
On the Complexity of Collision Resistant Hash
Functions: New and Old Black-Box Separations

Nir Bitansky1 and Akshay Degwekar2

1 Tel Aviv University, Tel Aviv, Israel.
nirbitan@tau.ac.il,

2 MIT, Cambridge, MA, US, akshayd@alum.mit.edu

Abstract. The complexity of collision-resistant hash functions has been
long studied in the theory of cryptography. While we often think about
them as a Minicrypt primitive, black-box separations demonstrate that
constructions from one-way functions are unlikely. Indeed, theoretical
constructions of collision-resistant hash functions are based on rather
structured assumptions.

We make two contributions to this study:
1. A New Separation: We show that collision-resistant hashing does

not imply hard problems in the class Statistical Zero Knowledge in
a black-box way.

2. New Proofs: We show new proofs for the results of Simon, ruling out
black-box reductions of collision-resistant hashing to one-way per-
mutations, and of Asharov and Segev, ruling out black-box reduc-
tions to indistinguishability obfuscation. The new proofs are quite
different from the previous ones and are based on simple coupling
arguments.

No Title Given

No Author Given

No Institute Given

Table of Contents

No Title Given 1

1 Introduction

Collision-resistant hash functions (CRHFs) are perhaps one of the most studied
and widely used cryptographic primitives. Their applications range from basic
ones like “hash-and-sign” [?, ?] and statistically hiding commitments [?, ?] to
more advanced ones like verifiable delegation of data and computation [?, ?] and
hardness results in complexity theory [?, ?].

Constructions. Collision resistance is trivially satisfied by random oracles and
in common practice, to achieve it, we heuristically rely on unstructured hash
functions like SHA. Accordingly, we often think of CRHFs as a creature of
Minicrypt, the realm of symmetric key cryptography [?]. However, when con-
sidering theoretical constructions with formal reductions, collision resistance is
only known based on problems with some algebraic structure, like Factoring,
Discrete Log, and different short vector and bounded distance decoding prob-
lems (in lattices or in binary codes) [?, ?, ?, ?, ?, ?, ?]. Generic constructions
are known from claw-free permutations [?, ?], homomorphic primitives [?, ?],
and private information retrieval [?], which likewise are only known from sim-
ilar structured assumptions. An exception is a recent work by Holmgren and
Lombardi [?] which constructs CRHFs from a new assumption called one-way
product functions. These are functions where efficient adversaries succeed in in-
verting two random images with probability at most 2−n−ω(logn). Indeed, this
assumption does not explicitly require any sort algebraic structure.

Understanding the Complexity of CRHFs. In light of the above, it is
natural to study what are the minimal assumptions under which CRHFs can be
constructed, and whether they require any sort of special structure. Here Simon
[?] provided an explanation for our failure to base CRHFs on basic Minicrypt
primitives like one-way functions or one-way permutations. He showed that there
are no black-box reductions of CRHFs to these primitives. In fact, Asharov and
Segev [?] demonstrated that the difficulty in constructing CRHFs from general
assumptions runs far deeper. They showed that CRHFs cannot be black-box
reduced even to indistinguishability obfuscation (and one-way permutations),
and accordingly not to anyone of the many primitives it implies, like public key
encryption, oblivious transfer, or functional encryption.

CRHFs and SZK. An aspect common to many CRHF constructions is that
they rely on assumptions that imply hardness in the class SZK. Introduced by
Goldwasser, Micali and Rackoff [?], SZK is the class of promise problems with
statistical zero-knowledge proofs. Indeed, SZK hardness is known to follow from
various algebraic problems that lead to CRHFs, such as Discrete Logarithms [?],
Quadratic Residuosity [?], and Lattice Problems [?, ?], as well as from generic
primitives that lead to CRHFs such as homomorphic encryption [?], lossy func-
tions [?], and computational private information retrieval [?].

The formal relation between SZK and CRHFs is still not well understood.
As possible evidence that SZK hardness may be sufficient to obtain collision
resistance, Komargodski and Yogev [?] show that average-case hardness in SZK
implies a relaxations of CRHFs known as distributional CRHFs. Applebaum

2 No Author Given

and Raykov [?] show that CRHFs are implied by average-case hardness in a
subclass of SZK of problems that have a perfect randomized encoding. Berman et
al. [?] showed that average-case hardness of a variant of entropy approximation,
a complete problem for the class of Non-Interactive SZK (NISZK), suffices to
construct yet a different relaxation known as multi-collision resistance.

Is hardness in SZK necessary for CRHFs? Our perception of CRHFs as a
Minicrypt primitive, as well as the result by Holmgren and Lombardi mentioned
above, suggest that this should not be the case. However, we do not know how
to prove this. Meaningfully formalizing a statement of the form “CRHFs do not
require SZK hardness” requires care — it is commonly believed that SZK does
contain hard problems, and if this is the case then formally, CRHFs (or any other
assumption for that matter) imply hardness in SZK. To capture this statement
we again resort to the methodology of black-box separations; that is, we aim to
prove that hard problems in SZK cannot be obtained from CRHFs in a black-box
way.

