x reveals no information about x except what follows from f(x). For
our construction, we rely on a property called decomposability. A PRE is said
to be decomposable, if it can be written as f̂ =

(
f̂1, . . . , f̂n

)
. Here, each f̂i can

be written as one of two vectors that depends on the i-th bit of x, i.e., we can
write it as vi,xi , where (vi,0,vi,1) depends on the randomness r. This definition
can be viewed as the perfect version of garbled circuits [32, 24].

Our starting point is the protocol of Ishai et al. [19], which will be dubbed
the IKOPS protocol. It is a single round protocol in the OT-hybrid model that
achieves statistical security. It allows the parties to compute a “certified OT”
functionality. We next give a brief overview of the IKOPS protocol.

The main idea behind the IKOPS protocol is to have the server run an
“MPC in the head” [18]. That is, the real server locally emulates the execu-
tion of a perfectly secure protocol Π with many virtual servers performing the
computation, and 2m virtual clients, denoted C1,0,C1,1, . . . ,Cm,0,Cm,1, receiving
output, wherem is the number of bits in the real client’s input y. The underlying
protocol Π computes (and distributes among the clients) a decomposable PRE
f̂ = (f̂1, . . . , f̂m) of f . Specifically, the input of the virtual servers’ are secret
sharing of the real server’s input x and randomness r. The output of the virtual
client Cj,b in an execution of Π, is f̂j(b; r), i.e., the part of the encoding that
corresponds to the j-th bit of y being equal to b.

The real client can then use OT in order to recover the correct output of
the PRE and reconstruct the output f(x, y). As part of the “MPC in the head”
paradigm, the client and server jointly set up a watchlist (the views of some of
the virtual servers) allowing the client to check consistency between the virtual
servers’ views and the virtual clients’ views. If there was an inconsistency, the
client outputs f(x0, y) for some default value x0 ∈ X . However, it is unclear how
to have the server send only some of the views according to the request of the
client. Ishai et al. [19] handle this by letting the client get each view with some
constant probability independently of the other views.

The security of the protocol as described so far can still be breached by a
malicious server. By tampering with the outputs of the virtual clients, a malicious
server could force the output of the real client to be f(x, y) for some inputs y
and force the output to be f(x0, y) for other values of y, where the choice is
completely determined by the adversary. To overcome this problem, the function

5

f is replaced with a function f ′ where each bit yi is replaced with κ random bits
whose XOR equals to yi, where κ is the security parameter.3 This modification
prevents the adversary from having complete control over which inputs the client
will output f(x0, y), and for which inputs it will output f(x, y).

Two problems arise when trying to use the IKOPS protocol to achieve perfect
security. First, a malicious client could potentially receive the views of all virtual
servers, and as a result, it could learn the server’s input. Second, with some non-
zero probability, a malicious server might still be able to have the client output
be f(x0, y) for some inputs y, but output f(x, y) for other inputs y.

We solve the former issue, by showing how the client can request views deter-
ministically. We would like to have the request be made using

(
n
t

)
-s-string-OT,

where t bounds the number of corruptions allowed in Π, namely, the client asks
for exactly t views. However, it is not known if implementing it in the OT-hybrid
model with perfect security is even possible. Therefore, we slightly relax the se-
curity requirement, so that a malicious client will not be able to receive more
than twice the number of views that an honest client receives. We then let the
honest client ask for exactly t/2 of the views. The idea in constructing such a
watchlist is the following. For each view of a virtual server, the real server sends
(via the OT functionality) either a masking of the view, or a share of the con-
catenation of the maskings. That is, the server’s input to the OT is (Vi⊕ ri, r[i])
for every view Vi of a virtual server Si, where r = (r1, . . . , rn) is a vector of
random strings, and r[i] is the i-th share of r, for some threshold secret sharing
scheme with sufficiently large threshold value.4 As a result, in each invocation of
the OT, the client will be able to learn either a masked view or a share, which
bounds the number of views it can receive.

To solve the second issue, it will be convenient to represent the server security
requirement from a geometric point of view. To simplify the explanation in this
introduction, we only focus on deterministic Boolean functions. Recall that we
can view the function f as |X | points over R|Y|, where the j-th coordinate of
the i-th point is simply f(xi, yj). Observe that all a simulator for a malicious
server can do, is to send a random input according to some distribution D.
The goal of the simulator is to force the distribution of the client’s output to
be equivalent to the distribution in the real-world. Thus, perfect simulation of
a malicious server is possible if and only if there exists such distribution D
over the server’s inputs in the ideal-world, such that for every input y ∈ Y
of the client, Prx←D[f(x, y) = 1] = qy, where qy is the probability the client
outputs 1 in the real-world where its input is y. Since for every y ∈ Y the value
Prx←D[f(x, y) = 1] can be written as the same convex combination of the points
{f(xi, y)}|X |i=1, the point (Prx←D[f(x, y) = 1])y∈Y lie inside the convex hull of
the points of f . Thus, we can state perfect security as follows. Simulation of an
adversary is possible if and only if the vector of outputs (qy)y∈Y in the real-world
is in the convex-hull of the points in R|Y| described by f .
3 This technique for eliminating selective failure attacks was previously used in [22, 23]
4 There are additional technical subtleties, however, for this informal introduction we
ignore them.

6

Now, consider the IKOPS protocol. It could be the case that the vector of
outputs has different errors in each coordinate created by an adversary, and
hence is not necessarily inside the convex-hull of the points of f . To fix this
issue, instead of having the client output according to a default value in case of
an inconsistency, the client will now pick x0 uniformly at random, and output
f(x0, y). Stated differently, it outputs according to cy, where c is the center of
the polytope.5 We next (roughly) explain why this results in a perfectly secure
protocol. Let p denote the probability of detecting an inconsistency (more pre-
cisely, for each y the probability py of detecting an inconsistency is in [p−ε, p+ε],
for some small ε). Further defined the matrix Mf (x, y) = f(x, y) (i.e., each row
of Mf describes a point in R|Y|). Thus, the output vector of the client is close
to the point q = p · c + (1− p) ·Mf (x, ·), give or take ±ε in each coordinate, for
some small ε. If p is close to 1, this point q is close to c, and since c is an internal
point, q is also internal for a sufficiently small ε. Otherwise, the point q will be
close to the boundary. As a result, it is unclear as to why perfect security holds.
Here, we utilize a special property of IKOPS protocol’s security. We manage to
prove that ε is bounded by p · ε′, for some small ε′. That is, ε depends on p,
unlike the standard security requirement. This property allows us to prove that
perfect security holds.

1.3 Related Work

In the 2PC settings, Cleve [9] showed that the functionality of coin-tossing,
where the parties output the same random bit, is impossible to compute with full-
security, even in the OT-hybrid model. In spite of that, in the seminal work Gor-
don et al. [15], and later followed by [2, 25, 12, 3], it was discovered that in the
OT-hybrid model, most two-party functionalities can be evaluated with full se-
curity by efficient protocols. In particular, [3] completes the characterization
of symmetric Boolean functions (where both parties receive the same output).
However, all known general protocols for such functionalities have round com-
plexity that is super-logarithmic in the security parameter. Moreover, this was
proven to be necessary for functions with embedded XOR [15].

1.4 Organization

In Section 2 we provide some notations and definitions that we use in this work,
alongside some required mathematical background. Section 3 is dedicated to
expressing security in geometrical terms and the formal statement of our result.
In Sections 4 and 5 we present the proof of the main theorem.

5 The same construction works for any other choice of a point v that is strictly inside
the convex-hull of the points.

7

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and
matrices, lowercase for values, and we use bold characters to denote vectors and
points. All logarithms are in base 2. For n ∈ N, let [n] = {1, 2 . . . n}. For a set
S we write s ← S to indicate that s is selected uniformly at random from S.
Given a random variable (or a distribution) X, we write x← X to indicate that
x is selected according to X. We use poly to denote an unspecified polynomial,
and we use polylog to denote an unspecified polylogarithmic function. For a
randomized function (or an algorithm) f we write f(x) to denote the random
variable induced by the function on input x, and write f(x; r) to denote the
value when the randomness of f is fixed to r.

