
Matrix PRFs: Constructions, Attacks, and
Applications to Obfuscation

Yilei Chen1, Minki Hhan2, Vinod Vaikuntanathan3, and Hoeteck Wee4

1 Visa Research, Palo Alto, USA
yilchen@visa.com

2 Seoul National University, Seoul, South Korea
hhan @snu.ac.kr

3 MIT, Cambridge, USA
vinodv@csail.mit.edu

4 CNRS, ENS, PSL, Paris, France
wee@di.ens.fr

Abstract. We initiate a systematic study of pseudorandom functions
(PRFs) that are computable by simple matrix branching programs; we
refer to these objects as “matrix PRFs”. Matrix PRFs are attractive due
to their simplicity, strong connections to complexity theory and group
theory, and recent applications in program obfuscation.
Our main results are:
– We present constructions of matrix PRFs based on the conjectured

hardness of computational problems pertaining to matrix products.
– We show that any matrix PRF that is computable by a read-c, width
w branching program can be broken in time poly(wc); this means
that any matrix PRF based on constant-width matrices must read
each input bit ω(log(λ)) times. Along the way, we simplify the “ten-
sor switching lemmas” introduced in previous IO attacks.

– We show that a subclass of the candidate local-PRG proposed by
Barak et al. [Eurocrypt 2018] can be broken using simple matrix
algebra.

– We show that augmenting the CVW18 IO candidate with a matrix
PRF provably immunizes the candidate against all known algebraic
and statistical zeroizing attacks, as captured by a new and simple
adversarial model.

1 Introduction

Pseudorandom functions (PRFs), defined by Goldreich, Goldwasser, and Mi-
cali [29], are keyed functions that are indistinguishable from truly random func-
tions given black-box access. In this work we focus on pseudorandom functions
that can be represented by simple matrix branching programs; we refer to these
objects as “matrix PRFs”. In the simplest setting, a matrix PRF takes a key
specified by ` pairs of w × w matrices {Mi,b}i∈[`],b∈{0,1} where

PRF({Mi,b}i∈[`],b∈{0,1} ,x ∈ {0, 1}
`) :=

∏̀
i=1

Mi,xi

2 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

Matrix PRFs are attractive due to their simplicity, strong connections to com-
plexity theory and group theory [1, 12, 44], and recent applications in program
obfuscation [11,27].

Existing constructions. First, we note that the Naor-Reingold PRF [37] (ex-
tended to matrices in [34]) and the Banerjee-Peikert-Rosen PRF [7] may be
viewed as matrix PRFs with post-processing, corresponding to group exponen-
tiation and entry-wise rounding respectively. However, the applications we have
in mind do not allow such post-processing. Instead, we turn to a more general
definition of read-c matrix PRFs, where the key is specified by h := c · ` pairs of
w × w matrices {Mi,b}i∈[h],b∈{0,1} where

PRF({Mi,b}i∈[h],b∈{0,1} ,x) := uL ·
h∏
i=1

Mi,xi mod `
· uR

Here, uL,uR correspond to fixed vectors independent of the key. This corre-
sponds exactly to PRFs computable by read-c matrix branching programs. By
applying Barrington’s theorem on the existing PRFs in NC1, such as the two
PRFs we just mentioned [7, 37], we obtain read-poly(`) matrix PRFs based on
standard assumptions like DDH and LWE.

This work. In this work, we initiate a systematic study of matrix PRFs.

– From the constructive perspective, we investigate whether there are “sim-
pler” constructions of matrix PRF, or hardness assumptions over matrix
products that can be used to build matrix PRFs. Here “simpler” means the
matrices Mi,b’s are drawn from some “natural” distribution, for instance,
independently at random from the same distribution. Note that the con-
structions obtained by apply Barrington’s theorem [10] on PRFs in NC1

yield highly correlated and structured distributions.

– From the attacker’s perspective, the use of matrices opens the gate for simple
linear algebraic attacks in breaking the hardness assumptions. We would like
to understand what are the characteristics that a matrix PRF could or could
not have, by trying different linear algebraic attacks. These characteristics
include the distribution of the underlying matrices, as well as the complexity
of the underlying branching program.

– Finally, we revisit the application of matrix PRFs to program obfuscation
as a mechanism for immunizing against known attacks.

1.1 Our Contributions

Our contributions may be broadly classified into three categories, corresponding
to the three lines of questions mentioned above.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 3

Constructions We show how to build a matrix PRF starting from simple as-
sumptions over matrix products via the Naor-Reingold paradigm [37], and we
present candidates for these assumptions. Concretely, we consider the assump-
tion(
{Ai,b}i∈[k],b∈{0,1},

k∏
i=1

(Ai,0B),

k∏
i=1

(Ai,1B)

)
≈c
(
{Ai,b}i∈[k],b∈{0,1},B0,B1

)
(1)

where the matrices Ai,b, B, B0 and B1 are uniformly random over some simple
matrix groups. We clarify that the ensuing matrix PRF while efficiently com-
putable, requires a product of O(k`) matrices where ` is the length of the PRF
input.

Attacks We show that any matrix PRF that is computable by a read-c, width-w
branching program can be broken in time poly(wc); this means that any ma-
trix PRF based on constant-width matrices must read each input bit ω(log(λ))
times. Our attack and the analysis are inspired by previous zeroizing attacks
on obfuscation [6,18,23]; we also provide some simplification along the way. We
note that the case of c = 1 appears to be folklore.

The attack. The attack is remarkably simple: given oracle access to a function
F : {0, 1}` → R,

1. pick any L := w2c distinct strings x1, . . . , xL ∈ {0, 1}`/2;

2. compute V ∈ RL×L whose (i, j)’th entry is F (xi‖xj);
3. output rank(V)

If F is a truly random function, then V has full rank w.h.p. On the other hand,
if F is computable by a read-c, width w branching program, then we show that
F (xi‖xj) can be written in the form 〈ui,vj〉 for some fixed u1, . . . ,uL,v1, . . . ,vL ∈
Rw

2c−1

. This means that we can write

V =

← u1 →
...

← uL →

︸ ︷︷ ︸

L×w2c−1

 ↑ ↑
v1 · · · vL
↓ ↓

︸ ︷︷ ︸

w2c−1×L

which implies rank(V) ≤ w2c−1.

Next, we sketch how we can decompose F (xi‖xj) into 〈ui,vj〉. This was
already shown in [23, Section 4.2], but we believe our analysis is simpler and
more intuitive. Consider a read-thrice branching program of width w where

Mx‖y = uLM1
xN

1
yM

2
xN

2
yM

3
xN

3
yuR

4 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

Suppose we can rewrite Mx‖y as

ûL · (M1
xN

1
y)⊗ (M2

xN
2
y)⊗ (M3

xN
3
y)) · ûR

= ûL · (M1
x ⊗M2

x ⊗M3
x)︸ ︷︷ ︸

1×w3

· (N1
y ⊗N2

y ⊗N3
y) · ûR︸ ︷︷ ︸

w3×1

for some suitable choices of ûL, ûR. Unfortunately, such a statement appears to
be false. Nonetheless, we are able to prove a similar decomposition where we
replace ûL · (M1

x ⊗M2
x ⊗M3

x) on the left with

flat
(w2×w3︷ ︸︸ ︷
uLM1

x ⊗M2
x ⊗M3

x

)︸ ︷︷ ︸
1×w5

where flat “flattens” a n×m matrix into a 1× nm row vector by concatenating
the rows of the input matrix.

Applications to IO We show that augmenting the CVW18 GGH15-based IO
candidate with a matrix PRF provably immunizes the candidate against known
algebraic and statistical zeroizing attacks, as captured by a new and simple
adversarial model.