Recent work by Bitansky, Degwekar, and Vaikuntanathan [?] showed that
a host of primitives, essentially, all primitives known to follow from IO, do not
lead to hard problems in SZK through black-box reductions. Their separation,
however, does not imply a separation from CRHFs; indeed, CRHFs are not
known to follow from IO, and in fact according to Asharov and Segev [?], cannot
in a black-box way.

1.1 This Work

In this work, we close the above gap, proving that CRHFs do not imply hardness
in SZK through black-box reductions.

Theorem 1.1. There are no fully black-box reductions of any (even worst-case)
hard problem in SZK to CRHFs.

Here by fully black box we mean reductions where both the construction and
the security proof are black box in the CRHF and the attacker, respectively. This
is the common type of reductions used in cryptography. We refer the reader to
the technical overview in Section 2 for more details.

New proofs of Simon and Asharov and Segev. Our second contribution is
new proofs for the results of Simon [?], ruling out fully black-box reductions of
CRHFs to OWPs,1 and of Asharov and Segev [?], ruling out black-box reductions
of CRHFs to OWPs and IO. The new proofs draw from ideas used in [?]. They
are based mostly on simple coupling arguments and are quite different from the
original proofs.

1.2 More Related Work on Black-Box Separations

Following the seminal work of Impagliazzo and Rudich [?], black-box separations
in cryptography have been thoroughly studied (see, e.g., [?, ?, ?, ?, ?, ?, ?, ?,

1 Simon also ruled out a stronger type of reductions known as semi-black-box reduc-
tions [?]. We only rule out the notion of fully black-box reductions described above.

No Title Given 3

?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]). Most of this study has been devoted
to establishing separations between different cryptographic primitives and some
of it to putting limitations on basing cryptographic primitives on NP-hardness
[?, ?, ?, ?, ?, ?].

Perhaps most relevant to our works are the works of Simon [?], Asharov and
Segev [?] and [?] mentioned above, as well as the work by Haitner et al. [?] who
gave an alternative proof for the Simon result (and extended it to the case of
statistically-hiding commitments of low round complexity).

We also note that [?] claim to show that distributional CRHFs cannot be
reduced to multi-collision resistant hash functions in a black box way, which
given the black-box construction of distributional CRHFs from SZK hardness
[?], would imply that SZK hardness cannot be obtained from multi-collision
resistance in a black box way. However, for the time being there seems to be a
gap in the proof of this claim [?].

2 Techniques

We now give an overview of the techniques behind our results.

Ruling Out Black-Box Reductions. Most constructions in cryptography
are fully black-box [?], in the sense that both the construction and (security)
reduction are black box. In a bit more detail, a fully black-box construction of a
primitive P ′ from another primitive P consists of two algorithms: a construction
C and a reduction R. The construction CP implements P ′ for any valid oracle
P. The reduction RA,P , given oracle-access to any adversary A that breaks CP ,
breaks the underlying P. Hence, breaking the instantiation CP of P ′ is at least
as hard as breaking P itself.

A common methodology to rule out fully black black-box constructions of
a primitive P ′ from primitive P (see e.g., [?, ?, ?]), is to demonstrate oracles
(Γ,A) such that:

– relative to Γ , there exists a construction CΓ realizing P that is secure in the
presence of A,

– but any construction C′Γ realizing P ′ can be broken in the presence of A.

Indeed, if such oracles (Γ,A) exist, then no efficient reduction will be able to use
(as a black-box) the attacker A against P ′ to break P (as the construction of P
is secure in the presence of A).

We now move on to explain how each of our results is shown in this frame-
work.

2.1 Collision Resistance When SZK is Easy

Our starting point is the work by [?] who showed oracles relative to which
Indistinguishability Obfuscation (IO) and One-Way Permutations (OWPs) exist
and yet SZK is easy. We next recall their approach and explain why it falls short

4 No Author Given

of separating CRHFs from SZK. We then explain the approach that we take in
order to bridge this gap.

Black-box Constructions of SZK Problems. The [?] modeling of problems
in SZK follows the characterization of SZK by Sahai and Vadhan [?] through
its complete Statistical Difference Problem (SDP). SDP is a promise problem,
where given circuit samplers (C0, C1), the task is to determine if the statistical
distance between their respective output distributions is large (> 2/3) or small
(< 1/3). Accordingly, we can model a black-box construction of a statistical
distance problem SDPΨ , relative to an oracle Ψ , defined by

SDPΨY =

{
(C0, C1) : SD(CΨ0 , C

Ψ
1) ≥ 2

3

}
,

SDPΨN =

{
(C0, C1) : SD(CΨ0 , C

Ψ
1) ≤ 1

3

}
.

Jumping ahead, our eventual goal will be construct an oracle Γ = (Ψ,A) such
that SDPΨ is easy in the presence of A, and yet Ψ can be used to securely realize
a CRHF, in the presence of A. Here we naturally choose Ψ to be a random
shrinking function f , and for the SZK breaker A adopt the oracle SDOf from
[?]. SDOf is a randomized oracle that takes as input a pair of oracle-aided circuits

(C
(·)
0 , C

(·)
1), computes the statistical distance s = SD(Cf0 , C

f
1), samples a random

value t← (1/3, 2/3), and outputs:

SDOf (C0, C1; t) :=

{
N If s < t

Y If s ≥ t
.

