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Abstract. Typically, protocols for Byzantine agreement (BA) are de-
signed to run in either a synchronous network (where all messages are
guaranteed to be delivered within some known time ∆ from when they
are sent) or an asynchronous network (where messages may be arbitrar-
ily delayed). Protocols designed for synchronous networks are generally
insecure if the network in which they run does not ensure synchrony;
protocols designed for asynchronous networks are (of course) secure in
a synchronous setting as well, but in that case tolerate a lower fraction
of faults than would have been possible if synchrony had been assumed
from the start.

Fix some number of parties n, and 0 < ta < n/3 ≤ ts < n/2. We ask
whether it is possible (given a public-key infrastructure) to design a BA
protocol that is resilient to (1) ts corruptions when run in a synchronous
network and (2) ta faults even if the network happens to be asynchronous.
We show matching feasibility and infeasibility results demonstrating that
this is possible if and only if ta + 2 · ts < n.

1 Introduction

Byzantine agreement (BA) [24, 35] is a classical problem in distributed
computing. Roughly speaking, a BA protocol allows a group of n parties,
each holding some initial input value, to agree on their outputs even in
the presence of some threshold of corrupted parties. Such protocols are
used widely in practice for ensuring consistency among a set of distributed
processors [6,21,23,30], and have received renewed interest in the context
of blockchain protocols. They also serve as a core building block for more
complicated protocols, e.g., for secure multiparty computation. There is
an extensive literature on Byzantine agreement, and many different mod-
els in which it can be studied. We focus here on the setting in which a
public-key infrastructure (PKI) is available.
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Typically, protocols for Byzantine agreement are designed and ana-
lyzed assuming either a synchronous network, where messages are guar-
anteed to be delivered within some known time bound ∆, or an asyn-
chronous network, where messages can be delayed arbitrarily. Existing
results precisely characterize when the problem can be solved in each
case [5,8,10,24,35]: in a synchronous network, it is possible if and only if
ts < n/2 parties are corrupted, while in an asynchronous network it can
be achieved only when there are ta < n/3 corruptions. In each case, pro-
tocols tolerating the optimal threshold and running in expected constant
rounds are known [5,20].

In real-world deployments of Byzantine agreement, the network condi-
tions in which a protocol are run may be unclear; for example, the network
may generally be synchronous but intermittently experience congestion
that prevents messages from being delivered in a timely fashion. This
results in the following dilemma when deciding what protocol to use:

– Protocols designed for a synchronous network are, in general, insecure
if the assumption of network synchrony fails.

– Protocols designed for an asynchronous network will (of course) be
secure when the network is synchronous. But in this case the fraction
of faults that can be tolerated is lower than what could have been
tolerated if the protocol were designed for the synchronous setting.

Fix some thresholds ta, ts with 0 < ta < n/3 ≤ ts < n/2. We ask the
following question: is it possible to design a BA protocol that is (1) re-
silient to any ts (adaptive) corruptions when run in a synchronous network
and also (2) resilient to ta (adaptive) corruptions even if the network hap-
pens to be asynchronous? We completely resolve this question by showing
matching feasibility and infeasibility results demonstrating that this is
possible if and only if ta + 2 · ts < n.

Positive result. The protocol achieving our positive result is constructed
by combining two sub-protocols ΠSBA, ΠABA for Byzantine agreement,
where ΠSBA is secure in a synchronous network and ΠABA is secure in an
asynchronous network. The key to our analysis is to separately analyze
the validity, consistency, and liveness guarantees of these sub-protocols.
Specifically, we design ΠSBA so that it also satisfies a certain validity guar-
antee even when run in an asynchronous network. We also design ΠABA

so that it achieves validity (in an asynchronous network) even beyond n/3
corruptions. We then use these properties to prove security of our main
protocol, for different thresholds, when run in either a synchronous or
asynchronous network.



Impossibility result. We also show that our positive result is tight,
namely, that if ta + 2 · ts ≥ n then there is no protocol that is simultane-
ously resilient to ts corruptions when run in a synchronous network and
also resilient to ta faults in an asynchronous network. In fact, we show a
result that is slightly stronger: it is not possible to achieve validity for ts
static faults in the synchronous setting while also achieving a weak notion
of consistency for ta static faults in an asynchronous network.

1.1 Related Work

The question of designing protocols that remain secure when run in var-
ious network conditions is natural, and so it is somewhat surprising that
it has only recently begun to draw attention in the literature. Recent
work by Malkhi et al. [28] is most closely related to our own. Among
other things, they consider protocols with certain guarantees when run in
synchronous or partially synchronous networks. In contrast, we consider
the case of synchronous or fully asynchronous networks. Liu et al. [25]
design a protocol that is resilient to a minority of malicious corruptions
in a synchronous network, and a minority of fail-stop faults in an asyn-
chronous network. Our work can be viewed as extending theirs to consider
malicious corruptions in both settings. Guo, Pass, and Shi [16] consider a
model motivated by eclipse attacks [18] on blockchain protocols, whereby
an attacker temporarily disconnects some subset S of honest parties from
the rest of the network S′, e.g., by delaying or dropping messages be-
tween S and S′. Parties in S may not be able to reach agreement with
honest parties in S′; nevertheless, as observed by Guo et al., it may be pos-
sible to provide certain guarantees for the parties in S′ if their network is
well-behaved (i.e., synchrony continues to hold for messages sent between
parties in S′). Guo et al. gave BA protocols tolerating the optimal corrup-
tion threshold in this model, and Abraham et al. [2] extended their work
to achieve similar guarantees for state-machine replication. The main dif-
ference between these works and ours is that they continue to assume
synchrony in part of the network, and their protocols fail completely if
the all communication channels in the network may be asynchronous.