Our IO candidate. Our IO candidate on a branching program for a function
f : {0, 1}` → {0, 1} samples random Gaussian matrices {Si,b}i∈[h],b∈{0,1}, a

random vector ah over Zq and a random matrix PRF PRFM : {0, 1}` → [0, 2τ]
where 2τ � q, and outputs

AJ , {Di,b}i∈[h],b∈{0,1}

The construction basically follows that in [18], with the matrix PRF embed-
ded along the diagonal. By padding the programs, we may assume that the
input program and the matrix PRF share the same input-to-index function
$: {0, 1}h → {0, 1}`. Then, we have

AJD$(x) mod q ≈

{
0 · S$(x)ah + PRFM(x) if f(x) = 1

(6= 0) · S$(x)ah + PRFM(x) if f(x) = 0

where ≈ captures an error term which is much smaller than 2τ . Functionality is
straight-forward: output 1 if ‖AJD$(x)‖ < 2τ and 0 otherwise.

Our attack model. We introduce the input-consistent evaluation model on GGH15-
based IO candidates, where the adversary gets oracle access to

Or(x) := AJD$(x) mod q

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 5

instead of AJ , {Di,b}i∈[h],b∈{0,1}. Basically, all known attacks on GGH15-based

IO candidates (including the rank attack and statistical zeroizing attacks [18,19]
can be implemented in this model. In fact, many of these attacks only make use
of the low-norm quantities {Or(x) : f(x) = 1}, which are also referred to as
encodings of zeros, and hence the name zeroizing attacks.

Note that our model allow the adversary to perform arbitrary polynomial-
time computation on the output of Or(·), whereas the “weak multi-linear map
model” in [11] only allows for algebraic computation of these quantities. The
latter does not capture computing the norm of these quantities, as was done in
the recent statistical zeroizing attacks [19]. In fact, we even allow the adversary
access to {AJD$(x) mod q : f(x) = 0}, quantities which none of the existing
attack takes advantage of except the some attacks [18, 21] for a simple GGH15
obfuscation [31]. In fact, the class of adversaries that only does such evaluations
appears to capture all known attacks for GGH15-based obfuscation.

We clarify that our attack model does not capture so-called mixed-input
attacks, where the adversary computes AJDx′ mod q for some x′ /∈ $({0, 1}`).
As in prior works, we make sure that such quantities do not have small norm,
but pre-processing the branching program to reject all x′ /∈ $({0, 1}`) (see 6.1
for details).

Analysis. We show that for our IO candidate, we can simulate oracle access to
Or(·) given oracle access to f(·) under the LWE assumption (which in particular
implies the existence of matrix PRFs). This basically says that our IO candidate
achieves “virtual black-box security” in the input-consistent evaluation model.

The proof strategy is quite simple: we hide the lower bits by using the embed-
ded matrix PRFs, and hide the higher bits using lattice-based PRFs [7, 14]. In
more detail, observe that the lower τ bits of of Or(·) are pseudorandom, thanks
to pseudorandomness of PRFM(·). We can then simulate the higher log q−τ bits
exactly as in [18]:

– if f(x) = 1, then these bits are just 0.
– if f(x) = 0, then we can just rely on the pseudorandomness of existing LWE-

based PRFs [7, 14], which tells us that the higher log q − τ bits of S$(x)ah
are pseudorandom.

Note that the idea of embedding a matrix PRF into an IO candidate already
appeared in [27, Section 1.3]; however, the use of matrix PRF for “noise flooding”
the encodings of zeros and the lower-order bits as in our analysis –while perfectly
natural in hindsight– appears to be novel to this work. In prior works [11,27], the
matrix PRF is merely used to rule out non-trivial algebraic relations amongst the
encodings of zeros, namely that there is no low-degree polynomial that vanishes
over a large number of pseudorandom values.

1.2 Discussion

Implications for IO. Our results demonstrate new connections between matrix
PRFs and IO in this work and shed new insights into existing IO constructions
and candidates:

6 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

– Many candidates for IO follow the template laid out in [26]: start out with
a branching program {Mi,b}i∈[h],b∈{0,1}, perform some pre-processing, and

encode the latter using graded encodings. To achieve security in the generic
group model [9] or to defeat against the rank attack [18], the pre-processing
would add significant redundancy or blow up the length of the underlying
branching program. In particular, even if we start out with a read-once
branching program as considered in [31], the program we encode would be a
read-` (e.g. for so-called dual-input branching programs) or read-λ branching
program. But, why read-` or read-λ? Our results –both translating existing
IO attacks to attacks on matrix PRFs, and showing how to embed a matrix
PRF to achieve resilience against existing attacks– suggest that the blow-up
is closely related to the complexity of computing matrix PRFs.

– A recent series of works demonstrated a close connection between building
functional encryption (and thus IO) to that of low-degree pseudorandom
generators (PRG) over the integers [2, 5, 35], where the role of the PRGs
is to flood any leakage from the error term during FHE decryption [30].
Here, we show to exploit matrix PRFs –again over the integers– to flood
any leakage from the error term in the GGH15 encodings (but unlike the
setting of PRGs, we do not require the output of the PRFs to have polyno-
mially bounded domain). Both these lines of works point to understanding
pseudorandomness over the integers as a crucial step towards building IO.

– Our results suggest new avenues for attacks using input-inconsistent eval-
uations, namely to carefully exploit the quantities {AJDx′ mod q : x′ /∈
$({0, 1}`)} instead of the input-consistent evaluations.

We note that our attacks also play a useful pedagogical role: explaining the core
idea of existing zeroizing attacks on IO in the much simpler context of breaking
pseudorandomness of matrix PRFs.

Additional related works. Let us remark that recently Boneh et al. [13] also
look for (weak) PRFs with simple structures, albeit with a different flavor of
simplicity. Their candidates in fact use the change of modulus, which is what we
are trying to avoid.

2 Preliminaries

Notations and terminology. Let R,Z,N be the set of real numbers, integers and
positive integers. Denote Z/(qZ) by Zq. For n ∈ N, let [n] := {1, ..., n}. A vector
in Rn (represented in column form by default) is written as a bold lower-case
letter, e.g. v. For a vector v, the ith component of v will be denoted by vi. A
matrix is written as a bold capital letter, e.g. A. The ith column vector of A is
denoted ai.

Subset products (of matrices) appear frequently in this article. For a given
h ∈ N, a bit-string v ∈ {0, 1}h, we use Xv to denote

∏
i∈[h] Xi,vi (it is implicit

that {Xi,b}i∈[h],b∈{0,1} are well-defined).

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 7

The tensor product (Kronecker product) for matrices A ∈ R`×m, B ∈ Rn×p
is defined as

A⊗B =

a1,1B, . . . , a1,mB
. . . , . . . , . . .
a`,1B, . . . , a`,mB

 ∈ R`n×mp. (2)

For matrices A ∈ R`×m, B ∈ Rn×p, C ∈ Rm×u, D ∈ Rp×v,

(AC)⊗ (BD) = (A⊗B) · (C⊗D). (3)

Matrix rings/groups. Let Mn(R) denote a matrix ring, i.e., the ring of n × n
matrices with coefficients in a ring R. When Mn(R) is called a matrix group, we
consider matrix multiplication as the group operation. By default we assume R
is a commutative ring with unity. The rank of a matrix M ∈ Mn(R) refers to
its R-rank.

Let GL(n,R) be the group of units in Mn(R), i.e., the group of invertible n×n
matrices with coefficients in R. Let SL(n, F) be the group of n×n matrices with
determinant 1 over a field F . When q = pk is a prime power, let GL(n, q), SL(n, q)
denote the corresponding matrix groups over the finite field Fq.

Cryptographic notions. In cryptography, the security parameter (denoted as λ)
is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn randomly from the set S we denote as v
$←

S or v ← U(S), sometimes abbreviated as v when the context is clear. We
use ≈s and ≈c as the abbreviations for statistically close and computationally
indistinguishable.

Definition 2.1 (Pseudorandom function [29]). A family of deterministic
functions F = {Fk : Dλ → Rλ}λ∈N is pseudorandom if there exists a negligible
function negl(·) for any probabilistic polynomial time adversary Adv, such that∣∣∣∣ Pr

k,Adv
[AdvFk(·)(1λ) = 1]− Pr

O,Adv
[AdvO(·)(1λ) = 1]

∣∣∣∣ ≤ negl(λ),

where O(·) denotes a truly random function.