This oracle is clearly sufficient to break (or rather, decide) SDPf . The challenge
is in showing that CRHFs exist in the presence of the oracle SDOf , which may
make exponentially many queries to f when computing the statistical distance.

One-Way Permutations in the Presence of SDO. Toward proving the ex-
istence of CRHFs in the presence of SDO, we first recall the argument from [?]
as to why one-way permutations exist relative to SDO, and then explain why it
falls short of establishing the existence of CRHFs.

Consider the oracle Γ = (f, SDOf), where f is a random permutation. Show-

ing that f(x) is hard to invert for an adversary Af,SDOf (f(x)) with access to f
and SDOf relies on two key observations:

1. Inverting f requires detecting random local changes. Indeed, imagine an
alternative experiment where we replace f with a slightly perturbed function
fx′→f(x), which diverts a random x′ to f(x). In this experiment, the attacker
would not be able to distinguish x from x′ and would output them with the
exact same probability. Note, however, that if the attacker can invert f in
the real experiment (namely, output x) with noticeable probability, then this
means that the probabilities of outputting x and x′ in the original experiment
must noticeably differ. Indeed, in the original experiment x′ is independent

No Title Given 5

of the attacker’s view. It is not hard to show that without access to the
oracle SDOf , such perturbations cannot be detected (this can be shown for
example via a coupling argument, as we explain in more detail in Section
2.2).

2. The SDOf oracle itself, and thus Af,SDOf , can be made oblivious to random,
local changes. Hence, even given access to the SDOf oracle, the adversary
cannot invert with non-trivial probability. This is shown based on the idea
of “smoothening”: any two circuits (Cf0 , C

f
1) can be transformed into new

circuits that do not make any specific query x with high probability. This
allows arguing that even if we perturb f at a given point, their statistical
distance s does not change by much. In particular, if s is moderately far
from the random threshold t, chosen by SDO, s′ the statistical distance of
the perturbed circuits remains on the same side of t, which means that SDO’s
answer will remain invariant. Indeed, such “farness” holds with overwhelming
probability over SDO’s choice of t.

What About Collision Resistance? The above approach is not sufficient
to argue that collisions are hard to find (when f is replaced with a shrinking
function). The reason is that collisions are “non-local” — they are abundant,
and it is impossible to eliminate all of them in a shrinking function. In fact, as
we shall show later on, a similar argument to the one above can be made to work
relative to an oracle that trivially breaks CRHFs (this leads to our new proofs
of the separations of CRHFs from OWPs and IO [?, ?]). Accordingly, a different
approach is required.

Our Approach: Understanding What Statistical Difference Oracles
Reveal. At high level, to show that collisions in f are hard to find, we would
like to argue that queries to SDOf leak no information about any f(x), except
for inputs x, which the adversary had already explicitly revealed by querying
f itself. This would essentially reduce the argument to the standard argument
showing that random oracles are collision resistant — each new query collides
with any previous query with probability at most 2−m, where m is f ’s output
length. Overall, an attacker making q queries cannot find a collision except with
negligible probability q22−m.

However, showing that SDOf reveals nothing is too good to be true. Rather,
we show that this is the case with overwhelming probability. That is, with over-
whelming probability on any partial execution, the value f(x) of any x not ex-
plicitly queried within the execution is uniformly random. Roughly speaking, the
property that such partial executions should satisfy is that all queries to SDOf

satisfy smoothness and farness conditions similar to those discussed above. The
essential observation is that when such conditions hold the answer of SDOf re-
mains invariant not only to a random local change, but to any local change.
In particular, a partial execution transcript satisfying these conditions would
remain invariant if we change the value f(x) for any x not explicitly queried to
any particular y 6= f(x).

6 No Author Given

A Note on Leakage from Random Oracles. Our approach is in part inspired
by the works of Unruh [?] and Coretti et al. [?] on random oracles with auxiliary
information. They show that revealing short auxiliary information about f (so
called leakage), essentially has the effect of fixing f on a small set of values, while
the rest of f remains hidden. This does not suffice for us, because it does not
restrict in any way which values are fixed. We need to ensure that all values not
explicitly queried remain hidden even under the leakage from the oracle SDO.
(Our argument is restricted though to the specific oracle SDO and does not say
anything about arbitrary leakage.)

2.2 Proving Simon & Asharov-Segev : A Coupling-Based Approach

Next, we sketch the main ideas underlying the new proofs of Simon’s result
that OWPs do not imply CRHFs through fully black-box constructions, and
the extended result by Asharov and Segev, which consider not only OWPs, but
also IO. In this overview, we focus on the simpler result by Simon. We refer the
reader to the full version of this paper for the extension to IO.