For a vector v ∈ Rn, we denote its i-th component with vi and we let
||v||∞ = maxi |vi| denote its `∞ norm. We denote by 1n (0n) the all-ones (all-
zeros) vector of dimension n. A vector p ∈ Rn is called a probability vector if
pi ≥ 0 for every i ∈ [n] and

∑n
i=1 pi = 1.

For a matrix M ∈ Rn×m, we let M (i, ·) be its i-th row, we let M (·, j) be its
j-th column, and we denote by MT the transpose of M . For a pair of matrices
M1 ∈ Rn×m1 ,M2 ∈ Rn×m2 , we denote by [M1||M2] the concatenation of M2 to
the right of M1.

2.2 Cryptographic Tools

Definition 1. The statistical distance between two finite random variables X
and Y is

SD (X,Y) = 1
2
∑
a

|Pr [X = a]− Pr [Y = a]| .

Secret Sharing Schemes. A (t+ 1)-out-of-n secret-sharing scheme is a mech-
anism for sharing data among a set of parties {P1, . . . ,Pn}, such that every set
of size t + 1 can reconstruct the secret, while any smaller set knows nothing
about the secret. As a convention, for a secret s and i ∈ [n] we let s[i] be the
i-th share, namely, the share received by Pi. In this work, we rely on Shamir’s
secret sharing scheme [29].

In a (t + 1)-out-of-n Shamir’s secret sharing scheme over a field F, where
|F| > n, a secret s ∈ F is shared as follows: A polynomial p(·) of degree at most
t+ 1 over F is picked uniformly at random, conditioned on p(0) = s. Each party
Pi, for 1 ≤ i ≤ n, receives a share s[i] := p(i) (we abuse notation and let i be
the element in F associated with Pi).

Decomposable Randomized Encoding. We recall the definition of random-
ized encoding [32, 1]. They are known to exists unconditionally [16, 1].

8

Definition 2 (Randomized Encoding). Let f : {0, 1}n 7→ Z be some func-
tion. We say that a function f̂ : {0, 1}n × R 7→ W is a perfect randomized
encoding (PRE) of f if the following holds.

Correctness: There exists a decoding algorithm Dec such that for every x ∈
{0, 1}n

Pr
r←R

[
Dec

(
f̂ (x; r)

)
= f(x)

]
= 1.

Privacy: There exists a randomized algorithm Sim such that for every x ∈
{0, 1}n it holds that

Sim (f(x)) ≡ f̂ (x; r) ,
where r ← R.

Definition 3 (Decomposable Randomized Encoding). For every x ∈
{0, 1}n, we write x = x1, . . . , xn, where xi is the i-th bit of x. A randomized
encoding f̂ is said to be decomposable if it can be written as

f̂ (x; r) =
(
f̂0 (r) , f̂1 (x1; r) , . . . , f̂n (xn; r)

)
,

where each f̂i, for i ∈ [n], can be written as one of two vectors that depends on
xi, i.e., we can write it as vi,xi

, where (vi,0,vi,1) depends on the randomness r.

2.3 Mathematical Background

Definition 4 (Convex Combination and Convex Hull). Let V =
{v1, . . . ,vm} ⊆ Rn be a set of vectors. A convex combination is a linear combi-
nation

∑m
i=1 αi ·vi where

∑m
i=1 αi = 1 and αi ≥ 0 for all 1 ≤ i ≤ m. The convex

hull of V, denoted

conv (V) =
{

m∑
i=1

αi · vi |
m∑
i=1

αi = 1 and αi ≥ 0 for all i ∈ [m]
}
,

is the set of all vectors that can be represented as a convex combination
of the vectors in V. For a matrix M = [v1|| . . . ||vm] we let conv (M) =
conv ({v1, . . . ,vm}).

Definition 5 (Affine Hull). For a set of vectors V = {v1, . . . ,vm} ⊆ Rn, we
define their affine hull to be the set

aff (V) =
{

m∑
i=1

αi · vi |
m∑
i=1

αi = 1
}
.

For a matrix M = [v1|| . . . ||vm] we let aff (M) = aff ({v1, . . . ,vm}).

Definition 6 (Affine Independence). A set of points v1, . . . ,vm ∈ Rn is
said to be affinely independent if whenever

∑m
i=1 αi · vi = 0n and

∑m
i=1 αi = 0,

then αi = 0 for every i ∈ [m]. Observe that v1, . . . ,vm are affinely independent
if and only if v2 − v1, . . . ,vm − v1 are linearly independent.

9

For a square matrixM ∈ Rn×n, we denote by det (M) the determinant ofM ,
and we denote by Mi,j the (i, j)’th cofactor of M , which is the (n− 1)× (n− 1)
matrix obtained by removing the i’th row and j’th column ofM . It is well known
that:

Fact 2 Let M ∈ Rn×n be an invertible matrix. Then for every i, j ∈ [n] it holds
that

∣∣M−1 (i, j)
∣∣ = |det (Mj,i) /det (M)|.

2.4 The Model of Computation

We follow the standard ideal vs. real paradigm for defining security. Intuitively,
the security notion is defined by describing an ideal functionality, in which both
the corrupted and non-corrupted parties interact with a trusted entity. A real-
world protocol is deemed secure if an adversary in the real-world cannot cause
more harm than an adversary in the ideal-world. This is captured by showing
that an ideal-world adversary (simulator) can simulate the full view of the real
world adversary.

We focus our attention on the client-server model. In this model a server
S holds some input x and a client C holds some input y. At the end of the
interaction the client learns the output of some function of x and y, while the
server learns nothing. We further restrict ourselves to allow only a single round
of interaction between the two parties, however, as only trivial functionalities
are computable in this setting, the parties interact in the OT -hybrid model. We
next formalize the interaction done in this model.

The OT Functionality. We start by formally defining the (family) of the OT
functionality. The

(2
1
)
-bit-OT functionality, is a two-party client-server function-

ality in which the server inputs a pair of bit-messages a0 and a1, and the client
inputs a single bit b. The server receives ⊥ and the client receives ab. For every
natural number ` ≥ 1, we define the functionality

(2
1
)
-bit-OT` as follows. Let

a =
(
ai0, a

i
1
)`
i=1 and let b = (bi)`i=1, where ai0, ai1, bi ∈ {0, 1} for every i. We let

a[b] :=
(
aibi

)`
i=1. The functionality is then defined as (a,b) 7→ (⊥,a[b]). That

is, it is the equivalent to computing
(2

1
)
-bit-OT ` times in parallel. Finally, we

let OT =
{(2

1
)
-bit-OT`

}
`≥1

.

A generalization of
(2

1
)
-bit-OT is the

(
n
1
)
-bit-OT functionality, which lets the

client pick one out of n bits a1, a2, . . . , an supplied by the server, and on input i ∈
[n] the client learns ai. This can be further generalized to

(
n
1
)
-s-string-OT where

the n bits are replaced by strings a1, . . . , an ∈ {0, 1}s, and this can generalized
even further to

(
n
k

)
-s-string-OT where the input i of the client is replaced with

k inputs i1, . . . , ik ∈ [n], and it receives ai1 , . . . , aik .

The 1-Round OT -Hybrid Model. We next describe the execution in the
1-round OT -hybrid model. In the following we fix a (possibly randomized) client-
server functionality f : X × Y 7→ {0, . . . , k − 1}. A protocol Π in the 1-round

10

OT -hybrid model with security parameter κ, is a triple of randomized functions
(α, β, ϕ). The server and client use the function α and β respectively to obtain
messages to send to the OT. The client then compute some local function ϕ on
its view to obtain an output. Formally, the computation is done as follows.

Inputs: The server S holds input x ∈ X and the client C holds input y ∈ Y. In
addition, both parties hold the security parameter 1κ.

Parties send inputs to the OT: S samples 2` (κ) bits a = α (x, 1κ), and C
samples ` (κ) bits b = β (y, 1κ), for some `(·) determined by the protocol.
S and C send a and b to the OT functionality, respectively. C then receives
a[b] from the OT.

Outputs: The server S outputs nothing, while the client C computes the local
function ϕ (y,b,a[b], 1κ) and outputs its result.

We refer to the ` (κ) used in the protocol as the communication complexity
(CC) of Π.