3 Direct Attacks on Matrix PRFs

In this section we stand from the attacker’s point of view to examine what are
the basic characteristics that a matrix PRF should (or should not) have. Let
G = Mw(R), h = c · `. We consider read-c matrix PRFs of the form:

F : {0, 1}` → R, x 7→ uL ·
h∏
i=1

Mi,xi mod `
· uR (4)

where uL,uR denote the left and right bookend vectors. The seed is given by

uL, {Mi,b ∈ G}i∈[h],b∈{0,1},uR.

8 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

3.1 Rank attack

We describe the rank attack which runs in time and space wO(c), where w is the
dimension of the M matrices, c is the number of repetitions of each input bits in
the branching program steps. The attack is originated from the zeroizing attack
plus tensoring analysis in the obfuscation literature [6, 18,23].

The main idea of the attack is to form a matrix from the evaluations on
different inputs. We argue that the rank of such a matrix is bounded by wO(c),
whereas for a truly random function, the matrix is full-rank with high probability.

Algorithm 3.1 (Rank attack) The algorithm proceeds as follows.

1. Let ρ > w2c−1. Divide the ` input bits into 2 intervals [`] = X | Y such that
|X |, |Y| ≥ dlog ρe.

2. For 1 ≤ i, j ≤ ρ, evaluate the function F on ρ2 different inputs of the form
u(i,j) = x(i) | y(j) ∈ {0, 1}`. Let v(i,j) ∈ R be the evaluation result on u(i,j):

v(i,j) := F (u(i,j))

3. Output the rank of matrix V = (v(i,j)) ∈ Rρ×ρ.

Analysis for read-once branching programs First we analyze the case
where c = 1, i.e. the function is read-once. For a truly random function, the
R-rank of V is ρ with non-negligible probability.

However, for the function F in Eqn. (4), the R-rank of V is bounded by w,
since

V =

v(1,1) ... v(1,ρ)...
v(ρ,1) ... v(ρ,ρ)

 =

uL ·Mx(1)

...
uL ·Mx(ρ)

︸ ︷︷ ︸

:=X∈Rρ×w

·
(
My(1) · uR ... My(ρ) · uR

)︸ ︷︷ ︸
:=Y∈Rw×ρ

. (5)

Here we abuse the subset product notation at My(j) by assuming the index of

the string y(j) starts at the (|X |+ 1)th step, for j ∈ [ρ].

Analysis for matrix PRFs with multiple repetitions The analysis for
read-once width w branching programs simply uses the fact that Mx‖y can be
written as an inner product of two vectors of length w which depend only on x
and y respectively. Here, we show that for read-c width w branching programs,
Mx‖y can be written as an inner product of two vectors of length w2c−1. Note
that this was already shown in [23, Section 4.2], but we believe our analysis is
simpler and more intuitive.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 9

Flattening matrices. For a matrix A =
(
a1 | ... | am

)
∈ Rn×m, let flat(A) ∈

R1×nm denote the row vector formed by concatenating the rows of A. As it
turns out, we can write

aB1B2 . . .Bc = flat(aB1 ⊗B2 ⊗ · · · ⊗Bc)J (6)

where J is a fixed matrix over {0, 1} independent of a,B1,B2, . . . ,Bc.
5 The

intuition for the identity is that each entry in the row vector aB1 · · ·Bc is a
linear combination of terms, each a product of entries in aB1, . . . ,Bc, which
appears as an entry in aB1 ⊗ · · · ⊗Bc.

In addition, we also have the identity

flat(AB) = flat(A) · (In ⊗B) (7)

where n is the height of A.6

Decomposing read-many branching programs. Given a read-c branching program
of width w, we can write Mx‖y as

Mx‖y = uLM1
xN

1
y · · ·Mc

xN
c
yuR

= flat
(
(uLM1

xN
1
y)⊗ · · · ⊗ (Mc

xN
c
yuR)

)
· J via (6)

= flat
(
(uLM1

x ⊗ · · · ⊗Mc
x)︸ ︷︷ ︸

wc−1×wc

· (N1
y ⊗ · · · ⊗Nc

yuR)︸ ︷︷ ︸
wc×wc−1

)
· J via mixed-product

= flat
(
(uLM1

x ⊗ · · · ⊗Mc
x)
)︸ ︷︷ ︸

1×w2c−1

· (Iwc−1 ⊗N1
y ⊗ · · · ⊗Nc

yuR) · J︸ ︷︷ ︸
w2c−1×1

via (7)

That is, Mx‖y can be written as an inner product of two vectors of length w2c−1.
Therefore, the rank of V is at most w2c−1.

Comparison with [6,23]. We briefly mention that the previous analysis in [6,23]
works by iterating applying the identity

flat(A ·X ·B) = flat(X) · (A> ⊗B)

5 Here’s a concrete example:

(
a1 a2

)(b1
b2

)
= flat

((
a1 a2

)
⊗
(
b1
b2

))
︸ ︷︷ ︸
=
(
a1b2 a2b1 a1b2 a2b2

)

1
0
0
1

6 Here’s a concrete example:

flat
((a1

a2

)(
b1 b2

))
=
(
a1b1 a1b2 a2b1 a2b2

)
=
(
a1 a2

)(b1 b2
b1 b2

)

10 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

c times along with the mixed-product property to switch the order of the matrix
product. (The papers refer to “vectorization” vec, which is the column analogue
of flat.) Our analysis is one-shot and avoids this iterative approach, and also
avoids keeping track of matrix transposes.

Open Problem. Can we prove the following generalization of the rank attack? Let
g be a polynomial of total degree at most d in the variables x1, . . . , xn, y1, . . . , yn
over Fq (or even Z), which computes a function {0, 1}n × {0, 1}n → Fq. Now,
pick some arbitrary X1, . . . , XL, Y1, . . . , YL ∈ {0, 1}n, and consider the matrix

V := (g(Xi, Yj)) ∈ FL×Lq

Conjecture:

rank(V) ≤ max{L, nO(d)}

If the conjecture is true, then we obtain an attack that works not only for matrix
products, but basically any low-degree polynomial.

Here’s a potential approach to prove the conjecture (based on the analysis of
the rank attack). Write g as a sum of monomials gk. We can write V as a sum
of matrices Vk where Vk := (gk(Xi, Yj)). Each Vk can be written as a product
of two matrices, which allows us to bound the rank of Vk. Then, use the fact
that rank(V) ≤

∑
k rank(Vk). A related question is, can we use this approach to

distinguish g from random low-degree polynomials? A related challenge appears
here in [1].

3.2 Implication of the rank attack

We briefly discuss the implication of the rank attack to two relevant propos-
als (or paradigms) of constructing efficient PRFs [12] and cryptographic hash
functions [43, 44]. Both proposals use the group operations over a sequence of
group elements as the evaluation functions. The rank attack implies when the
underlying group G admits an efficiently computable homomorphism to a ma-
trix group Mn(R), and when each input bit chooses a constant number of steps
in the evaluation, then the resulting function is not a PRF (resp. the resulting
hash function cannot be used as a random oracle).

Let us remark that our attack does not refute any explicit claims in those
two proposals. It mainly serves as a sanity check for the future proposals of
instantiating PRFs (resp. hash functions) following those two paradigms. Let us
also remark that the rank attack is preventable by adding an one-way extraction
function at the end of the evaluation. But when the PRF (resp. hash function)
is used inside other applications, an extraction function that is compatible with
the application may not be easy to construct. As an example, when the matrix
PRFs are used in safeguarding the branching-program obfuscator like [26, 27],
it is not clear how to apply an extraction function that is compatible with the
obfuscator.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 11

Efficient PRF based on the conjugacy problem In the conference on math-
ematics of cryptography at UCI, 2015, Boneh proposed a simple construction
of PRF based on the hardness of conjugacy problem, and suggested to look for
suitable non-abelian groups for which the conjugacy problem is hard [12]. If such
a group is found, it might lead to a PRF that is as efficient as AES. However,
even without worrying about efficiency, it is not clear how to find a group where
the decisional conjugacy problem is hard.