Simon’s Collision Finding Oracle. The oracle Γ = (f,Collf) introduced
by Simon consists of a random permutation f and a collision finding oracle
Collf . The oracle Collf given a circuit Cf returns a random w along with a
random element that collides with w; namely a random w′ in the preimage of
y = Cf (w). In particular, if the circuit C is compressing, then the oracle will
output a collision w 6= w′ with high probability, meaning that CRHFs cannot
exist in its presence.

Our Proof. To prove that Coll does not help inverting f , Simon used careful
conditional probability arguments, whereas Haitner et al. [?], and then Asharov
and Segev [?] adding also IO to the picture, relied on a compression and re-
construction argument, originally due to Gennaro and Trevisan [?].Our proof is
inspired by the [?] proof that the statistical distance oracle SDO does not help
inverting permutations (discussed above). At high level, we would like to argue
that the collision-finding oracle Coll, like the oracle SDO, is oblivious to random
local changes. Following the intuition outlined for SDO, an attacker that fails to
detect random local changes will also fail in inverting random permutations.

Punctured Collision Finders. To fulfil this plan, we consider a punctured
version PColl of the oracle Coll, where the function f can be erased at a given
set of values S. Roughly speaking, PColl will allow us to argue that Coll is not
particularly sensitive to the value f(x) of almost any x. To define PColl, we first
give a more concrete description of Coll and then explain how we change it.

The oracle Coll, for any circuit C : {0, 1}k → {0, 1}∗, assigns a random input
w ∈ {0, 1}k and a random permutation π of {0, 1}k ' [2k]. It then returns
(w,w′), where w′ is the first among π(1), π(2), . . . such that Cf (w) = Cf (w′).

The oracle PCollfS is parameterized by a set of punctured inputs S ⊆ {0, 1}n. Like
Coll, for any C, it samples a random input w and a permutation π. Differently
from Coll, if Cf (w) queries any x ∈ S, the oracle returns ⊥. Else, it iterates

No Title Given 7

over the inputs {0, 1}k according to π and finds the first value w′ such that (1)
Cf (w′) makes no queries to any x ∈ S, and (2) Cf (w) = Cf (w′). The oracle
outputs the collision (w,w′).

The PColl oracle satisfies the following essential property. Let τ be a tran-

script generated by the attacker Af,Coll
f

and assume that for all Coll answers

(w,w′) in τ , neither Cf (w) nor Cf (w′) query any x ∈ S. Then Af,PColl
f
S gener-

ates the exact same transcript τ . Indeed, this follows directly from the definition
of the punctured oracle PColl.

Proving Hardness of Inversion by Smoothening and Coupling. Equipped
with the punctured oracle, we now explain how it can be used argue the hardness
of inversion. We first consider a smoothening process analogous to the one con-
sidered in the statistical distance separation discussed above. That is, we make
sure that (with overwhelming probability) all queries C made to Coll are smooth
in the sense that Cf (w) does not query any specific input with high probability
when w is chosen at random. We then make a few small perturbations to our
oracles, and argue that they are undetectable by a coupling argument. Finally,
we deduce univertability.

Step 1: Let x be the preimage that Af,Coll
f

(f(x)) aims to find. We first con-

sider, instead of Coll, the punctured oracle PCollf{x}. Due to smoothness, almost

every transcript produced by Af,Coll
f

(f(x)) is such that x is not queried by
Cf (w), Cf (w′) for any query C and answer (w,w′) returned by Coll . Any tran-
script satisfying the latter can be coupled with an identical transcript generated

by Af,PColl
f
{x}(f(x)), and deduce that the probability of inversion (outputting x)

in this new experiment E1 is close to the probability in the original experiment
E0.

Step 2: We perturb the oracle again. We sample a random x′ ← {0, 1}n and
make the following two changes: (1) we change the oracle f to fx′→f(x), which

diverts x′ to f(x), and (2) we puncture at x′, namely, we consider PCollf{x,x′}.

We next observe that in this new experiment E2, x and x′ are symmetric.
Accordingly, x and x′ are output with the same probability in the experiment
E2. To complete the proof, we apply a coupling argument to show that x and
x′ are output with almost the same probability also in the previous experiment
E1. This is enough as in E1 the view of the attacker is independent of x′, which
will allows us to deduce that the probability of inversion is negligible overall.

Let us describe the coupling argument more explicitly. Both experiments E1

and E2 are determined by the choice of f, x, x′ and randomness R = {w, π} for
Coll. We can look at the events X1 = X1(f, x, x′, R) and X2 = X2(f, x, x′, R),
where X1 occurs when the attacker outputs x in the experiment E1 and X2

occurs when it outputs x in E2. Similarly, we can look at X ′1 and X ′2, which de-
scribe the events that x′ is output in each of the experiments. Then by coupling,
we know that ∣∣∣Pr[X1]− Pr[X2]

∣∣∣ ≤ Pr
f,x,x′,R

[IX1
6= IX2

] ,

8 No Author Given

where IX1
, IX2

are the corresponding indicators. The same holds for X ′1, X ′2.
Thus, we can bound:∣∣∣Pr[X1]− Pr[X ′1]

∣∣∣ ≤ ∣∣∣Pr[X1]− Pr[X2]
∣∣∣+
∣∣∣Pr[X2]− Pr[X ′2]

∣∣∣+
∣∣∣Pr[X ′1]− Pr[X ′2]

∣∣∣
≤ Pr
f,x,x′,R

[IX1
6= IX2

] + 0 + Pr
f,x,x′,R

[
IX′

1
6= IX′

2

]
.