Kursawe [22] shows a protocol for asynchronous BA that reaches
agreement more quickly in case the network is synchronous. In contrast
to our work, that protocol does not achieve better fault tolerance (and, in
particular, cannot tolerate n/3 or more faults) in the synchronous case.

Other recent work has looked at designing protocols for synchronous
BA that achieve good responsiveness when the network latency is low.
That is, these protocols ensure that if the actual message-delivery time is



δ < ∆ then the time to reach agreement is proportional to δ rather than
the upper bound ∆. This problem was considered by Pass and Shi [31,32],
who gave protocols that rely on a leader and are therefore not adaptively
secure, as well as by Loss and Moran [27], who avoid the use of a leader.
The work of Loss and Moran was extended by Liu-Zhang et al. [26] to the
case of general secure computation. None of these works provides security
in case the synchrony assumption fails altogether.

Several prior works [3, 7, 12, 34] consider a model in which synchrony
is assumed to be available for some (known) limited period of time, and
asynchronous afterward. Fitzi et al. [11] and Loss and Moran [27] study
trade-offs between the validity, consistency, and liveness properties of BA
that inspired our asynchronous BA protocol in Section 4 and our lower
bound in Section 6.

1.2 Paper Organization

We introduce our model as well as definitions for Byzantine agreement
and related tasks in Section 2. In Sections 3 and 4 we describe two pro-
tocols for Byzantine agreement and prove various properties about them.
Those protocols are used, in turn, as sub-protocols of our main protocol
in Section 5 that achieves security (for different thresholds) in both syn-
chronous and asynchronous networks. Finally, in Section 6 we show that
the bounds we achieve are tight.

2 Model and Definitions

Throughout, we consider a network of n parties P1, . . . , Pn who may
communicate over point-to-point authenticated channels. We also assume
that the parties have established a public-key infrastructure in advance of
the protocol execution. This means that all parties hold the same vector
(pk1, . . . , pkn) of public keys for a digital signature scheme, where each
honest party Pi holds the honestly generated secret key ski associated
with pki. (Malicious parties may choose their keys arbitrarily.) A valid
signature σ on m from Pi is one for which Verifypki(m,σ) = 1. We make
the standard convention of treating signatures as idealized objects; i.e.,
throughout our analysis, signatures are assumed to be perfectly unforge-
able. When the signature scheme used is existentially unforgeable under
chosen-message attacks we thus obtain security against computationally
bounded adversaries, with a negligible probability of failure. We implic-
itly assume that parties use domain separation when signing (e.g., via



unique session IDs) to ensure that signatures generated for one purpose
will be considered invalid if used in another context.

When we say a protocol tolerates t corrupted parties we always mean
that it is secure against an adversary who may adaptively corrupt up to
t parties during execution of the protocol and coordinate the actions of
those parties as they deviate from the protocol in an arbitrary manner.
An honest party is one who is not corrupted by the end of the protocol.
We stress that our claims about adaptive security are only with respect to
the “property-based” definitions we give here; we do not consider adaptive
security with respect to a simulation-based definition [13,19].

We are interested in protocols running in one of two possible settings.
When a protocol is run in a synchronous network, we assume all messages
are delivered within a known time bound ∆ after they are sent. We allow
the adversary to arbitrarily schedule delivery of messages subject to this
bound, which implies in particular that we consider a rushing adversary
who may obtain messages sent to it before sending messages of its own.
In the synchronous case, we also assume all parties begin running the
protocol at the same time, and all parties have local clocks that progress
at the same rate. When we refer to a protocol running in an asynchronous
network, we allow the adversary to arbitrarily schedule delivery of mes-
sages without any upper bound on their delivery time. We do, however,
require that all messages that are sent are eventually delivered. Impor-
tantly, honest parties do not know a priori which type of network the
protocol is running in.

We may view executions in a synchronous network as proceeding in
a series of rounds, where execution begins at time 0 and the rth round
refers to the period of time from (r − 1) · ∆ to r · ∆. When we say a
party receives a message in round r we mean that it receives a message in
that time interval; when we say it sends a message in round r we means it
sends that message at the beginning of that round, i.e., at time (r−1) ·∆.
Thus, in a synchronous network all messages sent in round r are received
in round r (but in an asynchronous network this need not be the case).

We assume a coin-flip mechanism CoinFlip available as an atomic
primitive. This can be viewed as an ideal functionality, parameterized
by a value t, that upon receiving input k from t+ 1 parties generates an
unbiased coin Coink ∈ {0, 1} and sends (k,Coink) to all parties. (When
run in an asynchronous network, messages to and from CoinFlip can be
arbitrarily delayed.) The key property this ensures is that, if at most t
parties are corrupted, at least one honest party must send k to CoinFlip
before the adversary can learn Coink. Several protocols for realizing such a



coin flip4 in an asynchronous network, based on general assumptions, are
known [1,5,29,33]. For our purposes, we need a protocol that is secure for
t < n/3 faults, and that terminates for t′ < n/2 faults. Such protocols can
be constructed using a threshold unique signature scheme [4,14,17,27].

2.1 Definitions

We are ultimately interested in Byzantine agreement, but we find it useful
to define the related notions of broadcast and graded consensus. Relevant
definitions follow.

Byzantine agreement. Byzantine agreement allows a set of parties who
each hold some initial input to agree on their output. We consider several
security properties that may hold for such protocols. For simplicity, we
consider the case of agreement on a bit; this is without loss of generality
as one can run any such protocol ` times to agree on a string of length `.