Here is a brief explanation of the conjugacy problem and the PRF construc-
tion [12]. Let K be a non-abelian group, G be a subset of K, H be a subgroup

of K. Given g
$← G, z = h◦ g ◦h−1 where h

$← H, the search conjugacy problem
asks to find h.

The PRF construction relies on the following decision version of the conju-

gacy problem. Let m be a polynomial. For h
$← H, g1, g2, ..., gm

$← Gm. The
decisional problem asks to distinguish

g1, h ◦ g1 ◦ h−1, ..., gm, h ◦ gm ◦ h−1

from 2m random elements in G.
Let the input be x ∈ {0, 1}`, the key be k = g, {hi,b}i∈[`],b∈{0,1}. Then the

following construction is a PRF assuming the decisional conjugacy problem is
hard.

Fk(x) := h`,x` ◦ h`−1,x`−1
◦ ... ◦ h1,x1 ◦ g ◦ h−11,x1

◦ ... ◦ h−1`,x`
The proof follows the augmented cascade technique of [15].

Note that F only has 2`− 1 steps, with each index in the input repeating for
at most 2 times. So if G admits an efficient homomorphism to a matrix group,
then the rank attack applies.

Finally, let us remark that there are candidate group for which the search
conjugacy problem is hard, e.g. the braid group [33]. But the decisional conjugacy
problem over the braid group is broken exactly using a representation as a matrix
group [22].

Cryptographic hash functions based on Cayley graphs We first recall the
hard problems on Cayley graphs and their applications in building cryptographic
hash functions [41]. Let G be a finite non-abelian group, and S = {s0, ..., sm}
be a small generation set. The Cayley graph with respect to (G, S) is defined
as follows: each element v ∈ G defines a vertex; there is an edge between two
vertices vi and vj if vi = vj ◦ s for some s ∈ S. The factorization problem asks
to express an element of the group G as a “short” product of elements from S.
For certain groups and generation sets, the factorization problem is conjectured
to be hard.

In 1991, Zémor [44] introduced a cryptographic hash function based on
a Cayley graph with respect to the group G = SL(2,Fp) and the set S ={
s0 =

(
1, 1
0, 1

)
, s1 =

(
1, 0
1, 1

)}
. Let the input of the hash function be x ∈ {0, 1}`.

12 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

The evaluation of the hash function is simply

H(x) :=
∏̀
i=1

sxi .

The collision resistance of this function is based on the hardness of the factor-
ization problem.

The factorization problem with respect to the original proposal of Zémor was
solved by [43]. Then alternative proposals of the group G and generation set S
have since then been given (see the survey of [41]). Most of the groups in these
proposals are still matrix groups.

We observe that since H is read-once, if the underlying group G is a matrix
group, then the rank attack is able to distinguish the hash function from a
random oracle.

Finally, let us clarify that the original authors of the Cayley hash function
proposals do not claim to achieve the random-oracle like properties, and most
of the analyses of the Cayley graph-based hash function focus on its collision
resistance (which is directly related to the factorization problem). Still, many
applications of cryptographic hash functions require random-oracle like proper-
ties (e.g. in the Fiat-Shamir transformation), so we think it is worth to point
out that the Cayley graph-based hash function does not achieve those strong
properties when instantiated with matrix groups.

4 PRFs from Hard Matrix Problems

In this section, we propose plausibly hard problems related to matrix products,
from which we can build a matrix PRF using the Naor-Reingold paradigm. We
start from a few simple problems and explain how these problems can be solved
efficiently. Then we generalize the attack methodology. Finally, we conclude with
the final assumptions which survive our cryptanalytic attempts.

4.1 The initial attempts

First Take and the Determinant Attack. Our first assumption sets G to be the
group GL(n, p) where we think of n as being the security parameter. Let m be an
arbitrarily polynomially large integer. The assumption says that the following
two distributions are computationally indistinguishable:

(A1, ...,Am, (A1B)k, ..., (AmB)k) ≈c (A1, ...,Am,U1, ...,Um) (8)

where all the matrices are chosen uniformly at random from GL(n, p).
Let us explain the choice of k. When k = 1, the assumption is trivially broken

since we can just compute B on the LHS. When k is a constant, we are still able
to break the assumption using a linear algebraic technique detailed in Section 3.
So we set k to be as large as the security parameter.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 13

Unfortunately, even with a large k the assumption is broken, since on the
LHS we have

det((A2B)k) · det(A1)k = det((A1B)k) · det(A2)k

In general, any group homomorphism from G to an Abelian group H allows us
to carry out this attack.

Second Take and the Order Attack. The easy fix for this is to take the group
to be SL(n, p), the group of n-by-n matrices with determinant 1. It is known
that for several choices of n and p, SL(n, p) is simple, namely, it has no normal
subgroups. Consequently, it admits no non-trivial group homomorphisms to any
Abelian group.

Fact 1 (see, e.g., [32]) The following are true about the special linear group
SL(n, p).

1. The projective special linear group PSL(n, p) defined as the quotient SL(n, p)/Z(SL(n, p))
is simple for any n and p, except when n = 2 and p = 2, 3. Here, Z(G) de-
notes the center of group G, the set of elements in G that commute with any
other element of G.

2. For n and p where gcd(n, p−1) = 1, the center of SL(n, p) is trivial. Namely,
Z(SL(n, p)) = {In}.

3. As a consequence of (1) and (2) above, for n ≥ 3 and p such that gcd(n, p−
1) = 1, SL(n, p) is simple.

In particular, we will pick p = 2 and n ≥ 3 to be a large number.

However, we notice that there is a way to break the assumption simply using
the group order.

Fact 2 (see, e.g., [32]) The order of SL(n, p) is easily computable. It is

r := |SL(n, p)| = pn(n−1)/2 · (pn − 1) · (pn−1 − 1) · . . . · (p2 − 1)

Therefore, when k is relatively prime to r, we can compute A1B from (A1B)k

as follows: let s = k−1 mod r and compute
(
(A1B)k

)s
= A1B. Consequently,

the similar assumption for group SL(n, p) is also broken easily.

One may hope that the assumption holds for certain subgroup of G ⊂
GL(n, p). To rule out the order attack, however, we should choose either 1) to
hide the order of group G or 2) fix the order of group to have many divisors, but
neither is a nontrivial. We instead seek another way as follows.

Summary. From the first two attempts we rule out some choices of the group
and parameters. Here is a quick summary.

– k has to be as large as the security parameter λ to avoid the rank attack.

14 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

– The determinant attack can be generalized to the case when there is an
(efficiently computable) homomorphism f from G to an abelian group H,
since it crucially relies on the fact that f((A2B)k) · f(A1)k = f((A1B)k) ·
f(A2)k for f = det. To rule out this class of attacks, we fix G to be non-
abelian simple group.

– The order attack heavily relies on the fact that one can cancel out A1 in
the left-end of the product. We thus use multiple A’s to avoid this canceling
with non-abelian group.

4.2 The first formal assumption and construction

Let G be a non-commutative simple group where the group elements can be
efficiently represented by matrices (for example, the alternating group An for a
polynomially large n ≥ 5). Let k be as large as the security parameter λ. Our
assumption is

(
{Ai,b}i∈[k],b∈{0,1},

k∏
i=1

(Ai,0B),

k∏
i=1

(Ai,1B)

)
≈c
(
{Ai,b}i∈[k],b∈{0,1},B0,B1

)
(9)

where the matrices {Ai,b}i∈[k],b∈{0,1}, B, B0 and B1 are chosen from U(G).

The PRF Construction. The family of pseudorandom functions is defined iter-
atively as follows.

Construction 4.1 The construction is parameterized by matrices A1,0,A1,1, . . . ,Ak,0,Ak,1

sampled uniformly random from G.

PRF(i)(x1x2 . . . xi) =

k∏
j=1

(Aj,xi · PRF(i−1)(x1x2 . . . xi−1))

PRF(0)(ε) = I

where ε is the empty string and I is the identity matrix.