It is left to see that when fixing f, x,R the outputs in the two experiments E1, E2

(and thus also X1, X2 and X ′1, X
′
2) are identical as long as x′ does not coincide

with any of the queries to f , nor with any of the queries induced by any PColl{x}
answer (w,w′). Since the number of such queries is bounded and x′ is chosen
independently at random, this will almost surely be the case.

Organization

In Section ??, we provide relevant preliminaries. In Section ??, we prove that
there are no fully black-box reductions of SZK hardness to CRHFs. In Section
??, we reprove Simon’s result that there are no fully black-box reductions of
CRHFs to OWPs. The extension of this result to IO can be found in the full
version of this paper.

3 Preliminaries

In this section, we introduce the basic definitions and notation used throughout
the paper.

3.1 Conventions

For a distribution D, we denote the process of sampling from D by x ← D.
A function negl : N → R+ is negligible if for every constant c, there exists a
constant nc such that for all n > nc negl(n) < n−c.

Randomized Algorithms. As usual, for a random algorithm A, we denote by
A(x) the corresponding output distribution. When we want to be explicit about
the algorithm using randomness r, we shall denote the corresponding output by
A(x; r). We refer to uniform probabilistic polynomial-time algorithms as PPT
algorithms.

Oracles. We consider oracle-aided algorithms (or circuits) that make repeated
calls to an oracle Γ . Throughout, we will consider deterministic oracles Γ that are
a-priori sampled from a distribution Γ on oracles. More generally, we consider
infinite oracle ensembles Γ = {Γn}n∈N, one distribution Γn for each security
parameter n ∈ N (each defined over a finite support). For example, we may
consider an ensemble f = {fn} where each fn : {0, 1}n → {0, 1}n is a random
function. For such an ensemble Γ and an oracle aided algorithm (or circuit)
A with finite running time, we will often abuse notation and denote by AΓ (x)

No Title Given 9

and execution of A on input x where each of (finite number of) oracle calls
that A makes is associated with a security parameter n and is answered by the
corresponding oracle Γn. When we write AΓ1 , . . . ,A

Γ
k for k algorithms, we mean

that they all access the same realization of Γ .

3.2 Coupling and Statistical Distance.

Definition 3.1 (Coupling). Given two random variables X,Y over X ,Y, a
coupling of X,Y is defined to be any distribution PX′Y ′ on X ×Y such that, the
marginals of PX′Y ′ on X and Y are the distributions X, Y respectively.

Denote by PXY the set of all couplings of X,Y .

Lemma 3.2. Given any two distributions X,Y supported on X ,

SD(X,Y) = inf
PX′Y ′∈PXY

Pr
(x,y)←PX′Y ′

[x 6= y].

Furthermore, for distributions over a discrete domain X the infimum is at-
tained: that is, there exists a coupling PXY such that SD(X,Y) = Pr(x,y)←PXY [x 6= y].

The lemma allows us to bound the statistical distance between two random
variables (hybrid experiments in our case) by setting up a coupling between two
experiments and bounding the probability of them giving a different outcome.
Looking ahead, in ??, we describe an explicit coupling for the Simon’s collision
finder oracle, of the form above that allows us to bound the statistical distance
between hybrids.

4 Separating SZK and CRHFs

4.1 Fully Black-Box Constructions of SZK Problems

The class of problems with Statistical Zero Knowledge Proofs (SZK) [?, ?] can
be characterized by complete promise problems [?], particularly statistical dif-
ference, and the transformation is black-box. In order to consider black-box
constructions of hard problems in SZK, we start by defining statistical difference
problem relative to oracles. This modelling follows [?].

In the following definition, for an oracle-aided (sampler) circuit C(·) with
n-bit input and an oracle Ψ , we denote by CΨ the output distribution CΨ (r)
where r ← {0, 1}n. We denote statistical distance by SD: for two distributions
X and Y SD(X,Y) = 1

2

∑
x|Pr[X = x]− Pr[Y = x]|.

Definition 4.1 (Statistical Difference Problem relative to oracles). For
an oracle Ψ , the statistical difference promise problem relative to Ψ , denoted as
SDPΨ = (SDPΨY , SDPΨN), is given by

SDPΨY =

{
(C0, C1) : SD(CΨ

0 ,C
Ψ
1) ≥ 2

3

}
,

SDPΨN =

{
(C0, C1) : SD(CΨ

0 ,C
Ψ
1) ≤ 1

3

}
.

10 No Author Given

Next, we define formally define fully black-box reductions from CRHFs to
SZK.

Definition 4.2 (Black-Box Construction of SZK-hard Problems). A fully
black-box construction of a hard statistical distance problems (SDP) from CRHFs
consists of

– Black-box construction: A collection of oracle-aided circuit pairs Π(·) ={
Π

(·)
n

}
n∈N

where Πn =
{

(C
(·)
0 , C

(·)
1) ∈ {0, 1}n×2

}
such that each (C0, C1)

defines an SDP instance.