We consider Byzantine agreement protocols where, in some cases, par-
ties may not terminate immediately upon generating output, or may never
terminate. For that reason, we treat termination separately in the defi-
nition that follows. By convention, any party that terminates generates
output before doing so; however, we allow parties to output the special
symbol ⊥.

Definition 1 (Byzantine agreement). Let Π be a protocol executed by
parties P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}.
– Weak validity: Π is t-weakly valid if the following holds whenever

at most t of the parties are corrupted: if every honest party’s input is
equal to the same value v, then every honest party outputs either v
or ⊥.

– Validity: Π is t-valid if the following holds whenever at most t of
the parties are corrupted: if every honest party’s input is equal to the
same value v, then every honest party outputs v.

– Validity with termination: Π is t-valid with termination if the fol-
lowing holds whenever at most t of the parties are corrupted: if every
honest party’s input is equal to the same value v, then every honest
party outputs v and terminates.

– Weak consistency: Π is t-weakly consistent if the following holds
whenever at most t of the parties are corrupted: there is a v ∈ {0, 1}
such that every honest party outputs either v or ⊥.

4 Some of these realize a p-weak coin flip, where honest parties agree on the coin only
with probability p < 1. We can also rely on such protocols, at an increase in the
expected round complexity by a factor of O(1/p).



– Consistency: Π is t-consistent if the following holds whenever at
most t of the parties are corrupted: there is a v ∈ {0, 1,⊥} such that
every honest party outputs v.
(In the terminology of Goldwasser and Lindell [15], weak consistency
might be called “consistency with abort” and consistency might be
called “consistency with unanimous abort.”)

– Liveness: Π is t-live if whenever at most t of the parties are cor-
rupted, every honest party outputs a value in {0, 1}.

– Termination: Π is t-terminating if whenever at most t of the par-
ties are corrupted, every honest party terminates. Π has guaranteed
termination if it is n-terminating.

If Π is t-valid, t-consistent, t-live, and t-terminating, then we say Π is
t-secure.

While several of the above definitions are not entirely standard, our no-
tion of security matches the standard one. In particular, t-liveness and
t-consistency imply that whenever at most t parties are corrupted, there
is a v ∈ {0, 1} such that every honest party outputs v. Note that t-validity
with termination is weaker than t-validity plus t-termination, as the for-
mer does not require termination in case the inputs of the honest parties
do not agree.

Broadcast. Protocols for broadcast allow a set of parties to agree on a
value chosen by a designated sender. We only consider broadcast pro-
tocols with guaranteed termination, and so do not mention termination
explicitly when defining the various properties.

Definition 2 (Broadcast). Let Π be a protocol executed by parties P1,
. . . , Pn, where a sender P ∗ ∈ {P1, . . . , Pn} begins holding input v∗ ∈ {0, 1}
and all parties are guaranteed to terminate.

– Weak validity: Π is t-weakly valid if the following holds whenever at
most t of the parties are corrupted: if P ∗ is honest, then every honest
party outputs either v∗ or ⊥.

– Validity: Π is t-valid if the following holds whenever at most t of
the parties are corrupted: if P ∗ is honest, then every honest party
outputs v∗.

– Weak consistency: Π is t-weakly consistent if the following holds
whenever at most t of the parties are corrupted: there is a v ∈ {0, 1}
such that every honest party outputs either v or ⊥.

– Consistency: Π is t-consistent if the following holds whenever at
most t of the parties are corrupted: there is a v ∈ {0, 1,⊥} such that
every honest party outputs v.



– Liveness: Π is t-live if whenever at most t of the parties are cor-
rupted, every honest party outputs a value in {0, 1}.

If Π is t-valid, t-consistent, and t-live, then we say Π is t-secure.

Graded consensus. As a stepping stone to Byzantine agreement, it is
also useful to define graded consensus [9]. Here, each party outputs both
a value v ∈ {0, 1,⊥} as well as a grade g ∈ {0, 1, 2}. As in the case
of Byzantine agreement, we consider protocols that may not terminate;
however, parties terminate upon generating output.

Definition 3 (Graded consensus). Let Π be a protocol executed by
parties P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}
and each party terminates upon generating output.

– Graded validity: Π achieves t-graded validity if the following holds
whenever at most t of the parties are corrupted: if every honest party’s
input is equal to the same value v, then all honest parties output (v, 2).

– Graded consistency: Π achieves t-graded consistency if the follow-
ing hold whenever at most t of the parties are corrupted: (1) If two
honest parties output grades g, g′, then |g − g′| ≤ 1. (2) If two honest
parties output (v, g) and (v′, g′) with g, g′ ≥ 1, then v = v′.

– Liveness: Π is t-live if whenever at most t of the parties are cor-
rupted, every honest party outputs (v, g) with either v ∈ {0, 1} and
g ≥ 1, or v =⊥ and g = 0.

If Π achieves t-graded validity, t-graded consistency, and t-liveness then
we say Π is t-secure.

3 Synchronous BA with Fallback (Weak) Validity

In this section we show a protocol that is secure for some threshold ts of
corrupted parties when run in a synchronous network, and achieves weak
validity (though liveness and weak consistency may not hold) for a lower
threshold ta even when run in an asynchronous network.

Our protocol relies on a variant of the Dolev-Strong broadcast pro-
tocol [8] as a subroutine. Since we use a slightly non-standard version of
that protocol, we describe it in Figure 1 for completeness. In the proto-
col, we say that (v,SET) is an r-correct message (from the point of view
of a party Pi) if SET contains valid signatures on v from P ∗ and r − 1
additional, distinct parties other than Pi.