The proof follows a Naor-Reingold style argument and proceeds by showing,
inductively, that PRF(i−1)(x1x2 . . . xi−1) is pseudorandom. If we now denote this
matrix by B,

(
PRF(i)(x1x2 . . . 0),PRF(i)(x1x2 . . . 1)

)
=

(k∏
j=1

(Aj,0 ·B),

k∏
j=1

(Aj,1 ·B)

)

which, by Assumption 9, is pseudorandom.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 15

4.3 Another assumption and the synthesizer-based PRF
construction

In the second assumption, we still choose G as a non-commutative simple group
where the group elements can be efficiently represented by matrices. Let m1,m2

be arbitrarily polynomially large integers, k = O(λ). Let {Ai,1, ...,Ai,k ←
U(Gk)}i∈[m1], {Bj,1, ...,Bj,k ← U(Gk)}j∈[m2]. Our assumption is(k∏

v=1

(Ai,vBj,v)

)
i∈[m1],j∈[m2]

≈c
(

Ui,j ← U(G)

)
i∈[m1],j∈[m2]

(10)

The synthesizer-based PRF construction. To assist the construction of a synthesizer-
based matrix PRF from Assumption (9), let us first define the lists of indices
used in the induction.

Let k = O(λ), v = dlog ke. Let ` ∈ poly(λ) be the input length of the PRF.
Let ε denote the empty string. Let || be the symbol of list concatenation. For
any list S of length t, let SL denote the sublist of the bt/2e items from the left,
let SR denote the sublist of the t− bt/2e items from the right.

Define the initial index list as Sε := {i1, i2, ..., i`}. Define the “counter” list
as C := {a1, ..., av}. Let r ∈ {0, 1}∗ ∪ ε, iteratively define Sr0 and Sr1 as:

if Sr is defined and |Sr| ≥ 4v, Sr0 := SLr ||C, Sr1 := SRr ||C
if Sr is defined and |Sr| < 4v, ⊥.

Let d ∈ Z be the depth of the induction, i.e., any defined list Sr has |r| ≤ d. We

have 2d ≥ ` ≥
(

4−1
3−1

)d
= 1.5d. Since ` ∈ poly(λ), we have 2d ∈ poly(λ).

Construction 4.2 The PRF is keyed by 24v · 2d ∈ poly(λ) random matrices
{Ai,Sr ← U(G)}i∈{0,1}4v,r∈{0,1}d . The evaluation formula PRF(x) := PRFSε(x1x2 . . . x`)

is defined inductively as

if |Sr| ≥ 4v PRFSr (x1x2 . . . xt) =

k∏
j=1

(
PRFSr0(x1x2 . . . xbt/2ej̃) · PRFSr1(xbt/2e+1 . . . xtj̃)

)
if |Sr| < 4v PRFSr (x1x2 . . . xt) = Ax1x2...xt,Sr .

where j̃ denotes the bit-decomposition of j.

4.4 Open problems

Open Problem 1. In both of our PRF constructions, the numbers of steps in the
final branching program (i.e., the number of matrices in each product) are super-
polynomial. In Construction 4.1 it takes roughly O(k`) steps; in Construction 4.2
it takes roughly O(kd) steps. Although those PRFs are efficiently computable
(the key is to reuse intermediate products), the numbers of steps are enormous.
Is there a way to obtain a matrix PRF with polynomial number of steps from
inductive assumptions?

16 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

Open Problem 2. Any PRF in NC1 gives rise a matrix PRF, with a possibly
different order of products. Is there a canonical order and a canonical group
such that the security of any NC1 PRF can be reduced to one construction?
This would possibly give us a (nice) universal PRF.

5 Matrix Attacks for the Candidate Block-Local PRG
from BBKK18

A pseudorandom generator f : {0, 1}bn → {0, 1}m is called `-block-local if the
input can be separated into n blocks, each of size b bits, such that every output
bit of f depends on at most ` blocks. When roughly m ≥ Ω̃(n`/2)7, there is
a generic attack on `-block-local PRGs [8]. Specific to 3-block-local PRGs, no
generic attack is known for m < n1.5.

In [8], the authors propose a simple candidate `-block-local PRG from group
theory, where m can be as large as n`/2−ε. Let us recall their candidate, with
` = 3 for the simplicity of description. Let G be a finite group that does not have

any abelian quotient group. Choose 3m random indices
{
ij,k

$← [n]
}
j∈[m],k∈[3]

.

The 3-block-local-PRG f is mapping from Gn to Gm as

fj(x1, ..., xn) = xj,1 ◦ xj,2 ◦ xj,3.

In particular, the authors mentioned that G can be a non-commutative simple
group.

We show that when G admits an efficiently computable homomorphism to
a matrix group Mw(R) (e.g. when G is an alternating groups Aw with w ≥ 5),
then there is an attack that rules out certain choices of combinations of indices
in f . In particular, we show that when G is chosen as the alternating group,
then a non-negligible fraction of the candidates (where the randomness is taken
over the choices of the indices) are not PRGs.

The attack uses the fact that for any two matrices A,B ∈ Rw×w, χ(AB) =
χ(BA), where χ denotes the characteristic polynomial. For simplicity let us
assume the group G is super-polynomially large (e.g. G = Aw where w = O(λ)).
The distinguisher trys to find four output bits whose indices are of the pattern

(a, b, c), (d, e, f), (b, c, d), (e, f, a) (11)

where the same letter denote the same index.
Then for these four output group elements represented by matrices M1, M2,

M3, M4, we always have χ(M1M2) = χ(M3M4) in the real case. In the random
case, since we assume G is super-polynomially large, the characteristic polyno-
mials are unlikely to be equal.

Now we bound the probability for the existence of Pattern (11) if the indices
are chosen randomly. The total number N of different layouts of the indices is:

N = n3m

7 More precisely, m = Ω(2`b)(n+ 2`b)d`/2e for the size of each block b.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 17

The total number M of different layouts of the indices such that Pattern (11)
occurs can be lower bounded by fixing Pattern (11) over 4 output bits, and choose
the rest arbitrarily. I.e.

M ≥ n3(m−4)

So M/N ≥ n−12, which means as long as m ≥ 4, a non-negligible fraction of
all the candidate 3-block-local-PRGs can be attacked when instantiated with G
as a matrix group.

The attack can be generalized to smaller G, and larger `. On the positive
side, the attack also seem to be avoidable by not choosing the indices that form
Pattern (11).

6 Candidate Indistinguishability Obfuscation

In this section we give a candidate construction of indistinguishability obfusca-
tion O, following [11,18,27].

Preliminaries. A branching program Γ is a set

Γ =
{

uP
L ∈ {0, 1}1×w,

{
Pi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1} ,uR, $: {0, 1}` → {0, 1}h

}
where w is called width of branching program and $ an input-to-index function.
We write

Γ (x′) :=

{
uLPx′uR if x′ ∈ {0, 1}h

uLPx′ if x′ ∈ {0, 1}<h

We say that a branching program Γ computes a function f : {0, 1}` → {0, 1}
if

∀x ∈ {0, 1}` : Γ ($(x)) = 0⇐⇒ f(x) = 1

We particularly consider a simple input-to-index function $: {0, 1}` → {0, 1}h
that outputs h/` copies of x, i.e. $(x) = x|x| · · · |x. We denote c := h/` and call
this branching program c-input-repeating. We define an index-to-input function
ι : [h]→ [`] so that ι : x 7→ (x mod `)+1. For a string x ∈ {0, 1}∗, we denote the
length of x by |x|. We say x′ ∈ $({0, 1}`) input-consistent or simply consistent.

Lattice Basics. We briefly describe the basic facts in the lattice problems and
trapdoor functions. For more detailed discussion and review we refer [18] to
readers. What we need for the construction is, roughly speaking, that there is
an algorithm, given matrices A and B and a trapdoor τA, to sample a (random)
matrix D whose entries follow the discrete Gaussian distribution with small
variance such that AD = B mod q. We denote this random small-norm Gaussian
D by A−1(B) following [18]. Readers who are not interested in the details may
skip the detailed definitions and lemmas described here, since they are only used
for technical details such as set parameters, etc.