We consider an adversary A that controls a single party. The adversary has
access to the full view of that party. We assume the adversary is malicious, that
is, it may instruct the corrupted party to deviate from the protocol in any way
it chooses. The adversary is non-uniform, and is given an auxiliary input aux.
For simplicity we do not concern ourselves with the efficiency of the protocols
or the adversaries, namely, we assume that the parties and the adversary are
unbounded.

Fix inputs x ∈ X , y ∈ Y, and κ ∈ N. For an adversary A corrupting
the server, we let OutHYBRID

A(x,aux),Π (x, y, 1κ) denote the output of the client in
a random execution of Π. For an adversary A corrupting the client, we let
ViewHYBRID

A(y,aux),Π (x, y, 1κ) denote the adversary’s view in a random execution of
Π, when it corrupts the client. This includes its input, auxiliary input, random-
ness, and the output received from the OT functionality.

The ideal Model. We now describe the interaction in the ideal model, which
specifies the requirements for fully secure computation of the function f with
security parameter κ. Let A be an adversary in the ideal-world, which is given
an auxiliary input aux and corrupts one of the parties.

The ideal model – full-security.

Inputs: The server S holds input x ∈ X and the client C holds input y ∈ Y.
The adversary is given an auxiliary input aux ∈ {0, 1}∗ and the input of the
corrupted party. The trusted party T holds 1κ.

Parties send inputs: The honest party sends its input to T. The adversary
sends a value w from its domain as the input for corrupted party.

The trusted party performs computation: T selects a random string r and
computes z = f (x,w; r) if C is corrupted and computes z = f(w, y; r) if S is
corrupted. T then sends z to C (which is also given to A if C is corrupted).

11

Outputs: An honest server outputs nothing, an honest client output z, and the
malicious party outputs nothing. The adversary outputs some function of its
view.

Fix inputs x ∈ X , y ∈ Y, and κ ∈ N. For an A corrupting the server we
let OutIDEAL

A(x,aux),f (x, y, 1κ) denote the output of the client in a random execu-
tion of of the above ideal-world process. For an A corrupting the client we let
ViewIDEAL

A(y,aux),f (x, y, 1κ) be the view description being the output of A in such a
process.

We next present the definition for security against malicious adversaries. The
definition we present is tailored to the setting of the 1-round two-party client-
server in the OT -hybrid model.

Definition 7 (malicious security). Let Π = (α, β, ϕ) be a protocol for com-
puting f in the 1-round OT -hybrid model. Let ε(·) be a positive function of the
security parameter.

1. Correctness: We say that Π is correct if for all κ ∈ N, x ∈ X , and y ∈ Y

Pr [ϕ (y,b,a[b], 1κ) = f(x, y)] = 1.

Here, a = α (x, 1κ), b = β (y, 1κ) and the probability is taken over the
random coins of α, β, ϕ, and f .

2. Server Security: We say that Π is ε-server secure, if for any non-uniform
adversary A corrupting the server in the OT -hybrid world, there exists a
non-uniform adversary SimA (called the simulator) corrupting the server in
the ideal-world, such that for all κ ∈ N, x ∈ X , y ∈ Y, and aux ∈ {0, 1}∗ it
holds that

SD
(

OutHYBRID
A(x,aux),Π (x, y, 1κ) , OutIDEAL

SimA(x,aux),f (x, y, 1κ)
)
≤ ε (κ) .

We say that Π has perfect server security if it is 0-server secure.
3. Client Security: We say that Π is ε-client secure, if for any non-uniform

adversary A corrupting the client in the OT -hybrid world, there exists a
non-uniform simulator SimA corrupting the client in the ideal-world, such
that for all κ ∈ N, x ∈ X , y ∈ Y, and aux ∈ {0, 1}∗ it holds that

SD
(

ViewHYBRID
A(y,aux),Π (x, y, 1κ) , ViewIDEAL

SimA(y,aux),f (x, y, 1κ)
)
≤ ε (κ) .

We say that Π has perfect client security if it is 0-client secure.

We say that Π computes f with ε-statistical full-security, if Π is correct, is
ε-server secure, and is ε-client secure. Finally, we say that Π computes f with
perfect full-security, if it computes f with 0-statistical full-security.

To alleviate notation, from now on we will completely remove 1κ from the
input the functions α, β, and ϕ, and remove κ from ` and ε. Statistical security
will now be stated as a function of ε and the CC of the protocol as a function of `.

12

Observe that aborts in this model are irrelevant. Indeed, honest server outputs
nothing, and if a malicious server aborts then the client can output f(x0, y)
for some default value x0 ∈ X , which can be perfectly simulated. Therefore,
throughout the paper we assume without loss of generality that the adversary
does not abort the execution.

We next describe the notion of security with input-dependent abort [19]. Gen-
erally, it is a relaxation of the standard full-security notion, which allows an
adversary to learn at most 1 bit of information by causing the protocol to abort
depending on the other party’s inputs. We state only perfect security. Further-
more, the security notion is written with respect only to a malicious server.
Since we work in the client-server model, the trusted party does not send to the
server any output. Therefore, in this relaxation selective abort attacks [22, 23]
are simulatable.

Definition 8. Fix f : X × Y 7→ {0, . . . , k − 1}. In the input-dependent model,
we modify the ideal-world so that the malicious adversary corrupting the server,
in addition to sending an input x∗ ∈ X , also gives the trusted party T a predicate
P : Y 7→ {0, 1}. T then sends to the client f(x∗, y) if P (y) = 0, and ⊥ otherwise.
We let OutID

A(x,aux),f (x, y) denote the output of the client in a random execution
of the above ideal-world process, with A corrupting the server.

Let Π be a protocol that computes f in the 1-round OT -hybrid model. We say
that Π has perfect input-dependent security, if for every non-uniform adversary
A corrupting the server in the OT -hybrid world, there exists a non-uniform
adversary SimA corrupting the server in the input-dependent ideal-world, such
that for all x ∈ X , y ∈ Y, and aux ∈ {0, 1}∗ it holds that

OutHYBRID
A(x,aux),Π (x, y) ≡ OutID

SimA(x,aux),f (x, y) .

3 A Class of Perfectly Computable Client-Server
Functions

In this section, we state the main result of this paper – presenting a large class
of two-party client-server functions that are computable with perfect security.
We start with presenting a geometric view of security in our model. We take a
similar approach to that of [2] to representing the server-security requirement
geometrically.

3.1 A Geometrical Representation of the Security Requirements

Boolean functions. We start with giving the details for (randomized) Boolean
functions. For any function f : X ×Y 7→ {0, 1} we associate an |X | × |Y| matrix
Mf defined as Mf (x, y) = Pr [f(x, y) = 1], where the probability is taken over
f ’s random coins (if f is deterministic, then this value is Boolean). Let X =
{x1, . . . , xn}. Observe that in the ideal-world, every strategy that is employed
by a simulator corrupting the server can be encoded with a probability vector

13

p ∈ Rn, where pi corresponds to the probability of sending xi to T. Therefore,
if the input of the client is y, then the probability that the output is 1, equals to
pT ·Mf (·, y). On the other hand, in the 1-round OT -hybrid model, a malicious
server can only choose a string a∗ ∈ {0, 1}2` and send in to the OT. Then on
input y ∈ Y, the probability the client outputs 1 is exactly

qΠy (a∗) := Pr [ϕ (y,b,a∗[b]) = 1] ,

where b = β (y) and the probability is over the randomness of β and ϕ. This
implies that an ideal-world simulator must send a random input x∗ ∈ X such
that the client will output 1 with probability qΠy (a∗). Thus, perfect security holds
if and only if for every a∗ ∈ {0, 1}2` there exists a probability vector p ∈ Rn
such that for every y ∈ Y

pT ·Mf (·, y) = qΠy (a∗) .

Equivalently, for every a∗ the vector qΠ (a∗) := (qΠy (a∗))y∈Y is inside the
convex-hull of the rows of Mf . Further observe that this holds true regardless of
the auxiliary input held by a corrupt server.