– Black-box security proof: A probabilistic oracle-aided reduction R with
functions qR(·), εR(·) such that the following holds: Let f be any distribution
on functions. For any probabilistic oracle-aided A that decidesΠ in the worst-
case, namely, for all n ∈ N,

Pr

[
Af (C0, C1) = B for all

(C0, C1) ∈ Πn, B ∈ {Y,N}
such that (C0, C1) ∈ SDPfB

]
= 1

the reduction breaks collision resistance of f , namely, for infinitely many
n ∈ N,

Pr
f

[
fn(x) = fn(x′) where (x, x′)← Rf,A

]
≥ εR(n) ,

where R makes at most qR(n) queries to any of its oracles (A, f) where each
query to A consists of circuits C0, C1 each of which makes at most qR(n)
queries to f .

Next, we state the main result of this section: that any fully black-box con-
struction of SDP problems from CRHFs has to either run in time exponential
in the security parameter or suffer exponential security loss.

Theorem 4.3. For any fully black-box construction (Π,R, qR, εR) of SDPs from
CRHFs, the following holds:

1. (The reduction runs in exponential time.) qR(n) ≥ 2n/10. Or,

2. (Reduction succeeds with exponentially small probability.) εR(n) ≤ 2−n/10.

We prove the theorem by describing an oracle Γ = (f,A) such that, A solves
SDPf but f is a CRHF relative to Γ . The rest of the section is devoted to describ-
ing this oracle and proving the theorem. We start by describing the adversary
that breaks SDP: the statistical distance oracle.

4.2 The Statistical Distance Oracle

Next we describe the statistical distance oracle SDO from [?] that solves SZK
instances.

No Title Given 11

Definition 4.4 (Oracle SDOΨ). The oracle consists of t = {tn}n∈N where
tn : {0, 1}2n → (1

3 ,
2
3) is a uniformly random function. Given n-bit descrip-

tions of oracle-aided circuits C0, C1 ∈ {0, 1}n, let t∗ = tn(C0, C1), and let
s = SD(CΨ

0 ,C
Ψ
1), return

SDOΨ (C0, C1; t) :=

{
0 If s < t∗

1 If s ≥ t∗

It is immediate to see that SDOΨ decides SDPΨ in the worst-case.

Claim 4.4.1. For any oracle Ψ ,

SDPΨ ∈ PΨ,SDOΨ .

Remark 4.5 (On the Oracle Used). Our separation is sensitive to the oracle used.
Subsequent to [?], [?] observed that the Simon’s collision finding oracle Coll can
be used to decide SZK. Clearly, no separation between CRHFs and SZK holds
relative to the Simon’s oracle. It turns out that Simon’s oracle can be used
to estimate a different measure of distance between distributions, the Triangu-
lar Discrimination,2 which like statistical distance also gives an SZK-complete
promise problem [?]. Our separation does hold with a variant of Coll and SDO
that measures triangular discrimination, but does not output a collision.

4.3 Insensitivity to Local Changes

Next, we recall the notions of smoothness and farness from [?] that are used to
argue that the SDOΨ oracle is insensitive to local changes. Roughly speaking
farness says that the random threshold t used for a query (C0, C1) to SDOΨ is
“far” from the actual statistical distance. [?] show that with high probability
over the choice of random threshold t, farness holds for all queries (C0, C1)
made to SDOΨ by any (relatively) efficient adversary. This intuitively means that
changing the distributions (CΨ

0 ,C
Ψ
1), on sets of small density, will not change

the oracle’s answer. The proofs are included in ?? for completeness.

Definition 4.6 ((Ψ, t, ε)-Farness). Two oracle-aided circuits (C0, C1) ∈ {0, 1}n
satisfy (Ψ, t, ε)-farness if the statistical difference s = SD(CΨ

0 ,C
Ψ
1) and threshold

t are ε-far:

|s− t| ≥ ε .

For an adversary A, we denote by farness(A, Ψ, ε) the event that every SDO query

(C0, C1) made by AΨ,SDOΨ satisfies (Ψ, t, ε)-farness, where t = tn(C0, C1) is the
threshold sampled by SDO.

2 The triangular discrimination is defined as TD(X,Y) = 1
2

∑
x

(Pr[X=x]−Pr[Y =x])2

(Pr[X=x]+Pr[Y =x])
.

This measure also lies in the interval [0, 1] and is a metric.

12 No Author Given

Lemma 4.7 ([?](Claim 3.7)). Fix any Ψ and any oracle-aided adversary A

such that AΨ,SDOΨ makes at most q queries to SDOΨ . Then

Pr
t

[farness(A, Ψ, ε)] ≥ 1− 6qε ,

where the probability is over the choice t of random thresholds by SDO.

We now turn to define the notion of smoothness. Roughly speaking we will
say that an oracle-aided circuit C is smooth with respect to some oracle Ψ if
any specific oracle query is only made with small probability. In particular, for a
pair of smooth circuits (C0, C1), local changes to the oracle Ψ should not change
significantly the statistical distance s = SD(CΨ

0 ,C
Ψ
1).