18 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

We denote the discrete Gaussian distribution over Zn with parameter σ by
DZn,σ. Given matrix A ∈ Zn×mq , the kernel lattice of A is denoted by

Λ⊥(A) := {c ∈ Zm : A · c = 0n mod q}.

Given y ∈ Znq and σ > 0, we use A−1(y, σ) to denote the distribution of a vector
d sampled from DZm,σ conditioned on Ad = y mod q. We sometimes omit σ
when the context is clear.

Definition 6.1 (Decisional learning with errors (LWE) [42]). For n,m ∈
N and modulus q ≥ 2, distributions for secret vector, public matrices, and er-
ror vectors θ, πχ ⊂ Zq. An LWE sample w.r.t. these parameters is obtained by
sampling s← θn, A← πn×m, e← χm and outputting (A, sTA + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Z1×m

q) with probability
bigger than 1/2 plus non-negligible.

Lemma 6.2 (Standard form [16, 38, 39, 42]). For n ∈ N and for any m =
poly(n), q ≤ 2poly(n). Let θ = π = U(Zq) and χ = DZ,σ where σ ≥ 2

√
n. If there

exist an efficient (possibly quantum) algorithm that solves LWEn,m,q,θ,π,χ, then
there exists an efficient (possibly quantum) algorithm for approximating SIVP
and GapSVP in `2 norm, in the worst case, within Õ(nq/σ) factors.

Lemma 6.3 (LWE with small public matrices [14]). If n,m, q, σ are cho-
sen as Lemma 6.2, then LWEn′,m,q,U(Zq),DZ,σ,DZ,σ is as hard as LWEn,m,q,θ,π,χ
for n′ ≥ 2n log q.

Lemma 6.4 ([3, 4, 28, 36]). There is a p.p.t. algorithms TrapSamp(1n, 1m, q)
that, given modulus q ≥ 2 and dimension m,n such that m ≥ 2n log q, outputs
A ≈s U(Zn×mq) with a trapdoor τ. Further, if σ ≥ 2

√
n log q, there is a p.p.t.

algorithm that, given (A, τ)← TrapSam(1n, 1m, q) and y ∈ Znq , outputs a sample
from A−1(y, σ). Further, it holds that

{A,x,y : y← U(Znq),x← A−1(y, σ)} ≈s {A,x,y : x← DZm,σ,y = Ax}.

6.1 Construction

Input. The obfuscation algorithm takes as input a c-input-repeating branching
program Γ = {uL ∈ {0, 1}1×w, {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} ,uR} computing a

function f : {0, 1}` → {0, 1}.
We modify Γ to a new functionally equivalent branching program Γ ′ so

that it satisfies Γ ′(x′) 6= 0 for all x′ /∈ $({0, 1}h) (as well as x′ ∈ {0, 1}<h).
This can be done by padding an input-consistency check program in the right-
bottom diagonal of P, which only slightly increases w and the bound of entries.
Concretely we follow Construction 6.1. For brevity, we just assume that the input
program is of the form

Γ = {uL ∈ {0, 1, · · · , T}1×w,
{
Pi,b ∈ {0, 1, · · · , T}w×w

}
i∈[h],b∈{0,1} ,uR}

and assume that it satisfies the condition above without loss of generality. In
particular, |Γ ($(x))| ≤ T in this construction.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 19

Obfuscation Procedure.

– Set parameters n,m, q, τ, ν, B ∈ N and σ ∈ R+ as in Parameter 6.1. Let
d := wn+ 5τ + 3` be a dimension of pre-encoding.

– Sample a matrix PRF {uM
L ∈ {0, 1}1×5τ , {Mi,b ∈ {0, 1}5τ×5τ}i∈[h],b∈{0,1},uM

R ∈
Z5τ×1} with input length ` and c-repetition whose range is [0, 2τ − 1]. Con-
cretely, we follow Construction 6.1. By padding the programs, we may as-
sume that the input program and the matrix PRF share the same input-to-
index function $: {0, 1}h → {0, 1}`.

– Sample
{

Si,b ← Dn×n
Z,σ

}
i∈[h],b∈{0,1}

and ah ← U(Zn×1q), and compute pre-

encodings as follows:

J :=
(
uL ⊗ 11×n||uM

L

)
, L :=

(
uR ⊗ ah

uM
R

)
,

Ŝi,b :=

(
Pi,b ⊗ Si,b

Mi,b

)
for i ∈ [h]

For brevity we write S(x′) := 11×n ·Sx′ ·ah. In particular, for all x′ ∈ {0, 1}h,

J · Ŝx′ · L
= Γ (x′) · S(x′) + uM

L ·Mx′ · uM
R

=

{
PRFM(x) if x′ = $(x) and f(x) = 1

(6= 0) · S(x′) + uM
L Mx′u

M
R otherwise

Note that Γ (x′) is a scalar, thus ⊗ is just a multiplication.
– Sample error matrices Ei,b from DZ,σ with the corresponding dimension and

computes

AJ = J ·A0 ∈ Z1×m

Di,b ← A−1i−1

(
Ŝi,b ·Ai + Ei,b

)
∈ Zm×m, i = 1, 2, · · · , h− 1

Dh,b ← A−1h−1

(
Ŝh,b · L + Eh,b

)
∈ Zm×1

Output. The obfuscation algorithms outputs {AJ , {Di,b}i∈[h],b∈{0,1}} as an ob-
fuscated program.

Evaluation. For input x ∈ {0, 1}`, returns 1 if |AJ ·D$(x) mod q| < B, and 0
otherwise.

Correctness. For x ∈ {0, 1}≤h with length h′,

AJ ·Dx′ = J · Ŝx′ ·Ah′ + J ·
h′∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h′∏
k=j+1

Dk,xk

 mod q

(12)

20 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

where Ah := L. Note that all entries following the discrete Gaussian distribution
is bounded by

√
mσ with overwhelming probability. The latter term, GGH15

errors, can be bounded, with all but negligible probability, as follows:∥∥∥∥∥∥J ·
h′∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h′∏
k=j+1

Dk,xk

∥∥∥∥∥∥
∞

≤ (2wd) · h′ · (m
√
mσ · wT)h

′

In particular, for x′ = $(x) and f(x) = 1, the first term is PRFM(x), which is
bounded by 2τ − 1. We set B ≥ 2τ + (2wd) · h · (m

√
mσ ·wT)h so that for every

x satisfying f(x) = 1 the obfuscation outputs correctly.
We also note that, if we set q > B · ω(poly(λ)),

Γ (x′) = 0⇐⇒ x′ = $(x) ∧ f(x) = 1

holds for any x′ ∈ {0, 1}≤h since we pad the input-consistency check program at
the beginning. This implies that the random matrix A′h the (partial) evaluation
AJ ·Dx′ is not canceled. That is, the probability that the evaluation of obfusca-
tion outputs 1 is negligible for an incomplete, inconsistent input x′ or an input
x′ = $(x) satisfying f(x) = 0.

Parameters. Our parameter settings follow [11,18], which matches to the cur-
rent existing safety mechanisms. Let λ be a security parameter of construc-
tion and λLWE = poly(λ) a security parameter of underlying LWE problem. Let
d := wn + 5τ be a dimension of pre-encodings. For trapdoor functionalities,
m = Ω(d log q) and σ = Ω(

√
z log q) by Lemma 6.4. Set n = Ω(λLWE log q)

and σ = Ω(
√
λLWE) for the security of LWE as in Lemma 6.2 and 6.3. Set

q ≤ (σ/λLWE) · 2λ
1−ε
LWE for an ε ∈ (0, 1). Also for the security proof in our model,

we set 2τ ≥ (2wd) · h · (m
√
mσ · wT)h · ω(poly(λ)). On the other hand, we set

B ≥ 2τ + (2wd) · h · (m
√
mσ ·wT)h and q ≥ B · ω(poly(λ)) for the correctness.8

Construction of subprograms.