General functions. We now extend the above discussion to non-Boolean func-
tions. For every function f : X × Y 7→ {0, . . . , k − 1}, and every possible
output z ∈ {0, . . . , k − 1}, we associate an |X | × |Y| matrix Mz

f defined as
Mz
f (x, y) = Pr [f(x, y) = z]. Similarly to the Boolean case, in the ideal world,

every strategy that is employed by a corrupt server can be encoded with a proba-
bility vector p ∈ Rn, hence the probability that the client will output z, on input
y, is pT ·Mz

f (·, y). In the 1-round OT -hybrid model, for a string a∗ ∈ {0, 1}2`

chosen by a malicious server, the probability to output z equals to

qΠy,z (a∗) := Pr [ϕ (y,b,a∗[b]) = z] ,

where b = β (y) and the probability is over the randomness of β and ϕ.
Therefore, perfect security holds if and only if for every a∗ ∈ {0, 1}2` there
exists a probability vector p ∈ Rn such that for every y ∈ Y and for every
z ∈ {0, . . . , k − 1}

pT ·Mz
f (·, y) = qΠy,z (a∗) . (1)

Observe that since p is a probability vector and since
∑
zM

z
f is the all-one

matrix, it is equivalent to consider only k−1 possible values for z instead of all k
values considered in Equation (1). We next write the perfect security formulation
more succinctly.

LetMf =
[
M1
f || . . . ||M

k−1
f

]
be the concatenation of the matrices by columns,

and let qΠ (a∗) :=
(
(qΠy,z (a∗))y∈Y

)
z∈[k−1]. Then Equation (1) is equivalent to

saying that for every a∗ the vector qΠ (a∗) belongs to the convex-hull of the
rows ofMf . It will be convenient to index the columns ofMf with (y, z), i.e., we

14

let Mf (x, (y, z)) = Mz
f (x, y).6 We now have an equivalent definition of perfect

server security.

Lemma 1. Let Π be a protocol for computing some function f : X × Y 7→
{0, . . . , k − 1} in the 1-round OT -hybrid model with CC of `. Then Π has perfect
server security if and only if for every a∗ ∈ {0, 1}2` it holds that

qΠ (a∗) ∈ conv
(
MT
f

)
.

We next describe another for security against a corrupt server. Intuitively,
it states that for a malicious server, the less it deviates from the prescribed
protocol, the better it can be simulated. Moreover, instead of using the traditional
`1 distance (i.e., statistical distance) we phrase the security in terms of the
`∞ norm. This, somewhat non-standard definition will later act as a sufficient
condition for reducing perfect server-security to perfect client-security.

Definition 9. Let f : (X ∪ {⊥})×Y 7→ {⊥, 0, . . . , k − 1}. Assume that f(x, y) =
⊥ if and only if x = ⊥. Let Π = (α, β, ϕ) be a protocol for computing f in the 1-
round OT -hybrid model. We say that Π is strong ε-server secure7 if the following
holds. For every message a∗ sent by a malicious server in the OT -hybrid world,
there exists a probability vector p = (px)x∈(X∪{⊥}) ∈ R|X |+1 such that∣∣∣∣qΠ (a∗)−MT

f · p
∣∣∣∣
∞ ≤ ε · p⊥.

3.2 Stating The Main Result

With the above representation in mind, we are now ready to state our main
result. We first recall the definition of a full-dimensional function, as stated in
[2].

Definition 10 (full-dimensional function). We say that a function f : X ×
Y 7→ {0, . . . , k − 1} is full-dimensional if

dim
(
aff
(
MT
f

))
= (k − 1) · |Y|,

namely, the affine-hull defined by the rows of Mf spans the entire vector space.

Recall that a basis for an affine space of dimension n has cardinality n + 1,
and therefore it must holds that |X | > (k − 1) · |Y|. Thus, the assumption that
f is full-dimensional implies this condition. We are now ready to state our main
result.
6 We may view the above presentation differently. We can apply the presentation
discussed for Boolean functions, to the function f ′ : X × (Y × [k − 1]) 7→ {0, 1},
defined as f ′(x, (y, z)) = Pr [f(x, y) = z].

7 Although this definition as stated is not actually stronger than the standard server
security definition, we decide to keep this name because of the intuition behind it.
Furthermore, stating simulation error with respect to the `1 norm instead of the `∞
norm, is in fact stronger.

15

Theorem 3. Let f : X × Y 7→ {0, . . . , k − 1} be a full-dimensional function.
Then there exists a protocol Π in the 1-round OT -hybrid model, that computes
f with perfect full-security. Furthermore, if f is deterministic the CC is the
following. Let γi denote the size of the smallest formula for evaluating the i’th
bit of f(x, y), and let γ = maxi γi. Then Π has CC at most

ξ · γ2 · log k · log |Y| · poly (k · |Y|) ,

where ξ ∈ R+ is some global constant independent of the function f .

Although the communication complexity of our protocol is roughly
poly (k · |Y|), for functions with small client-domain, it does yield a concrete
improvement upon known protocols such as the protocol proposed by [19].

A simple corollary of Theorem 3 is that adding constant columns to a full-
dimensional function, results in a functions that can still be computed with
perfect security.

Corollary 1. Let f : X × Y 7→ {0, . . . , k − 1} be some function. Assume that
there exists a subset Y ′ ⊆ Y that fixes the output distribution of f , i.e., for all
y ∈ Y ′ there exists a distribution Dy over {0, . . . , k − 1} such that f(x, y) ≡ Dy

for every x ∈ X . Then if the function f ′ : X × (Y \Y ′) 7→ {0, . . . , k − 1}, defined
as f ′ (x, y) = f(x, y), is full-dimensional, then f can be computed the 1-round
OT -hybrid model with perfect full-security and with the same communication
complexity as f ′.

Many interesting examples of functionalities that satisfy the constraints in
Theorem 3 and Corollary 1 exists. Yao’s millionaires’ problem is an example for
such a function. Here, the server and the client each hold a number from 1 to n.
The output is 1 if and only if the client’s input is greater than or equal to the
server’s input. The matrix for this function has a constant column of 1’s (when
taking the client’s input to be n). After removing it, the last row of the matrix
will be the all 0 vector, and the other rows are linearly independent. Therefore
the function satisfies the constraints in Corollary 1.

Theorem 3 clearly follows from the following two lemmata. The first lemma
reduces the problem of constructing a perfectly secure protocol, to the task of
constructing a protocol with perfect client security and strong statistical server
security. The second lemma states that such a protocol exists.

Lemma 2. Let f : X×Y 7→ {0, . . . , k − 1} be some function. Define the function
g : (X ∪{⊥})×Y 7→ {⊥, 0, . . . , k − 1} as g(x, y) = f(x, y) if x 6= ⊥ and g(⊥, y) =
⊥, for every y ∈ Y. Assume that for every ε > 0, there exists a protocol Πg(ε) in
the 1-round OT -hybrid model that computes g with correctness, is strong ε-server
secure, has perfect client security, and has CC at most ` (ε, |X |, |Y|, k). Then,
if f is full-dimensional, there exists a protocol Πf in the 1-round OT -hybrid
model, that computes f with perfect full-security. Moreover, if f is deterministic
then Πf has CC at most

`

(
1

2n(n+ 1)! , |X |, |Y|, k
)
,

16

where n = (k − 1) · |Y|.

Lemma 3. Let g : (X ∪ {⊥}) × Y 7→ {⊥, 0, . . . , k − 1} be a function such that
g(x, y) = ⊥ if and only if x = ⊥. Then for every ε > 0, there exists a pro-
tocol Πg(ε) in the 1-round OT -hybrid model that computes g with correctness,
is strong ε-server secure, and has perfect client security. Furthermore, its com-
munication complexity is the following. Let γi denote the size of the smallest
formula for evaluating the i-th bit of g(x, y), and let γ = maxi γi. Then Πg(ε)
has CC at most

ξ · γ2 · log k · log |Y| · polylog
(
ε−1) ,

where ξ ∈ R+ is some global constant independent of the function g and of ε.

We prove Lemma 2 in Section 4 and we prove Lemma 3 in Section 5.

4 Proof of Lemma 2

In this section, we reduce the problem of constructing a perfectly secure protocol,
to the problem of constructing a protocol that has perfect client security and
has strong statistical server security. The idea is to wrap the given protocol for
computing g. Whenever the output of Πg(ε) is ⊥ (for small enough ε), the client
will choose x0 ∈ X at random and output f(x0, y). Stated from a geometric
point of view, the client outputs according to a distribution that is consistent
with some point that is strictly inside the convex-hull of the rows of Mf (e.g.,
the center).