Lemma 1. Broadcast protocol ΠDS satisfies the following properties:



Protocol ΠDS

Round 1: P ∗ signs its input v∗ to obtain a signature σ∗. It sets SET :=
{σ∗} and sends (v∗,SET) to all parties.

Rounds 1 to n− 1: Each Pi begins with ACCi = ∅, and then acts as
follows: upon receiving an r-correct message (v,SET) in round r, add
v to ACCi. If r < n − 1, then also compute a signature σi on v, let
SET := SET ∪ {σi}, and send (v,SET) to all parties in the following
round. (This is done at most once for each (v, r) pair.)

Output determination: At time (n− 1) ·∆, if ACCi contains one value,
then output that value and terminate. In any other case, output ⊥ and
terminate.

Fig. 1. The Dolev-Strong broadcast protocol ΠDS.

1. When run in a synchronous network, it is n-consistent and n-valid.
2. When run in an asynchronous network, it is n-weakly valid.

Proof. The standard analysis of the Dolev-Strong protocol shows that,
when run in a synchronous network with any number of corrupted parties,
ACCi = ACCj for any honest parties Pi, Pj . This implies n-consistency.
Since an honest P ∗ sends a 1-correct message to all honest parties, and
the attacker cannot forge signatures of the honest sender, n-validity holds.

The second claim follows because an attacker cannot forge the signa-
ture of an honest P ∗.

We now define a BA protocol using ΠDS as a sub-routine. This proto-
col is parameterized by a value ta which determines the security thresholds
the protocol satisfies.

Protocol Πta
SBA

Each Pi initially holds a bit vi. The protocol proceeds as follows:

– Each party Pi broadcasts vi by running ΠDS as the sender.
– Let vij denote the output of Pi in the jth execution of ΠDS.
– Each Pi does: if there are at least 2ta + 1 values vij that are in {0, 1},

output the majority of those values (with a tie broken arbitrarily) and
terminate. Otherwise, output ⊥ and terminate.

Fig. 2. A Byzantine agreement protocol, parameterized by ta.

Theorem 1. For any ta, ts with ta < n/3 and ta + 2 · ts < n, Byzantine
agreement protocol Πta

SBA satisfies the following properties:



1. When the protocol is run in a synchronous network, it is ts-secure.

2. When the protocol is run in an asynchronous network, it is ta-weakly
valid.

Moreover, the protocol has guaranteed termination in both cases, and when
run in a synchronous network every honest party terminates in time at
most n ·∆.

Proof. The claim about termination is immediate.

When run in a synchronous network with ts corrupted parties, at
least n− ts > 2ta of the executions of ΠDS result in boolean output for all
honest parties (by n-validity of ΠDS) and so all honest parties generate
boolean output in Πta

SBA; this proves ts-liveness. By n-consistency of ΠDS,
all honest parties agree on the {vj} values they obtain and hence Πta

SBA is
ts-consistent (in fact, it is n-consistent). Finally, n-validity of ΠDS implies
that when all honest parties begin holding the same input v ∈ {0, 1},
then all honest parties will have v as their majority value. This proves
ts-validity (in fact, the protocol is t-valid for any t < n/2).

For the second claim, assume all honest parties begin holding the same
input v, and ta parties are corrupted. Any honest party Pi who generates
boolean output must have at least 2ta+1 boolean values {vij}, of which at
most ta of these can be equal to v̄. Hence, any honest party who generates
boolean output will in fact output v.

4 Validity-Optimized Asynchronous BA

Here we show a protocol that is secure for some threshold when run
in an asynchronous network, and achieves validity for a higher thresh-
old. Throughout this section we only consider protocols running in an
asynchronous network, and so drop explicit mention of this fact for the
remainder of this section.

Theorem 2. For any ta, ts with ta < n/3 and ta+2·ts < n, there is an n-
party protocol for Byzantine agreement that, when run in an asynchronous
network, is ta-secure and also achieves ts-validity with termination.

Our proof of Theorem 2 proceeds in a number of steps. In Section 4.1
we describe a “validity-optimized” protocol Πts

GC for graded consensus
that is ta-secure and also achieves ts-graded validity. Then, in Section 4.2,
we show a Byzantine agreement protocol Πts

ABA using Πts
GC as a subroutine.

This protocol illustrates our main ideas, and achieves all the properties



claimed in Theorem 2 except termination. We then discuss how termina-
tion can be added using existing techniques.

Our protocol is based on the work of Mostéfaoui et al. [29], but allows
for variable thresholds. Also, our description simplifies theirs by present-
ing the protocol in a modular fashion.

4.1 Validity-Optimized Graded Consensus

Our graded consensus protocol relies on a sub-protocolΠts
prop for proposing

values, shown in Figure 3. This protocol is parameterized by a value
ts that determines its security thresholds. We begin by proving some
properties of Πts

prop. Throughout, we let n denote the number of parties.

Protocol Πts
prop

We describe the protocol from the point of view of a party with input v ∈
{0, 1, λ}.

1. Set vals := ∅.
2. Send (prepare, v) to all parties.
3. Upon receiving the message (prepare, b), for some b ∈ {0, 1, λ}, from

strictly more than ts parties, do: If (prepare, b) has not been sent, then
send (prepare, b) to all parties.

4. Upon receiving the message (prepare, b), for some b ∈ {0, 1, λ}, from at
least n− ts parties, set vals := vals ∪ {b}.

5. Upon adding the first value b ∈ {0, 1, λ} to vals, send (propose, b) to all
parties.

6. Once at least n− ts messages (propose, b) have been received on values
b ∈ vals, let prop ⊆ vals be the set of values carried by those messages.
Output prop and terminate.