Input-consistency Check Program. We describe a read-once branching program
for checking whether x′ ∈ $({0, 1}`); this plays the role of so-called “bundling
scalars” or “bundling matrices” in prior constructions. For i ∈ [h] and b ∈ {0, 1},
compute Ci,b ∈ Z3`×3` as the diag(C

(1)
i,b , · · · ,C

(`)
i,b) where

C
(k)
i,b =

I3×3 if ι(i) 6= k

diag(1, 0, 1) if ι(i) = k and i ≤ (c− 1)`

diag(0, 1, 1) if ι(i) = k and i > (c− 1)`

Let uC
L = B ·11×3` and uC

R = (1, 1,−1)T ⊗1`×1, where T is an integer satisfying
‖P(x′)‖∞ < T for all x′ ∈ {0, 1}≤h.

8 Note that by adjusting λLWE appropriately large, all constraint can be satisfied as
in [11, Section 4.3]

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 21

Then {uC
L , {Ci,b}i∈[h]b∈{0,1},uC

R} is an input-consistency check program, and

further C(x′) + P(x′) 6= 0 for all x′ /∈ $({0, 1}`) and x′ ∈ {0, 1}<h. That is, we
concretely consider

Γ ′ =

{
u′L = (uL‖uC

L),
{
P′i,b = diag(Pi,b,Ci,b)

}
i∈[h],b∈{0,1} ,u

′
R =

(
uR
uC
R

)}
.

In particular, this gives wnew = w+ 3` and the bound of entry T = 2w. Also we
note that Γ ′($(x)) = Γ ($(x)), thus this is bounded by T.

Remark 6.5. Usual construction of branching programs have a property that
uL · P′x ∈ {0, 1}1×w for all x′ ∈ {0, 1}<h and |P(x′)| ≤ w, thus we can set
T := 2w; or set T = wh safely. In our parameter setting, we used T = 2w.

Matrix PRFs. For concreteness we provide the construction of matrix PRFs
used in the obfuscation given in [27, Section 4.2]. By Barrington’s theorem [10],
we know that there exist matrix PRFs that output a random binary value.
WLOG, we assume that it is c-input-repetition branching program. We write

this as {u(j)
L , {M(j)

i,b }i∈[h],b∈{0,1},u
(j)
R }j∈[τ] that are independent to each others.

Note that all entries are binary. We concatenate them as

uM
L = (u

(1)
L ‖ · · · ‖u

(τ)
L), Mi,b = diag(M

(1)
i,b , · · · ,M

(τ)
i,b), vM

R =

v
(1)
R

2 · v(2)
R

· · ·
2τ−1 · v(τ)

R

then PRFM : x 7→ uM

L ·M$(x) · uM
R ∈ [0, 2τ − 1] is a pseudorandom function,

which is the desired construction. Note that the width of this program is 5τ.

6.2 Security

Security model. We note that almost all known attacks including the recently
reported statistical zeroizing attack [19], rank attack and subtraction attack [18]
only exploit the evaluations of x′ ∈ $({0, 1}`). While some attacks called mixed-
input attack are considered in the literature (e.g. [26]), however, there is only one
actual attack [17] in such class for GGH15-based obfuscation so far, which only
exploits several input-consistent evaluations as well in the first phase to extract
the information to run mixed-input attack. Some attack that indeed use the
mixed-inputs for other multilinear maps [24, 25], but the first step either uses
the valid inputs [40] or decodes the multilinear map using known weakness of
the NTRU problem [20].

From this motivation, we consider a restricted class of adversary which can
gets oracle access to an input-consistent evaluation oracle

Or : x 7→ AJD$(x) mod q, ∀x ∈ {0, 1}`

In our model that we call input-consistent evaluation model the purpose of ad-
versary is to obtain any meaningful information of the implementation of Γ

22 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

beyond the input-output behavior. More concretely, we say that the obfuscation
procedure is VBB-secure in the input-consistent evaluation model if any p.p.t.
adversary cannot distinguish the oracle Or from the following oracle

Fr(x) =

{
U([0, 2τ − 1]) if f(x) = 0

U(Zq) otherwise
(13)

with non-negligible probability, i.e. Or(·) ≈c Fr(·).

Theorem 6.6. The obfuscation construction O is VBB-secure in the input-
consistent evaluation models.

The main strategy is to hide the lower bits by embedded matrix PRFs, and
hide the higher bits using lattice-based PRFs [7, 14] stated as follows.

Lemma 6.7 ([18, Lemma 7.4]). Let h, n, q, b ∈ N and σ, σ∗ ∈ R s.t. n =
Ω(λ log q), σ = Ω(

√
λ log q), b ≥ h·(

√
nσ)h, σ∗ > ω(poly(λ))·b, q ≥ σ∗ω(poly(λ)).

Define a function family F = {fa : {0, 1}h → Znq }, for which the key generation

algorithm samples a← U(Znq) as the private key,
{

Si,b ← Dn×n
Z,σ

}
as the public

parameters. The evaluation algorithm takes input x′ ∈ {0, 1}h and computes

fa(x′) =

(
h∏
i=1

Si,xi

)
· a + ex′ = Sx′ · a + ex′(modq)

where ex′ ← Dn
Z,σ∗ is freshly sampled for every x′ ∈ {0, 1}h. Then, for d =

poly(λ), the distribution of evaluations {fa(x′1), · · · , fa(x′d)} over the choice of
a and errors is computationally indistinguishable from d independent uniform
random vectors from Znq , assuming the hardness of LWEn,poly,q,U(Zq),DZ,σ,DZ,σ .

The proof of the main theorem is as follows.

Proof (Proof of Theorem 6.6).
We will show that the sequence of d = poly(λ) queries to Or are indistin-

guishable to the corresponding queries to Fr as follows.

{Or(·)} = {x 7→ Γ ($(x)) · S($(x)) + PRFM($(x)) + (GGH15 errors)}k∈[d]
≈c {x 7→ Γ ($(x)) · S($(x)) + U([0, 2τ − 1]) + (GGH15 errors)}k∈[d]
≈s
{
x 7→ Γ ($(x)) · (S($(x)) + e$(x)) + U([0, 2τ − 1])

}
k∈[d]

≈s {x 7→ Γ ($(x)) · U(Zq) + U([0, 2τ − 1])}k∈[d]
≈s {Fr(·)}

Here, we are using noise-flooding applied to Γ ($(x))e$(x)+ (GGH15 errors).

More precisely, to invoke Lemma 6.7, it should hold that 2τ ≥ h · (
√
nσ)h ·

ω(poly(λ)) and 2τ ≥ (2wd) · h · (m
√
mσ · wT)h · ω(poly(λ)) to neglect GGH15

errors.

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 23

Remark 6.8 (weakening PRF requirements). We note that we only use the ma-
trix PRF for noise-flooding, and therefore it suffices to relax pseudorandomness
of F : {0, 1}` → [0, 2τ − 1] to the following: for any efficiently computable B-
bounded function g : {0, 1}` → [B,−B] where B � 2τ , we have

{x 7→ F (x)} ≈c {x 7→ F (x) + g(x)}

where + is computed over Z. A similar relaxation has been considered in the
context of weaker pseudorandom generators for building IO [5]. For this notion,
one could potentially have candidates where each Mi,b is drawn uniformly at
random from a Gaussian distribution but where vM

R is the same as in Section 6.1.

6.3 Comparison

In this section we compare our model to the previous security model in [11].
First, we briefly review the security model in [11]. This model gives a stronger

oracle to the adversary that allows the adversary to query a polynomial (or
circuit) rather than an input x. More precisely, the adversary chooses a circuit

C described by
{
β
(k)
i,b

}
i∈[h],b∈{0,1},k∈K

and queries

T = AJ

∑
k∈K

h∏
i=1

(β
(k)
i,0 Di,0 + β

(k)
1,1Di,1) mod q

to a zero-testing oracle, and learns the value T only if it is sufficiently small
compared to q. We index the zerotesting values obtained by the adversary by
u, thus Tu is the adversary’s u-th successful zerotesting value. The purpose of
adversary is to find any non-trivial algebraic relation between Tu’s and pre-
encodings Ŝ.9 Despite the generality of oracle inputs, the statistical zeroizing
attacks in [19] do not fall into this class; the adversary using the statistical
zeroizing attacks is to check if an inequality holds.