Proof (of Lemma 2). It is easy to see that if the probability that the output of
Πg(ε) equals ⊥ is 0 for every y ∈ Y for some ε > 0, then Πg(ε) computes f with
perfect security.

Assume otherwise. Let n = (k−1)·|Y|. Since f is full-dimensional there exists
a subset S = {x0, . . . ,xn} ⊆ Rn of the rows of Mf , that is affinely independent.
Let uS ∈ Rn be the vector associated with uniform distribution over S (i.e.,
ui = 1/|S| if i ∈ S and ui = 0 otherwise), and let c = (cy,z)y∈Y,z∈[k−1] := MT

f ·uS
be the center of the simplex8 defined by the points in S. The protocol Πf is
described as follows.
. .
Protocol 4 (Πf)

Input: Server S has input x ∈ X and client C has input y ∈ Y.

1. The parties execute protocol Πg (ε) with small enough ε > 0 to be determined
by the analysis. Let z be the output C receive.

2. If z 6= ⊥, then C output z. Otherwise, output z′ ∈ [k − 1] with probability
cy,z′ (and output 0 with the complement probability).

. .
8 A simplex is the convex-hull of an affinely independent set of points.

17

Correctness and perfect client-security follows from the fact that Πg satis-
fies these properties. It remains to show that perfect server-security holds. By
Lemma 1, it suffices to show that for every a∗ ∈ {0, 1}2` sent to the OT by a
malicious server, it holds that

qΠf (a∗) ∈ conv
(
MT
f

)
. (2)

Fix a∗ ∈ {0, 1}2`. For brevity, we write qf and qg instead of qΠf (a∗) and
qΠg(ε) (a∗) respectively. Since Πg(ε) is strong ε-server secure, it follows that
there exists a probability vector pg ∈ R|X |+1 such that

qg = MT
g · pg + err, (3)

where err ∈ Rk·|Y| satisfies ||err||∞ ≤ ε · pg⊥. Let pg = (pgx)x∈X be the vector
p with p⊥ removed. We first show that Equation (2) follows from the following
two claims.

Claim 5 There exists a vector êrr ∈ Rk·|Y| satisfying ||êrr||∞ ≤ 2ε, such that

qf = MT
f · pg + p⊥ · (c + êrr).

Claim 6 There exists a small enough ε > 0 such that

c + êrr ∈ conv
(
MT
f

)
,

where êrr is the same as in Claim 5.

Indeed, by Claim 6 there exists a probability vector p̂ ∈ R|X | such that

c + êrr = MT
f · p̂.

Thus, by Claim 5

qf = MT
f · pg + p⊥ · (c + êrr) = MT

f · (pg + p⊥ · p̂).

Recall that the entries of p sum up to 1−p⊥. Therefore pg+p⊥ ·p̂ is a probability
vector, hence Equation (2) holds.

We next prove Claim 6. The proof of Claim 5 is deferred to the full version.

Proof (of Claim 6). One approach would be to use similar techniques as in [2],
namely, take a “small enough” Euclidean ball around c and take ε to be small
enough so that c+ êrr is contained inside the ball. This approach, however, only
proves the existence of such an ε. We take a slightly different approach, which
would also provide an explicit upper bound on ε for deterministic functions.

For every i ∈ [n] let xi = xi − x0, let S = {x1, . . . ,xn} be a basis for Rn,
and let A = [x1|| . . . ||xn] be the corresponding change of basis matrix. Then

c = MT
f · uS =

n∑
i=0

1
n+ 1 · xi = x0 +

n∑
i=1

1
n+ 1 · xi = x0 + 1

n+ 1 ·A · 1n. (4)

18

Observe that a point v is in the convex-hull of S if and only if it can be
written as x0 +

∑n
i=1 pi · xi, where the pi’s are non-negative real numbers that

sum up to at most 1. Indeed, we can write

x0 +
n∑
i=1

pi · xi =
(

1−
n∑
i=1

pi

)
· x0 +

n∑
i=1

pi · xi.

Next, as S forms a basis, there exists a vector ẽrr ∈ Rn such that êrr = A · ẽrr.
Then, if ||ẽrr||∞ ≤

1
n(n+1) , by Equation (4) it follows that

c + êrr = x0 +A ·
(

1
n+ 1 · 1n + ẽrr

)
= x0 +

n∑
i=1

pi · xi,

where 0 ≤ pi ≤ 1/n for every i ∈ [n], implying that the point is inside conv (S).
Thus, it suffices to find ε for which ||ẽrr||∞ ≤

1
n(n+1) . It holds that

||ẽrr||∞ =
∣∣∣∣A−1 · êrr

∣∣∣∣
∞ = max

i∈[n]

{∣∣A−1(i, ·) · êrr
∣∣}

≤ max
i∈[n]


n∑
j=1

∣∣A−1(i, j) · êrrj
∣∣ = max

i∈[n]


n∑
j=1

∣∣∣∣det (Aj,i)
det (A)

∣∣∣∣ · |êrrj |


≤ n · (n− 1)!

|det (A) | · 2ε = 2n!
|det (A)| · ε,

where the third equality is by Fact 2, and the second inequality is due to the
fact that each entry in A is a real number between -1 and 1. Therefore, by taking
ε = | det(A)|

2n(n+1)! the claim will follow. Observe that if the function f is deterministic,
then the entries of A are in {−1, 1} implying that |det (A) | ≥ 1, and hence taking
ε = 1

2n(n+1)! suffices. Therefore the communication complexity will be at most

`
(

1
2n(n+1)! , |X |, |Y|, k

)
in this case.

5 Proof of Lemma 3

In this section we fix a function g : (X ∪{⊥})×Y 7→ {⊥, 0, . . . , k − 1} satisfying
g(x, y) = ⊥ if and only if x = ⊥. We show how to construct a protocol for
computing the function g in the 1-round OT -hybrid model. The protocol we
construct has perfect client security, and has strong statistical server security.
Our protocol is a modified version of the protocol by Ishai et al. [19], which we
shall next give an overview of. Their protocol is parametrized with ε, and we
denote this protocol byΠIKOPS(ε). It is a single round protocol in the OT -hybrid
model, that has ε-statistical full-security. It is stated for functions computable by
NC1 circuits, however, this is only done for improving concrete efficiency, which
is not a concern in our paper. We therefore restate it for general functions, and
bound its communication complexity as a function of |X |, |Y|, and k (which are
assumed to be finite in our work).

19

5.1 The Protocol ΠIKOPS

We next give the rough idea of ΠIKOPS. First, we view the inputs x and y as
a binary strings.9 The parties will compute a “certified OT” functionality. We
next give a brief overview of the IKOPS protocol.

The main idea behind the ΠIKOPS is to have the server run an “MPC in the
head” [18]. That is, the real server locally emulates the execution of a perfectly
secure protocol Π with many virtual servers performing the computation, and
2m virtual clients, denoted C1,0,C1,1, . . . ,Cm,0,Cm,1, receiving output, where m
is the number of bits in the client’s input y. The underlying protocol Π computes
a decomposable PRE ĝ = (ĝ0, ĝ1, . . . , ĝm) of g. Specifically, the output of client
Cj,b in an execution of Π is the corresponds to the j-th bit of y, when the bit
equals to b.

The real client can then use OT in order to recover the correct output of
the PRE and reconstruct the output g(x, y). As part of the “MPC in the head”
paradigm, the client further ask the server to send a watchlist (the views of some
of the virtual servers) and check consistency. If there was an inconsistency, then
the client outputs ⊥. To make sure that the client will not receive too large of
a watchlist and break the privacy requirement, it will get each view with some
(constant) probability independently of the other views.