Definition 4.8 ((Ψ, ε)-Smoothness). A circuit C(·) is (Ψ, ε)-smooth, if every
location x ∈ {0, 1}∗ is queried with probability at most ε. That is,

max
x

Pr
w

[
CΨ (w) queries Ψ at x

]
< ε .

For an adversary A, we denote by smooth(A, Ψ, ε) the event that in every SDO

query (C0, C1) made by AΨ,SDOΨ both circuits are (Ψ, ε)-smooth.

Lemma 4.9 ([?](Claim 3.9)). Let Ψ , Ψ ′ be oracles that differ on at most c
values in the domain. Let C0 and C1 be (Ψ, ε)-smooth. Let s = SD(CΨ0 , C

Ψ
1) and

s′ = SD(CΨ
′

0 , CΨ
′

1) then |s− s′| ≤ 2cε.

The above roughly means that (under the likely event that farness holds)
making smooth queries should not help the adversary detect local changes in
the oracle Ψ . [?] show that we can always “smoothen” the adversary’s circuit at
the expense of making (a few) more queries to Ψ , which intuitively deems the
statistical difference oracle SDOΨ useless altogether for detecting local changes
in Ψ .

In what follows, a (q′, q)-query algorithm A makes at most q′ queries to the
oracle Ψ and q queries to SDOΨ such that for each query (C0, C1) to SDO, the
circuits C0, C1 themselves make at most q queries to Ψ on any input.

Lemma 4.10 (Smoothing Lemma for SDO [?](Lemma 3.10)). For any
(q, q)-query algorithm A and β ∈ N, there exists a (q + 2βq2, q)-query algorithm
S such that for any input z ∈ {0, 1}∗ and oracles Ψ, SDOΨ :

1. SΨ,SDOΨ (z) perfectly simulates the output of AΨ,SDOΨ (z),

2. SΨ,SDOΨ (z) only makes queries (C0, C1) where both C0, C1 are (Ψ, ε)-smooth
queries to SDOΨ with probability:

Pr
S

[smooth(S, Ψ, ε)] ≥ 1− 2−εβ+log(2q2/ε) ,

over its own random coin tosses.

No Title Given 13

4.4 Collision Resistance in the Presence of SDO Oracle.

In this section, we prove the oracle separation between collision resistant hash
functions and SZK.

Let Fn be the set of all functions from {0, 1}n to {0, 1}m(n) where m(n) < n
is a shrinking function. Let F = {Fn}n∈N denote the family of these sets of
functions. Let T = {Tn}n∈N where Tn denotes the set of threshold functions
t : {0, 1}n → (1/3, 2/3). 3

Definition 4.11 (The Oracle f). The oracle f = {fn}n∈N on input x ∈
{0, 1}n returns fn(x) where fn : {0, 1}n → {0, 1}m is a random function from
Fn.

The oracle we consider is Γ = (f, SDOf). It is easy to see that all SDPf ∈
Pf,SDOf . What remains to show is that f is still collision resistant in the presence
of the SDOf oracle. We do so next.

Theorem 4.12. Let A be a (q, q)query adversary for q = O(2m/10). Then,

Pr
[
fn(x) = fn(x′) where (x, x′)← Af,SDOf (1n)

]
≤ 2−m/10 .

Proof. Fix oracle f−n = {fk}k 6=n arbitrarily. Consider the (q + 2βq2, q)query

smooth version S, of A given by Lemma ?? for β = 2m/5 · m and ε = 2−m/5.
We assume w.l.o.g that S makes no repeated oracle queries and that whenever

S outputs a collision (x, x′), x is its last oracle query and x′ is a previous query
(both to the f oracle).

The first assumption is w.l.o.g because S may store a table of previously made
queries and answers. The second is w.l.o.g because S may halt once its f -queries
include a collision and output that collision; also, if one, or both, outputs x, x′

have not been queried, S can query it at the end (and if needed change the order
of the output so that x is queries last). The latter costs at most two additional
queries, and does not affect the smoothness of S.

Next, we define some notation about transcripts generated in the process.

Transcripts. A transcript π consists of all queries asked and answers received
by S to the oracle (f, SDOf). Let xi denote the i-th query to the f -oracle. We
say that x 6∈ π if the location x is not among the queries explicitly made in π.

The Underlying Joint Distribution. The proof infers properties of the joint
distribution (f, t, π) consisting of the oracle f , the SDO oracle’s random thresh-
olds t and the transcript generated by S. The distribution is generated as follows:

f ← F and t ← T and π ← Sf,SDOf;t where SDOf ;t denotes running the SDO
oracle with random thresholds t. Denote this distribution by PFTΠ .

3 While we describe the threshold function as a real valued function, it can be safely
discretized because statistical distance for any pair of circuits C0, C1 : {0, 1}m →
{0, 1}∗, takes values that are multiples of 2−(m+1). We omit the details here.