On the other hand, our model gives an input-consistent oracle to adversary
which is much weaker. Instead, the purpose of adversary is to find any informa-
tion beyond input-output behavior of the program. That is, we do not restrict
the goal of adversary to computing a nontrivial algebraic relations. This freedom
allows us to capture almost all existing attacks.

An interesting question is to design a model that embrace both models, and
construct a secure obfuscation procedure in such model. A candidate model is
to allow the adversary to access both oracles described above. Note that [11,
Lemma 8] states that the set of adversary’s successful zerotest is essentially a
set of polynomially-many linear sum of input-consistent evaluations. With this
lemma in mind, an obfuscation procedure satisfying the corresponding lemma as
well as the VBB security in the input-consistent evaluation model may satisfy a
meaningful security in this model.

9 The original model is more general. For example, they considered GGH15 maps over
general graphs instead of source-to-sink path, and allows the adversary to query
much general polynomials. Still every adversary’s query in this model is essentially
of the described form.

24 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

Acknowledgments. We would like to thank Jiseung Kim, Alex Lombardi,
Takashi Yamakawa and Mark Zhandry for helpful discussions.

The research of Yilei Chen was conducted while the author was at Boston
University supported by the NSF MACS project and NSF grant CNS-1422965.
Minki Hhan is supported by Institute for Information & communication Tech-
nology Promotion (IITP) grant funded by the Korea government (MSIT) (No.
2016-6-00598, The mathematical structure of functional encryption and its anal-
ysis), and the ARO and DARPA under Contract No. W911NF-15-C-0227. Vinod
Vaikuntanathan is supported in part by NSF Grants CNS-1350619 and CNS-
1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the
NEC Corporation and a Steven and Renee Finn Career Development Chair from
MIT. This work was also sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) and the U.S. Army Research Office under contracts
W911NF-15-C-0226 and W911NF-15-C-0236. Hoeteck Wee is supported by ERC
Project aSCEND (H2020 639554).

References

1. Scott Aaronson. Arithmetic natural proofs theory is sought, 2008. https://www.

scottaaronson.com/blog/?p=336, Accessed: 2018-02-27.
2. Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New

methods for bootstrapping and instantiation. In EUROCRYPT, Part I, pages
191–225, 2019.

3. Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata, Languages
and Programming, 26th International Colloquium, ICALP’99, Prague, Czech Re-
public, July 11-15, 1999, Proceedings, volume 1644 of LNCS, pages 1–9. Springer,
1999.

4. Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory of Computing Systems, 48(3):535–553, 2011.

5. Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai.
iO without multilinear maps: New paradigms via low-degree weak pseudorandom
generators and security amplification. In CRYPTO, 2019.

6. Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis
of indistinguishability obfuscations of circuits over GGH13. In ICALP, volume 80
of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

7. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737, 2012.

8. Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh K. Kothari. Limits
on low-degree pseudorandom generators (or: Sum-of-squares meets program ob-
fuscation). In EUROCRYPT (2), volume 10821 of Lecture Notes in Computer
Science, pages 649–679. Springer, 2018.

9. Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. In EUROCRYPT, volume 8441
of LNCS, pages 221–238. Springer, 2014.

10. David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. In STOC, pages 1–5, 1986.

https://www.scottaaronson.com/blog/?p=336
https://www.scottaaronson.com/blog/?p=336

Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation 25

11. James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15:
provable security against zeroizing attacks. In Theory of Cryptography - 16th In-
ternational Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceed-
ings, Part II, pages 544–574, 2018.

12. Dan Boneh. The dan and craig show. https://www.youtube.com/watch?v=

m4lv0lXI5uU, 2015. Accessed: 2019-05-17.
13. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring

crypto dark matter: - new simple PRF candidates and their applications. In TCC
(2), volume 11240 of Lecture Notes in Computer Science, pages 699–729. Springer,
2018.

14. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic prfs and their applications. In Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 410–428, 2013.

15. Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic
pseudorandom functions with improved efficiency from the augmented cascade.
In ACM Conference on Computer and Communications Security, pages 131–140,
2010.

16. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 575–584, 2013.

17. Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. In EUROCRYPT (3), volume 10212 of Lecture Notes in
Computer Science, pages 278–307, 2017.

18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation
branching programs: Proofs, attacks, and candidates. In Advances in Cryptology -
CRYPTO 2018, Part II, pages 577–607, 2018.

19. Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim, and Changmin Lee.
Statistical zeroizing attack: Cryptanalysis of candidates of BP obfuscation over
GGH15 multilinear map. In Advances in Cryptology - CRYPTO 2019, Part III,
pages 253–283, 2019.

20. Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee. Cryptanalyses
of branching program obfuscations over GGH13 multilinear map from the NTRU
problem. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part III, pages 184–210, 2018.

21. Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee. Cryptanalysis on
the HHSS obfuscation arising from absence of safeguards. IEEE Access, 6:40096–
40104, 2018.

22. Jung Hee Cheon and Byungheup Jun. A polynomial time algorithm for the braid
diffie-hellman conjugacy problem. In CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 212–225. Springer, 2003.

23. Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Zeroizing attacks on indistinguishability obfuscation over CLT13. In Public Key
Cryptography (1), volume 10174 of Lecture Notes in Computer Science, pages 41–
58. Springer, 2017.

24. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilin-
ear maps over the integers. In CRYPTO (1), pages 476–493, 2013.

25. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In EUROCRYPT, pages 1–17, 2013.

https://www.youtube.com/watch?v=m4lv0lXI5uU
https://www.youtube.com/watch?v=m4lv0lXI5uU

26 Yilei Chen, Minki Hhan, Vinod Vaikuntanathan and Hoeteck Wee

26. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, pages 40–49, 2013.

27. Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Theory
of Cryptography Conference, TCC 2016-B,Part II, pages 241–268, 2016.

28. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC, pages 197–206, 2008.

29. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

30. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In CRYPTO, pages 503–523, 2015.

31. Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Im-
plementing BP-obfuscation using graph-induced encoding. In ACM CCS, pages
783–798, 2017.

32. Kiyoshi Igusa. Notes on the special linear group. http://people.brandeis.edu/

~igusa/Math131b/SL.pdf, Accessed: 2018-02-28.
33. Ki Hyoung Ko, Sangjin Lee, Jung Hee Cheon, Jae Woo Han, Ju-Sung Kang, and

Choonsik Park. New public-key cryptosystem using braid groups. In CRYPTO,
volume 1880 of Lecture Notes in Computer Science, pages 166–183. Springer, 2000.

34. Allison B. Lewko and Brent Waters. Efficient pseudorandom functions from the
decisional linear assumption and weaker variants. In ACM CCS, pages 112–120,
2009.

35. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local prgs. In CRYPTO, Part I, pages 630–660, 2017.

36. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In Advances in Cryptology–EUROCRYPT 2012, pages 700–718.
Springer, 2012.

37. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In FOCS, pages 458–467. IEEE Computer Society, 1997.

38. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In STOC, pages 333–342, 2009.

39. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-lwe for any ring and modulus. In STOC, pages 461–473. ACM, 2017.

40. Alice Pellet-Mary. Quantum attacks against indistinguishablility obfuscators
proved secure in the weak multilinear map model. In Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2018, Proceedings, Part III, pages 153–183, 2018.

41. Christophe Petit and Jean-Jacques Quisquater. Rubik’s for cryptographers. IACR
Cryptology ePrint Archive, 2011:638, 2011.

42. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. J. ACM, 56(6), 2009.

43. Jean-Pierre Tillich and Gilles Zémor. Hashing with sl 2. In CRYPTO, volume 839
of Lecture Notes in Computer Science, pages 40–49. Springer, 1994.

44. Gilles Zémor. Hash functions and graphs with large girths. In EUROCRYPT,
volume 547 of Lecture Notes in Computer Science, pages 508–511. Springer, 1991.

http://people.brandeis.edu/~igusa/Math131b/SL.pdf
http://people.brandeis.edu/~igusa/Math131b/SL.pdf

	Matrix PRFs: Constructions, Attacks, and Applications to Obfuscation