Observe that although the client can use OT in order to receive the correct
output from the virtual clients, the two real parties need to use string-OT,
while they only have access to bit-OT. This technicality can be overcome using
the perfect reduction from

(
n
1
)
-s-string-OT to OT that was put forward in the

elegant work of Brassard et al. [8], which also constitutes one of the few examples
of perfect reductions to

(2
1
)
-bit-OT known so far. They proved the following

theorem.
Theorem 7. There exists a protocol ΠBCS = (αBCS, βBCS, ϕBCS) in the 1-round
OT -hybrid world that computes

(
n
1
)
-s-string-OT with perfect full-security. Fur-

thermore, its communication complexity is at most 5s(n− 1).
The security of the protocol described so far can still be breached by a ma-

licious server. By tampering with the outputs of the virtual clients, a malicious
server could force the output of the real client to be g(x, y) for some inputs y
and force the output to be ⊥ for other values of y, where the choice is completely
determined by the adversary. To overcome this problem, we replace g with a
function g′ where each bit yi is replaced with m′ random bit whose XOR equals
to yi, for some large m′.10 Here, the adversary does not have complete control
over which inputs the client will output ⊥, and for which inputs it will output
g(x, y). We next describe the protocol formally. We start with some notations.
9 We can assume without loss of generality that the size of X and Y are a power of 2.
This is due to the fact that we can add new elements to X such that the new rows in
Mf are duplicates of existing rows. We then do the same to Y. It is easy to see that
the new function is computable with statistical (perfect) full-security if and only if
the previous function is computable with statistical (perfect) full-security.

10 This method has the disadvantage of increasing the length of the client’s input
and as a result increase the communication complexity, so [19] suggested a different

20

Notations. Throughout the following section, client’s input are now binary
strings y of length m. Let m′ = m′(ε) =

⌈
log
(
ε−1)⌉+ 1 and let Enc : {0, 1}m 7→(

{0, 1}m′
)m

be a randomized function that on input m bits y1, . . . , ym, outputs

m · m′ random bits
(
y1
i , . . . , y

m′

i

)
i∈[m]

conditioned on ⊕m′j=1y
j
i = yi for every

i ∈ [m]. We also let Dec :
(
{0, 1}m′

)m
7→ {0, 1}m be the inverse of Enc, namely,

Dec
((

y1
i , . . . , y

m′

i

)
i∈[m]

)
=
(
y1
i ⊕ . . .⊕ ym

′

i

)
i∈[m]

.

Finally, we let g′ : (X ∪ {⊥})×
(
{0, 1}m′

)m
7→ {⊥, 0, . . . , k − 1} be defined as

g′
(
x,
(
y1
i , . . . , y

m′

i

)
i∈[m]

)
= g

(
x,Dec

((
y1
i , . . . , y

m′

i

)
i∈[m]

))
,

and let ĝ be a decomposable PRE of g′.
. .
Protocol 8 (ΠIKOPS (ε))

Input: Server has input x ∈ (X ∪ {⊥}) and client has input y ∈ {0, 1}m.

– α (x):
1. The server S runs “MPC in the head” for the following functionality.

There are n = Θ
(
log
(
ε−1)) virtual servers S1, . . . ,Sn with inputs and

2m · m′ virtual clients C1,0,C1,1, . . . ,Cm·m′,0,Cm·m′,1 receiving outputs.
Each virtual server holds a share of the S’s input and randomness, where
the shares are in an n-out-of-n secret sharing scheme. Each virtual client
Cj,b will receive ĝj,b(x), namely, it will receive the (j, b)-th component of
the decomposable PRE where the first part of the input is fixed to x. In
addition every virtual client will hold ĝ0 (x) which is the value of ĝ that
depends only on x and the randomness.

2. The virtual parties execute a multiparty protocol in order to compute ĝ.
The protocol used has perfect full-security against t = dn/3e − 1 cor-
rupted virtual servers and any number of corrupted virtual clients. We
also assume that the virtual clients receive messages at the last round of
the protocol. (e.g., the BGW protocol [7]).

3. Let Vj,b be the view of Cj,b, and let a1 = (αBCS (Vj,0, Vj,1))j∈[m·m′].
4. Let Vi be the view of Si. For each i ∈ [n] the server creates ãi of length
d2n/te, where Vi is located in a randomly chosen entry, while the other
entries are ⊥ (this allows the server to send each Vi with probability
t/2n). Let a2 = (αBCS (ãi))i∈[n].

5. Output a = (a1,a2).
– β (y):

approach. We stick with the presented approach, as we prefer simplicity over concrete
efficiency.

21

1. The client computes
(
y1
i , . . . , y

m′

i

)
i∈[m]

= Enc (y).

2. Let b1 =
(
βBCS

(
yj
′

j

))
j∈[m],j∈[m′]

.

3. Let b2 = (βBCS (1))i∈[d2n/te] (i.e., a constant vector of length d2n/te).
4. Output b = (b1,b2).

– ϕ (y,b, c′):
1. Let c = (ϕBCS (c′i))i11. Write c = (c1, c2), where c1 corresponds to the

outputs and c2 corresponds to the watchlist.
2. For every Vj,b in c1, we may write without loss of generality that Vj,b =(

V ij,b

)
i∈[n]

, where V ij,b is the message that Vi sends to Vj,b.

3. If there exists Vi1 , Vi2 ∈ c2 or Vi ∈ c2 and V ij,b ∈ c1 that are inconsistent,
output ⊥.

4. Otherwise, apply the PRE decoder on c1 to recover the output z.
. .

We summarize the properties of the protocol below.

Theorem 9 ([19, Theorem 1]). For every ε > 0, ΠIKOPS (ε) computes g
with ε-statistical full security.12 Furthermore, using the PRE from [16, 1] and
the BGW protocol, the CC will be the following. Let γi denote the size of the
smallest formula for evaluating the i’th bit of g(x, y), and let γ = maxi γi. Then,
ΠIKOPS has CC at most

`IKOPS = ξIKOPS · γ2 · log k · log |Y| · polylog
(
ε−1) ,

where ξIKOPS ∈ R+ is some global constant independent of the function g and of
ε.

Observe that ΠIKOPS has a (small) non-zero probability of the client seeing
to many views of the virtual servers (in the worst case all of them which gives
him the knowledge of x). Thus, ΠIKOPS is not perfectly client secure.

In the following section, we slightly tweak ΠIKOPS, making the watchlists
deterministic, thereby making it perfectly client secure. The new protocol will
have the desired properties as stated in Lemma 3.

5.2 Setting Up Fixed-Size Watchlists

Recall the problem with client privacy was in the fact that the client may watch
the internal state of too many servers, breaching perfect security of the protocol
ΠIKOPS, and thus of the entire construction. To solve this problem, we replace
the current watchlist setup with a fixed-size watchlist setup.
11 The function ϕ is different when applying to recover a1[b1] from when applying to

recover a2[b2]. To keep the presentation simple we will abuse notation and write as
if they are the same function.

12 In fact, the protocol even admits strong ε-server security.

22

In order to achieve the fixed-size watchlist, the parties will use a perfectly
secure protocol for computing

(
n
t/2
)
-s-string-OT. We do not know, however, if

such a protocol even exists in the OT -hybrid model. Instead, we relax the se-
curity notion a bit, so that we will be able to construct the protocol, and its
security guarantees still suffice for the main protocol. Specifically, we show how
in the OT -hybrid model, the parties can compute

(
n
t/2
)
-s-string-OT in a single

round, where a malicious client will only be able to learn at most t strings rather
than t/2. We stress that the construction we suggest does not achieve perfect
server security. Instead, it admits perfect input-dependent security. As we show
in Section 5.3, this will not affect the security properties of our final construction.

Let t, n, s ∈ N where t < n, and s ≥ 1. For simplicity, we assume that t is
even. Let f1 and f2 be the

(
n
t/2
)
-s-string-OT and

(
n
t

)
-s-string-OT functionalities

respectively. We next briefly explain the ideas behind the construction. The
parties will use protocol ΠBCS in order to simulate computation of n instances
of
(2

1
)
-sn-string-OT in parallel. On input (x1, . . . , xn), the i-th pair of strings

the server will send (by first applying αBCS) consist of a masking of the i-th
string xi, and a Shamir share of the concatenation of all of the maskings, that
is, the pair will be (xi ⊕ ri, r[i]), where r = (r1, . . . , rn). The client will then
recover the maskings of the correct outputs alongside the shares, which will help
him to reconstruct the outputs. Since for each i the client will learn either a
share or a masked string, a malicious client will not be able to learn to many
masked strings. The protocol ΠROT = (αROT, βROT, ϕROT) for computing f1 in
the 1-round OT -hybrid model is formally described as follows.

Construction 10 (ΠROT)
Input: Server S holds x = (x1, . . . , xn) ∈ ({0, 1}s)n, and the client C holds

y =
{
y1, . . . , yt/2

}
⊆ [n].