Fig. 3. A sub-protocol for proposing values, parameterized by ts.

Lemma 2. Assume ta < n− 2 · ts parties are corrupted in an execution
of Πts

prop. If two honest parties Pi, Pj output {b}, {b′}, respectively, then
b = b′.

Proof. Since Pi outputs {b}, it must have received at least n−ts messages
(propose, b), of which at least n − ts − ta of those were sent by honest
parties. Similarly, Pj must have received at least n − ts − ta messages
(propose, b′) that were sent by honest parties. If b 6= b′, then because
2 · (n− ts− ta) is strictly greater than the number of honest parties n− ta,
this would mean that some honest party sent propose messages on two
different values, which is impossible.



Lemma 3. Assume ta ≤ ts parties are corrupted in an execution of
Πts

prop. If no honest party has input v, then no honest party outputs prop
containing v.

Proof. If v was not input by any honest party, then at most ta ≤ ts
messages (prepare, v) are sent in step 2. Thus, no honest party ever sends
a message (prepare, v), and consequently no honest party ever sends a
message (propose, v). It follows that no honest party ever adds v to vals,
and so no honest party outputs prop containing v.

Lemma 4. Assume ta parties are corrupted in an execution of Πts
prop,

where ta < n − 2 · ts and ta ≤ ts. If an honest party sends a message
(propose, b), all honest parties add b to vals.

Proof. Suppose some honest party Pi sends (propose, b). Then Pi must
have received at least n− ts messages (prepare, b). At least n− ts− ta > ts
of these must have been sent by honest parties, and so eventually all other
honest parties also receive strictly more than ts messages (prepare, b).
We thus see that every honest party will eventually send (prepare, b).
Therefore, every honest party will eventually receive at least n − ta ≥
n− ts messages (prepare, b), and consequently every honest party will add
b to vals.

Note that whenever parties in Πts
prop generate output, they terminate.

While honest parties do not necessarily terminate (for example, if honest
parties are split evenly among 0, 1, and λ), we show they do terminate
as long as honest parties hold at most two different input values.

Lemma 5. Assume ta parties are corrupted in an execution of Πts
prop,

where ta < n − 2 · ts and ta ≤ ts. If all honest parties hold one of two
different inputs, then all honest parties terminate.

Proof. We first argue that every honest party sends a propose message.
Indeed, there are n− ta honest parties, so at least 1

2(n− ta) > ts honest
parties must have the same input v. Therefore, all honest parties receive
strictly more than ts messages (prepare, v). Consequently, all honest par-
ties will eventually send (prepare, v). Thus, every honest party receives
n− ta ≥ n− ts messages (prepare, v) and adds v to vals. In particular, vals
is nonempty and so every honest party sends a propose message.

Each honest party thus receives at least n − ta ≥ n − ts propose
messages sent by honest parties. By Lemma 4, for any b proposed by
an honest party, all honest parties eventually have b ∈ vals. Thus, every



honest party eventually receives at least n−ts propose messages for values
in their set vals, and therefore all honest parties terminate.

Πts
prop satisfies a notion of validity even for ts corrupted parties.

Lemma 6. Assume ts < n/2 parties are corrupted in an execution of
Πts

prop. If all honest parties hold the same input v, then all honest parties
output prop = {v}.

Proof. Suppose ts parties are corrupted, and all honest parties hold the
same input v. In step 2, all n − ts honest parties send (prepare, v), and
so all honest parties add v to vals. Any prepare messages on other values
in step 2 are sent by the ts < n− ts corrupted parties, and so no honest
party ever adds a value other than v to vals. Thus, all n−ts honest parties
send their (single) propose message (propose, v) in step 5. It follows that
every honest party outputs prop = {v} in step 6.

Protocol Πts
GC

We describe the protocol from the point of view of a party with in-
put v ∈ {0, 1}.

– Set b1 := v.
– Run protocol Πts

prop using input b1, and let prop1 denote the output.
– If prop1 = {b}, then set b2 := b. Otherwise, set b2 := λ.
– Run protocol Πts

prop using input b2, and let prop2 denote the output.
– If prop2 = {b′} for b′ 6= λ, then output (b′, 2) and terminate. If prop2 =
{b′, λ} for b′ 6= λ, then output (b′, 1) and terminate. If prop2 = {λ},
then output (⊥, 0) and terminate.

Fig. 4. A protocol for graded consensus, parameterized by ts.

In Figure 4 we show a graded consensus protocol Πts
GC that relies

on Πts
prop as a subroutine. Note that parties terminate upon generating

output. We now analyze the protocol.

Lemma 7. If ts < n/2, then Πts
GC achieves ts-graded validity.

Proof. Suppose ts parties are corrupted, and every honest party’s input
is equal to the same value v. By Lemma 6, all honest parties have prop1 =
{v} following the first execution of Πts

prop, and so use v as the input for
the second execution of Πts

prop. By the same reasoning, all honest parties
have prop2 = {v} after the second execution of Πts

prop. Thus, all honest
parties output (v, 2).



Lemma 8. Assume ta ≤ ts and ta + 2 · ts < n. Then Πts
GC achieves

ta-graded consistency.

Proof. Suppose ta parties are corrupted. First, we show that the grades
output by two honest parties Pi, Pj differ by at most 1. The only way
this can possibly fail is if one of the parties (say, Pi) outputs a grade
of 2. Pi must then have received prop2 = {b}, for some b ∈ {0, 1}, as its
output from the second execution of Πts

prop. It follows from Lemma 2 that
Pj could not have received prop2 = {λ}. Therefore, it is not possible for
Pj to output grade 0.