14 No Author Given

Note that given f, t, the transcript π is generated in a deterministic manner as
S is deterministic and the oracle’s behavior is completely specified. Furthermore,
we also consider partial transcripts obtained by running S and stopping after i
queries. This transcript is denoted by π<i, xi: that is the π<i consists of queries
and responses received and xi is the next query to the oracle f . Note that xi
is a deterministic function of π<i. Given the distribution PFTΠ , the conditional
distributions PFT |Π=π or PFT |Π=π<i are well defined: these consist of uniform
distribution on pairs (f, t) that when run using S result in the transcript being
π (or π<i).

The Good Event. We define the concept of Good transcripts. Roughly speak-
ing, these are transcripts π that satisfy sufficient smoothness and farness so to
guarantee that that the value f(x) at any x /∈ π is completely hidden.

Definition 4.13 (Good). A tuple (f, t, π, x, ε) is good, denoted by good(f, t, π, x, ε)
if the following hold:

1. π = Sfx→⊥,SDOfx→⊥;t

(1n), where fx→⊥ is the function equal to f everywhere
except at x where it takes the value ⊥.

2. (x is not explicitly queried:) x 6∈ π.

3. (Transcript is smooth:) Every SDO-query made by Sfx→⊥,SDOfx→⊥;t

(1n) is
(fx→⊥, 2ε)-smooth. Denote this event by smooth(fx→⊥, t, π, 2ε).

4. (Transcript is far:) Every SDO-query (C0, C1) made by Sfx→⊥,SDOfx→⊥;t

(1n),
satisfies (fx→⊥, t, 12ε)-farness where t = t(C0, C1). Denote this by far(f, t, π, 12ε).

The key reason for using fx→⊥ instead of f in the definition is that when an

execution of Sfx→⊥,SDOfx→⊥;t

generates a transcript π while making only smooth

and far queries, all executions of Sfx→z,SDOfx→z ;t

for all z, also generate π while
not necessarily being smooth or far themselves.

A tuple (f, t, π, ε) is good if for all x 6∈ π, good(f, t, π, x, ε) holds.

Lemma 4.14. Let PFTΠ as defined above. Then,

Pr
(f,t,π)←PFTΠ

[good(f, t, π, ε)] ≥ 1− 16qε− 2−βε+log(2q2/ε)

The same holds for i-length partial transcripts generated as well, for all i.

Lemma 4.15. For any transcript π and query x 6∈ π such that

Pr
(f,t,π)←PFTΠ

[good(f, t, π, x, ε)] > 0 ,

it holds that, {
f(x) : (f, t)← PFT |Π=π,good(f,t,π,x,ε)

}
≡ Um .

Next, we prove ?? assuming ????. Then, we prove the two lemmas.

No Title Given 15

Let hit(π) denote the event that π contains two queries x, x′ such that fn(x) =
fn(x′). Then,

Pr
f,t

[
fn(x) = fn(x′) ∧ (x, x′) = Sf,SDOf;t(1n)

]
= Pr
f,t,π

[hit(π)]

≤ Pr
f,t,π

[hit(π) ∧ good(f, t, π, ε)]

+ Pr
f,t,π

[
good(f, t, π, ε)

]
.

We will bound the two terms separately. The first term will involve using
?? while the second term is bound using ????. We begin by bounding the first
term. This is done by decomposing the probability of hitting a collision by the
first query that hits a collision:

Pr
f,t

[hit(π) ∧ good(f, t, π, ε)]

≤
∑
i

Pr
f,t

[
hit(π≤i) ∧ hit(π<i) ∧ good(f, t, π<i, ε)

]
=
∑
i

Pr
f,t

[
f(xi) ∈ hitSet(π<i) ∧ hit(π<i) ∧ good(f, t, π<i, ε)

]
,

where xi /∈ π denotes the i-th f query made by S and hitSet(π<i) denotes the
answers to f -queries in π<i,

=
∑
i

∑
π<i,xi

Pr
f,t

[
(π<i, xi) = Sf,SDOf;t(1n) ∧ good(f, t, π<i, xi, ε)

]
· Pr
f,t←PFT |Π=π<i,good

[f(xi) ∈ hitSet(π<i)]

The last equality follows from the definition of conditional probability. At this
point, we can use ?? to argue that

Pr
f,t←PFT |Π=π<i,good(f,t,π<i,xi,ε)

[f(xi) ∈ hitSet(π<i)] ≤
i

2m

because f(xi) is uniformly random and |hitSet(π<i)| ≤ i. Hence, we get that,

≤
∑
i

i

2m
·
∑
π<i,xi

Pr
f,t

[
(π<i, xi) = Sf,SDOf;t(1n) ∧ good(f, t, π<i, xi, ε)

]

≤
q′∑
i=1

i

2m
≤ q′2

2m
,

where q′ = q + 2βq2 + 2, the number queries that S makes to f .

	On the Complexity of Collision Resistant Hash Functions: New and Old Black-Box Separations
	No Title Given
	Introduction
	This Work
	More Related Work on Black-Box Separations

	Techniques
	Collision Resistance When SZK is Easy
	Proving Simon & Asharov-Segev : A Coupling-Based Approach