– αROT (x): Samples n random strings r1, . . . , rn ← {0, 1}s independently.
For every i ∈ [n], let r[i] ∈ {0, 1}sn be a share of r = (r1, . . . , rn) in
an (n − t)-out-of-n Shamir’s secret sharing (we pad r[i] if needed). Output
a =

(
αBCS ((xi ⊕ ri, r[i]))

)
i∈[n] (the xi ⊕ ri’s are also padded accordingly).

– βROT (y): Output b = (βBCS (b1) , . . . , βBCS (bn)), where bi = 0 if and only
if i ∈ y.

– ϕROT (y,b, c′): Let c = (ϕBCS (c′i))
n
i=1, let c1 = (ci)i∈y, and let c2 = (ci)i/∈y.

If the elements in c2 agree on a common secret r ∈ {0, 1}sn, then output
c1 ⊕ (ri)i∈y. Otherwise, output ⊥.

Lemma 4. ΠROT computes f1 with CC at most 5 · sn2, such that the following
holds:

– ΠROT is correct.
– ΠROT has perfect input-dependent security.
– For any non-uniform adversary A corrupting the client in the OT -hybrid

world, there exists a non-uniform simulator SimA corrupting the client in

23

the ideal-world of f2, such that for all x ∈ ({0, 1}s)n, y ⊆ [n] of size t/2,
and aux ∈ {0, 1}∗ it holds that

ViewHYBRID
A(y,aux),ΠROT

(x,y) ≡ ViewIDEAL
SimA(y,aux),f2

(x,y) .

In other words, although the simulator receives t/2 indexes as inputs, it is
allowed to ask for t strings from the server’s input.

Intuitively, a malicious server cannot force the client to reconstruct two dif-
ferent secrets r for two different inputs. This is due to the fact that for every two
different inputs the set of common bi’s that are 1 (i.e., the number of common
shares the client will receive for both inputs) is of size at least n− t. This implies
that up to a certain set of client-inputs that the adversary can choose, the client
will receive a correct output. As for a malicious client, observe that it can ask for
at most t masked values, as otherwise it will not have enough shares to recover
the secret r.

We next incorporate ΠROT into ΠIKOPS to get a protocol that is perfectly
client-secure. Due to space limitations, the proof is deferred to the full-version
of the paper.

5.3 Upgrading ΠIKOPS.

We are finally ready to prove Lemma 3. As stated in Section 5.2, we replace the
randomly chosen watchlist with a deterministic one using ΠROT. Formally, the
protocol, denoted Π+

IKOPS, is described as follows.
. .
Protocol 11 (Π+

IKOPS (ε))
Input: Server has input x ∈ (X ∪ {⊥}) and client has input y ∈ {0, 1}m.

– α+ (x): Output (a1,a2) as in ΠIKOPS, with the exception of a2 being equal
to αROT (V1, . . . , Vn) (recall that Vi is the view of the virtual server Si).

– β+ (y): Output (b1,b2) as in ΠIKOPS, with the exception of b2 being equal
to βROT (W), where W ⊆ [n] is of size t/2 chosen uniformly at random
(recall that t = dn/3e − 1 bounds the number of corrupted parties in the
MPC protocol).

– ϕ+ (y,b, c′): Output same as ϕ (y,b, c′), with the exception that we apply
ϕROT to recover the outputs and watchlist.

. .

Clearly, Lemma 3 follows from the following lemma, asserting the security of
Π+

IKOPS.

Lemma 5. For every ε > 0, Π+
IKOPS (ε) computes g with correctness, it is strong

ε-server secure, and has perfect client security. Furthermore, using the PRE from
[16, 1] and the BGW protocol, the CC will be the following. Let γi denote the size
of the smallest formula for evaluating the i’th bit of g(x, y), and let γ = maxi γi.
Then, Π+

IKOPS has CC at most

`+
IKOPS = ξ+

IKOPS · γ
2 · log k · log |Y| · polylog

(
ε−1) ,

24

where ξ+
IKOPS ∈ R+ is some global constant independent of the function and of ε.

In comparison to ΠIKOPS, the only difference in the CC is in the constant and
the exponent of log

(
ε−1) taken. Specifically, it holds that

`+
IKOPS
`IKOPS

= ξ+
IKOPS
ξIKOPS

· log2 (ε−1) .
Proof. Correctness trivially holds. We next prove that the protocol is strong
ε-server secure. Consider a message a∗ sent by a malicious server holding x ∈
(X ∪⊥) and an auxiliary input aux ∈ {0, 1}∗ in the OT -hybrid world. We need
to show the existence of a certain probability vector p ∈ R|X |+1. It will be
convenient to describe the vector p using a simulator Sim that will describe the
probability of sending x∗ to T as an input.

The idea is to have the simulator check the inconsistencies made by the
adversary. This is done via an inconsistency graph, where each vertex corresponds
to a virtual party, and each edge corresponds to an inconsistency. There are
three cases in which the simulator will send ⊥ to T. The first case, is when
there is a large vertex cover among the servers. In the OT -hybrid world, the
client will see an inconsistency with high probability, and hence output ⊥. The
second case, is when there are two virtual clients Cj,0 and Cj,1, corresponding
to the same bit of Enc (y) that are both inconsistent with the same server.
Observe that the real client will always see an inconsistency, regardless of its
input or randomness. The final case remaining, is when for each j ∈ [m · m′],
the adversary tampered with exactly one of Cj,0 or Cj,1. Here the real client will
not notice the inconsistency only if asked for the virtual clients the adversary
did not tamper with, which happens with low probability. For all other cases,
the probability that the real client will see an inconsistency is independent of its
input. Therefore the simulator can compute it and send ⊥ with this probability.
When the simulator does not send ⊥ as its input, it uses the MPC simulator to
reconstruct an effective input.

We next formalize the description of the simulator. The simulator holds a∗
and aux as an input.

1. Write a∗ = (a∗1,a∗2), where a∗1 corresponds to the outputs and a∗2 corresponds
to the watchlist.

2. Apply the simulator guaranteed by the security of ΠBCS to each pair of mes-
sages in a∗1 to obtain V1,0, V1,1, . . . , Vm·m′,0, Vm·m′,1, and apply the simulator
guaranteed by ΠROT for each pair in a∗2 to obtain V1, . . . , Vn and a predicate
P (if the output of the simulator is ⊥ instead of views, then send ⊥ to T).

3. Generate an inconsistency graph G′, with [n] as vertices, and where {i1, i2}
is an edge if and only if Vi1 and Vi2 are inconsistent. Let VC be a minimum
vertex cover of G′.13 If |VC| > t then send ⊥ to T.

13 Recall that we do not care about the efficiency of simulator. We stress that it is
also suffices to use a 2-approximation to compute the minimum vertex-cover, while
slightly tweaking t.

25

4. Otherwise, pick a subset W ⊆ [n] of size t/2 uniformly at random. If there
exist i1, i2 ∈ W with an edge between them in G or P (W) = 1, then send ⊥
to T.

5. Otherwise, extend G′ into an inconsistency graph G, where there are new
vertices (j, b) ∈ [m ·m′]×{0, 1}, and {i, (j, b)} is an edge if and only if V ij,b is
inconsistent with Vi (i.e., the view Cj,b received from Si is inconsistent with
the view of Si).

6. Let S ⊆ [m ·m′]× {0, 1} be the set of vertices corresponding to the virtual
clients, that have an edge with a vertex in W. If there exists j ∈ [m] such
that either
– (m′(j − 1) + j′, 0) , (m′(j − 1) + j′, 1) ∈ S for some j′ ∈ [m′], or
– for every j′ ∈ [m′] exactly one the vertices (m′(j − 1) + j′, 0), (m′(j −

1) + j′, 1) is in S,
then send ⊥ to T.

7. Otherwise, send ⊥ with probability 1 − 2−e(S), where e(S) is the number
of edges coming out of S. With the complement probability, apply the (ma-
licious) MPC simulator on the virtual servers Si, where i ∈ VC, to get an
input for each of virtual servers in VC. The simulator Sim can then use the
inputs of the other virtual servers to get an effective input x∗ ∈ (X ∪ {⊥}),
and send it to T.