Next, we show that any two honest parties that output nonzero grades
must output the same value. Observe first that there is a bit b such that
the inputs of all the honest parties to the second execution of Πts

prop lie in
{b, λ}. (Indeed, if all honest parties set b2 := λ this claim is immediate.
On the other hand, if some honest party sets b2 := b ∈ {0, 1} then they
must have prop1 = {b}; but then Lemma 2 implies that any other honest
party who sets b2 to anything other than λ will set it equal to b as well.)
Lemma 3 thus implies that no honest party outputs a set prop2 after the
second execution of Πts

prop that contains a value other than b or λ. Thus,
any two honest parties that output a nonzero grade must output the same
value b.

Lemma 9. Assume ta ≤ ts and ta + 2 · ts < n. Then Πts
GC achieves

ta-liveness.

Proof. All honest parties hold input in {0, 1} in the first execution of
Πts

prop, so Lemma 5 shows that all honest parties terminate that execution.
As in the proof of the previous lemma, there is a bit b such that the
inputs of all the honest parties to the second execution of Πts

prop lie in
{b, λ}; so, using Lemma 5 again, that execution also terminates. Moreover,
by Lemma 3, the set prop2 output by any honest party is a nonempty
subset of {b, λ}, i.e., is either {b}, {b, λ}, or {λ}. Thus, every honest party
generates output and terminates in Πts

GC.

4.2 Validity-Optimized Byzantine Agreement

We present a Byzantine agreement protocol Πts
ABA in Figure 5. Recall

from Section 2 that we assume an atomic primitive CoinFlip that allows
all parties to generate and learn an unbiased value Coink ∈ {0, 1} for k =
1, . . .. We refer there for a discussion as to how it can be realized.



Protocol Πts
ABA

We describe the protocol from the point of view of a party with input
v ∈ {0, 1}.
Set b := v, done := false, and k := 1. Then repeat the following steps
forever:

1. Run Πts
GC on input b, and let (b, g) denote the output.

2. Coink ← CoinFlip(k).
3. If g < 2 then set b := Coink.
4. Run Πts

GC on input b, and let (b, g) denote the output.
5. If g = 2 and done = false, then output b and set done := true.
6. Set k := k + 1.

Fig. 5. A Byzantine agreement protocol, parameterized by ts.

Lemma 10. If ts < n/2, then protocol Πts
ABA satisfies ts-validity. More-

over, if all honest parties initially hold v, then all honest parties output v
at the end of the first iteration of Πts

ABA.

Proof. Suppose there are at most ts corrupted parties and all honest
parties initially hold v ∈ {0, 1}. All honest parties use input v in the
first execution of Πts

GC in the first iteration; ts-graded validity of Πts
GC (cf.

Lemma 7) implies they all output (v, 2) from that execution. Thus, all
honest parties ignore the result of the coin flip and run a second instance
of Πts

GC using input v, again unanimously obtaining (v, 2) as output. Thus,
all honest parties output v in the first iteration.

Lemma 11. Assume ta ≤ ts and ta + 2 · ts < n. Then Πts
ABA satisfies

ta-liveness and ta-consistency. Moreover: (1) if an honest party generates
generates output for the first time in iteration k, then every other honest
party generates output in iteration k or k + 1, and (2) all honest parties
generate output in an expected constant number of iterations.

Proof. Assume ta parties are corrupted. Consider an iteration k of the
protocol by which no honest party has yet generated output. Let Agree
be the event that all honest parties use the same input to the second
execution of Πts

GC in that iteration. If Agree occurs, then ts-graded validity
of Πts

GC implies that all honest parties will obtain a grade of 2 in that
execution and hence generate output in iteration k. We show that Agree
occurs with probability at least 1/2. We distinguish two cases:

– Say some honest party outputs (b, 2) in the first execution of Πts
GC

in iteration k. By ta-graded consistency of Πts
GC, all honest parties



output either (b, 2) or (b, 1) in that execution of Πts
GC. Since Coink is

not revealed until the first honest party terminates that execution of
Πts

GC, this means b is chosen independently of Coink. If Coink = b,
which occurs with probability 1/2, then all parties will use the same
input in the second execution of Πts

GC in iteration k.

– If no honest party outputs (b, 2) after the first execution of Πts
GC, then

all honest parties will use Coink as their input in the second execution
of Πts

GC in iteration k.

The above implies that in expected constant rounds some honest party
generates boolean output. We next show that if some honest party Pi

outputs b ∈ {0, 1} in iteration k, then all other honest parties output b
in iteration k or k + 1. Since Pi output b in iteration k, it must have seen
(b, 2) as the output of the second execution of Πts

GC in iteration k. By
ta-graded consistency of Πts

GC, every honest party obtains either (b, 1) or
(b, 2) as output from that execution of Πts

GC. Clearly, all honest parties
in the second situation output b in iteration k. We argue that all honest
parties in the first situation (namely, who obtain output (b, 1)) will output
b in iteration k + 1. This can be seen as follows. Since all honest parties
use input b in the first execution of Πts

GC in iteration k + 1, all honest
parties output (b, 2) in that execution (by ts-validity of Πts

GC). All honest
parties then participate in the coin flip but ignore the result, and use
input b in the next execution of Πts

GC. Thus, all honest parties obtain
output (b, 2) from the second execution of Πts

GC in iteration k+1, and any
honest party that did not output b in the previous iteration will output
it now.

Corollary 1. For any ta, ts with ta < n/3 and ta+2·ts < n, there is an n-
party protocol for Byzantine agreement that, when run in an asynchronous
network, achieves ts-validity, ta-consistency, and ta-liveness.