The vector p is then defined as px∗ = Pr [Sim sends x∗ to T]. Recall that for
every y ∈ Y and z ∈ {⊥, 0, . . . , k − 1} we denote

q
Π+

IKOPS
y,z (a∗) = Pr

[
ϕ+ (y,b,a∗[b]) = z

]
,

where b = β (y) and the probability is over the randomness of β and ϕ. To
alleviate notations, we will write q = qΠ

+
IKOPS(ε) (a∗). Fix y ∈ {0, 1}m and

z ∈ {⊥, 0, . . . , k − 1}. We show that14∣∣qy,z −MT
g (·, (y, z)) · p

∣∣ ≤ ε · p⊥. (5)

Observe that since ΠBCS and ΠROT has perfect server-security, each
Vm′(j−1)+j′,b and each Vi in the OT -hybrid world is distributed exactly the same
as its counterpart in the ideal world. Therefore, we may condition on the event
that they are indeed the same. Furthermore, by the security of ΠROT, we may
also assume that the watchlist W is distributed the same, and that P (W) = 0,
as otherwise in both worlds the client will output ⊥. In the following we fix the
views and W. We next separate into four cases, stated in the following claims
(due to space limitations, the proves are deferred to the full version). These
claims together immediately imply Equation (5).

Claim 12 If |VC| > t then Equation (5) holds.
14 In fact we can show something stronger – that the `1 distance (i.e., statistical dis-

tance) is smaller than ε·p⊥, implying that the protocol has standard ε-server security.
However, this does not improve our result and the proof is therefore omitted.

26

Claim 13 Assume that |VC| ≤ t and that for every i ∈ W and every j ∈ [m],
there exists j′ ∈ [m′] such that either both Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1 are
consistent with Vi, or both are inconsistent with Vi. Then Equation (5) holds.
Moreover, the simulation is perfect.

Claim 14 Assume that |VC| ≤ t and that there exists i ∈ W and j ∈ [m], such
that for every j′ ∈ [m′] exactly one of the views Vm′(j−1)+j′,0 and Vm′(j−1)+j′,1
are inconsistent with Vi, then Equation (5) holds.

We next show that the protocol has perfect client-security. Consider an adver-
sary A corrupting the client. We construct the simulator SimA. The construction
of the simulator is done in the natural way, namely, it will apply the simulators
of ΠBCS and ΠROT, and then the decoding of the PRE, to receive an output. It
can then use the MPC simulator to simulate the views of the virtual servers in
its watchlist. Formally, the simulator operates as follows.

1. On input y ∈ {0, 1}m and auxiliary input aux ∈ {0, 1}∗, query A to receive
a message b∗ to be sent to the OT.

2. Write b∗ = (b∗1,b∗2), where b∗1 corresponds to the outputs and b∗2 corre-
sponds to the watchlist.

3. Apply the simulator guaranteed by the security of ΠBCS to each pair of
messages in b∗1 to obtain (bj)j∈[m·m′] for some bj ∈ {0, 1}, and apply the
simulator SimROT, guaranteed by the security of ΠROT, for each pair in b∗2
to obtain a set W ⊆ [n].

4. Send Dec
(

(bj)j∈[m·m′]

)
to T to obtain an output z.

5. Apply the PRE simulator on z to obtain outputs (zj)j∈[m·m′] for each virtual
client.

6. If |W| > t then output (zj)j∈[m·m′] alongside whatever SimROT outputs and
halt.

7. Otherwise, apply the (semi-honest) MPC simulator on the parties {Si}i∈W
with random strings as inputs, and on

{
Cj,bj

}
j∈[m·m′] with zj as the output

respectively. Send the output of the MPC simulator to SimROT, outputs
whatever it outputs and halt.

It is easy to see that the by the perfect security of ΠBCS, ΠROT, the PRE,
and the MPC protocol, that SimA is simulates A perfectly.

Acknowledgements

We are very grateful to Yuval Ishai for suggesting this question, and for many
helpful discussions. We also want to thank Eran Omri for many helpful com-
ments.

27

Bibliography

[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in ncˆ0. SIAM
Journal on Computing, 36(4):845–888, 2006.

[2] G. Asharov. Towards characterizing complete fairness in secure two-party
computation. In Proc. of the Eleventh Theory of Cryptography Conference
– TCC 2014, volume 8349, pages 291–316. Springer, 2014.

[3] G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete character-
ization of fairness in secure two-party computation of boolean functions. In
Theory of Cryptography - 12th Theory of Cryptography Conference, TCC
2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages 199–
228, 2015.

[4] D. Beaver. Precomputing oblivious transfer. In Annual International Cryp-
tology Conference, pages 97–109. Springer, 1995.

[5] D. Beaver. Correlated pseudorandomness and the complexity of private
computations. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 479–488. ACM, 1996.

[6] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pages 503–513. ACM, 1990.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In Proceedings of the 29th Annual Symposium on Foundations of
Computer Science (FOCS), pages 1–10, 1988.

[8] G. Brassard, C. Crépeau, and M. Santha. Oblivious transfers and in-
tersecting codes. IACR Cryptology ePrint Archive, 1996:10, 1996. URL
http://eprint.iacr.org/1996/010.

[9] R. Cleve. Limits on the security of coin flips when half the processors are
faulty. In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), pages 364–369, 1986.

[10] C. Crépeau. Efficient cryptographic protocols based on noisy channels. In
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 306–317. Springer, 1997.

[11] C. Crépeau, K. Morozov, and S. Wolf. Efficient unconditional oblivious
transfer from almost any noisy channel. In International Conference on
Security in Communication Networks, pages 47–59. Springer, 2004.

[12] V. Daza and N. Makriyannis. Designing fully secure protocols for secure
two-party computation of constant-domain functions. In Theory of Cryp-
tography Conference, pages 581–611. Springer, 2017.

[13] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. Communications of the ACM, 28(6):637–647, 1985.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In stoc19,
pages 218–229, 1987.

http://eprint.iacr.org/1996/010

[15] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure
two-party computation. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC), pages 413–422, 2008.

[16] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation
via perfect randomizing polynomials. In International Colloquium on Au-
tomata, Languages, and Programming, pages 244–256. Springer, 2002.

[17] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with
constant computational overhead. In Proceedings of the fortieth annual
ACM symposium on Theory of computing, pages 433–442. ACM, 2008.

[18] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on obliv-
ious transfer–efficiently. In Annual International Cryptology Conference,
pages 572–591. Springer, 2008.

[19] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai. Ef-
ficient non-interactive secure computation. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages
406–425. Springer, 2011.

[20] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky. On the power of correlated randomness in secure computation.
In Theory of Cryptography, pages 600–620. Springer, 2013.

[21] D. Khurana, H. K. Maji, and A. Sahai. Secure computation from elastic
noisy channels. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 184–212. Springer, 2016.

[22] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
20–31, 1988.

[23] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 52–78. Springer, 2007.

[24] Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

[25] N. Makriyannis. On the classification of finite boolean functions up to
fairness. In International Conference on Security and Cryptography for
Networks, pages 135–154. Springer, 2014.

[26] A. C. Nascimento and A. Winter. On the oblivious transfer capacity of
noisy correlations. In 2006 IEEE International Symposium on Information
Theory, pages 1871–1875. IEEE, 2006.

[27] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient
and composable oblivious transfer. In Annual international cryptology con-
ference, pages 554–571. Springer, 2008.

[28] M. O. Rabin. How to exchange secrets with oblivious transfer, 2005. URL
http://eprint.iacr.org/2005/187. Harvard University Technical Re-
port 81 talr@watson.ibm.com 12955 received 21 Jun 2005.

[29] A. Shamir. How to share a secret. Communications of the ACM, 22(11):
612–613, 1979.

29

http://eprint.iacr.org/2005/187

[30] S. Wolf and J. Wullschleger. Oblivious transfer is symmetric. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 222–232. Springer, 2006.

[31] J. Wullschleger. Oblivious transfer from weak noisy channels. In Theory of
Cryptography Conference, pages 332–349. Springer, 2009.

[32] A. C. Yao. Protocols for secure computations. In Proceedings of the 23th
Annual Symposium on Foundations of Computer Science (FOCS), pages
160–164, 1982.

30

	On Perfectly Secure 2PC in the OT-Hybrid Model