Proof. We may assume ts ≥ ta since, if not, we can set ts = ta and
ta + 2 · ts < n will still hold. Note also that the stated conditions imply
ts < n/2. The corollary thus follows from Lemmas 10 and 11.

Adding termination. Corollary 1 proves all the claims of Theorem 2 ex-
cept for termination and, indeed, parties in Πts

ABA participate indefinitely
and so the protocol does not terminate. However, we can obtain a termi-
nating protocol Πts

ABA∗ (and hence complete the proof of Theorem 2) using
existing techniques [29]. We refer to the appendix for further discussion.



5 Main Protocol

Fix n, ta, ts with ta < n/3 and ta+2·ts < n. As in the proof of Corollary 1
we may assume ta ≤ ts. Our main protocol Πta,ts

HBA is given in Figure 6. It
relies on the following sub-protocols:

– Πta
SBA is an n-party BA protocol that is ts-secure when run in a syn-

chronous network, and ta-weakly valid when run in an asynchronous
network. Moreover, the protocol has guaranteed termination regard-
less of the network, and when run in a synchronous network all honest
parties terminate by time n · ∆. The existence of such a protocol is
guaranteed by Theorem 1.

– Πts
ABA∗ is an n-party BA protocol that is ta-secure and ts-valid with

termination when run in an asynchronous network. (Of course, these
properties also hold if the protocol is run in a synchronous network.)
The existence of such a protocol is guaranteed by Theorem 2.

Protocol Πta,ts
HBA

Each Pi initially holds a bit vi. The protocol proceeds as follows:

– Each party Pi runs Πta
SBA using input vi for time n · ∆. Let bi denote

the output of Pi from this protocol, with bi =⊥ denoting no output.
– Each party Pi does the following: if bi 6=⊥, set v∗i := bi; otherwise

set v∗i := vi. Then run Πts
ABA∗ using input v∗i , output the result, and

terminate.

Fig. 6. A Byzantine agreement protocol, parameterized by ta, ts.

Theorem 3. Let n, ta, ts be as above. Then protocol Πta,ts
HBA satisfies the

following properties:

1. When the protocol is run in a synchronous network, it is ts-secure.
2. When the protocol is run in an asynchronous network, it is ta-secure.

Proof. First consider the case when Πta,ts
HBA is run in a synchronous net-

work, and at most ts parties are corrupted. By ts-security of Πta
SBA, after

running Πta
SBA there is a value b 6=⊥ such that bi = b for every honest Pi.

Moreover, if every honest party’s input was equal to the same value v,
then b = v. Thus, all honest parties set v∗i to the same value b and, if every
party’s input was the same value v, then v∗i = v. By ts-validity with ter-
mination of Πts

ABA∗ , all honest parties terminate and agree on their output



from Πta,ts
HBA , proving ts-consistency, ts-liveness, and ts-termination. More-

over, if every honest party’s original input was equal to the same value v,
then the output of Πts

ABA∗ (and thus of Πta,ts
HBA) is equal to v. This proves

ts-validity.

Next consider the case when Πta,ts
HBA is run in an asynchronous network,

and at most ta parties are corrupted. The protocol inherits ta-consistency,
ta-liveness, and ta-termination from ta-security of Πts

ABA∗ , and so it only
remains to argue ta-validity. Assume every honest party’s initial input is
equal to the same value v. Then ta-weak validity of Πta

SBA, plus the fact
that it always terminates, imply that bi ∈ {v,⊥}, and hence v∗i = v, for
every honest Pi. It follows from ts-validity (note ta ≤ ts) of Πts

ABA∗ that
all honest parties output v.

6 Impossibility Result

We show here that our positive result from the previous section is tight.
That is:

Theorem 4. For any n, if ta ≥ n/3 or ta + 2 · ts ≥ n there is no n-
party protocol for Byzantine agreement that is ts-secure in a synchronous
network and ta-secure in an asynchronous network.

The case of ta ≥ n/3 follows from existing impossibility results for
asynchronous consensus, so the interesting case is when ta < n/3 but
ta + 2 · ts ≥ n. Theorem 4 follows from the lemma below.

Lemma 12. Fix n, ta, ts with ta+2ts ≥ n. If an n-party Byzantine agree-
ment protocol is ts-valid in a synchronous network, then it cannot also be
ta-weakly consistent in an asynchronous network.

Proof. The proof is similar to that of [36]. Assume ta + 2ts = n and
fix a BA protocol Π. Partition the n parties into sets S0, S1, Sa where
|S0| = |S1| = ts and |Sa| = ta, and consider the following experiment:

– Parties in S0 run Π using input 0, and parties in S1 run Π using
input 1. All communication between parties in S0 and parties in S1 is
blocked (but all other messages are delivered within time ∆).

– Create virtual copies of each party in Sa, call them S0
a and S1

a. Parties
in S0

a run Π using input 0, and communicate only with each other and
parties in S0. Parties in S1

a run Π using input 1, and communicate
only with each other and parties in S1.



Consider an execution of Π in a synchronous network where parties in S1
are corrupted and simply abort, and all remaining (honest) parties use
input 0. The views of the honest parties in this execution are distributed
identically to the views of S0∪S0

a in the above experiment. In particular,
ts-validity of Π implies that all parties in S0 output 0. Analogously, all
parties in S1 output 1.

Next consider an execution of Π in an asynchronous network where
parties in Sa are corrupted, and run Π using input 0 when interacting
with S0 while running Π using input 1 when interacting with S1. More-
over, all communication between the (honest) parties in S0 and S1 is
delayed indefinitely. The views of the honest parties in this execution are
distributed identically to the views of S0∪S1 in the above experiment, yet
the conclusion of the preceding paragraph shows that weak consistency
is violated.

Acknowledgments. Julian Loss was supported by ERC Project ERCC
(FP7/615074).

Appendix

Protocol Πts
ABA has the property that parties never terminate. It is worth

noting that the naive way to address this drawback—in which honest
parties participate in one more iteration after generating output, and
then terminate—is not sufficient to allow the remaining honest parties to
terminate. To see why, suppose that some honest party Pi receives (b, 2)
as output from the second instance of Πts

GC in iteration k, and some other
honest party Pj receives (b, 1). Now Pi will participate in iteration k+ 1,
helping Pj to output (b, 2) in that iteration. However, Pi then terminates
and does not participate in iteration k+2, while Pj still needs to complete
iteration k+2 in order to terminate. Pj will not receive messages from Pi

when running Πts
GC, and (since the network may be asynchronous) has no

way of knowing whether Pi has terminated or is sending messages that
have been delayed. Thus, Pj may never terminate its execution of Πts

GC.

Nevertheless, we can obtain a terminating protocol Πts
ABA∗ using exist-

ing techniques [29]. The basic idea is that when an honest party generates
output, it announces that fact to all other parties and terminates; the re-
maining honest parties can then simulate its behavior for the rest of their
execution. Specifically, we modify Πts

ABA as follows: when an honest party
Pi outputs b∗, it sends (notify, b∗) to all parties. Upon receiving such a
message, the remaining parties each locally simulate the behavior of Pi



in the rest of the protocol, and specifically simulate receiving (prepare, b∗)
and (propose, b∗) from Pi in each execution of the Πts

prop subroutines. The
following lemma shows that this is sufficient to simulate the behavior of
honest parties who have already terminated.

Lemma 13. Let ta, ts be such that ta ≤ ts and ta+2 ·ts < n, and assume
at most ta parties are corrupted in an execution of Πts

ABA. If an honest
party outputs b∗, then in every future execution of Πts

prop within Πts
ABA that

party will send exactly the messages (prepare, b∗) and (propose, b∗).

Proof. Say honest party Pi outputs b∗ ∈ {0, 1} in some iteration k.
Then Pi must have received (b∗, 2) as the output of the second execu-
tion of Πts

GC in iteration k. By ta-graded consistency of Πts
GC, every honest

party obtained (b∗, 1) or (b∗, 2) as output from the second execution of
Πts

GC in iteration k. Therefore, in the first execution of Πts
GC in iteration

k+ 1, all honest parties use input b∗. Using the same argument as in the
proof of Lemma 3, observe that no value other than b∗ receives enough
prepare messages to be echoed (and therefore proposed) in this execution
of Πts

prop. Therefore every honest party sends (prepare, b∗) in that execu-
tion of Πts

prop, and hence every honest party sends (propose, b∗) as in the
proof of Lemma 5. This establishes that honest parties send exactly the
messages (prepare, b∗) and (propose, b∗) in the first execution of Πts

prop (as

a subroutine of the first execution of Πts
GC). Since, by Lemma 6, all honest

parties terminate with {b∗} in that execution, they all use input b∗ in
the second execution of Πts

prop (still in the first execution of Πts
GC), and

we can repeat the argument. Moreover, ts-graded validity of Πts
GC ensures

that all parties output (b∗, 2) from the first execution of Πts
GC. Therefore,

all honest parties input b∗ to the second execution of Πts
GC in iteration

k+ 1 and we can apply the same argument to show that during iteration
k + 1 of Πts

ABA, all honest parties send exactly the messages (prepare, b∗)
and (propose, b∗). Now, ts-graded validity of Πts

GC ensures that all honest
parties output (b∗, 2) in the second execution of Πts

GC in iteration k+ 1 as
well, and hence set b = b∗ for iteration k+ 2. We can therefore repeat the
same argument inductively for any iteration k′ > k + 1.

Putting everything together, we have:

Lemma 14. For any ta, ts with ta ≤ ts and ta+2·ts < n, protocol Πts
ABA∗

is ta-secure and also achieves ts-validity with termination.

Proof. Protocol Πts
ABA∗ inherits ta-validity, ta-consistency, and ta-liveness

directly fromΠts
ABA. In addition, ta-liveness ofΠts

ABA implies ta-termination
of Πts

ABA∗ .



It remains only to show that Πts
ABA∗ is ts-valid with termination. Sup-

pose at most ts parties are corrupted during an execution of Πts
ABA∗ , and

all honest parties hold input v ∈ {0, 1}. The execution proceeds exactly
as described in Lemma 10, and so all honest parties output v in the first
iteration and terminate.

Realizing CoinFlip within Πts
ABA∗. Both Mostéfaoui et al. [29] and the

above analysis treat the coin flip as an atomic primitive that outputs the
kth coin when the first honest party invokes CoinFlip(k), even if some
honest parties have terminated. When the coin flip is realized by an in-
teractive protocol, however, this may no longer hold. When realizing the
coin flip via a threshold unique signature scheme, however, there is a sim-
ple way to fix this issue: When an honest party terminates in iteration
k, it appends its share of the signature for iteration k + 1 to its notify
message. Then, all honest parties who have not yet terminated will be
able to compute the coin in iteration k + 1 as needed. It is crucial here
to note that since an honest party terminated in iteration k, the value of
the coin in iteration k + 1 will be ignored by all honest parties anyway,
so it does not matter if the adversary learns it in advance.
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