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Abstract. Recent research in quantum cryptography has led to the de-
velopment of schemes that encrypt and authenticate quantum messages
with computational security. The security definitions used so far in the
literature are asymptotic, game-based, and not known to be compos-
able. We show how to define finite, composable, computational security
for secure quantum message transmission. The new definitions do not
involve any games or oracles, they are directly operational: a scheme
is secure if it transforms an insecure channel and a shared key into an
ideal secure channel from Alice to Bob, i.e., one which only allows Eve to
block messages and learn their size, but not change them or read them.
By modifying the ideal channel to provide Eve with more or less capa-
bilities, one gets an array of different security notions. By design these
transformations are composable, resulting in composable security.
Crucially, the new definitions are finite. Security does not rely on the
asymptotic hardness of a computational problem. Instead, one proves a
finite reduction: if an adversary can distinguish the constructed (real)
channel from the ideal one (for some fixed security parameters), then
she can solve a finite instance of some computational problem. Such a
finite statement is needed to make security claims about concrete imple-
mentations.
We then prove that (slightly modified versions of) protocols proposed in
the literature satisfy these composable definitions. And finally, we study
the relations between some game-based definitions and our composable
ones. In particular, we look at notions of quantum authenticated encryp-
tion and QCCA2, and show that they suffer from the same issues as their
classical counterparts: they exclude certain protocols which are arguably
secure.

1 Introduction

At its core, a security definition is a set of mathematical conditions, and a
security proof consists in showing that these conditions hold for a given pro-
tocol. Given various security definitions, one may analyze which are stronger
and weaker by proving reductions or finding separating examples. This how-
ever does not tell us which definitions one should use, since too weak definitions
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may have security issues and too strong definitions may exclude protocols that
are arguably secure. For example, IND-CCA2 is often considered an unnecessarily
strong security definition, since taking a scheme which is IND-CCA2 and append-
ing a bit to the ciphertext results in a new encryption scheme that is arguably
as secure as the original scheme, but does not satisfy IND-CCA2 [15,17]. In this
work we take a more critical approach to defining security. We ask what crite-
ria a security definition needs to satisfy that are both necessary and sufficient
conditions to call a protocol “secure”. We then apply them to the problem of
encrypting and authenticating quantum messages with computational security
in the symmetric-key setting.

1.1 A Security Desideratum

Operational security. Common security definitions for encryption and authenti-
cation found in the literature are game-based, i.e., they require that an adversary
cannot win a game such as guessing what message has been encrypted given ac-
cess to certain oracles, see, e.g., [8] and [24] for comparisons of various such games
in the public-key and private-key settings, respectively. These have been adapted
for transmitting quantum messages: a definition for QCPA has been proposed in
[11], QCCA1 in [1], and QCCA2 as well as notions of quantum unforgeability and
quantum authenticated encryption in [2]. These are just some of the security
games one can imagine — in the classical, symmetric-key setting, [24] analyzes
18 different security notions. A natural question is then to ask which of these
games are the relevant ones, for which ones is it both necessary and sufficient
that an adversary cannot win them. And the general answer is: we do not know.

Through such cryptographic protocols one wishes to prevent an adversary
from learning some part of a message or modifying a message undetected. But
it is generally unclear how such game-based security definitions relate to these
operational notions— we refer to [32] for a more in-depth critique of game-based
security. Instead, one should directly define security operationally.1 In this work
we follow the constructive paradigm of [28, 30, 31], and define a protocol to be
secure if it constructs a channel with the desired properties, e.g., only leaks the
message size or only allows the adversary to block the message, but not change
it or insert new messages.

Composable security. A second drawback of the definitions proposed so far in
the literature for computational security of quantum message transmission [1,2,
11] is that they are not (proven to be) composable. A long history of work on
composable security has shown that analyzing a protocol in an isolated setting
does not imply that it is actually secure when one considers the environment
in which it is used. When performing such a composable security analysis, one

1Note that once a game-based definition has been proven to capture operational no-
tions such as confidentiality or authenticity (e.g., via a reduction), then the game-based
criterion may become a benchmark for designing schemes with the desired security; see
the discussion in Sect. 1.6.
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sometimes finds that the definitions used are inappropriate but the protocols are
actually secure like for quantum key distribution [10,25,39], that the definitions
are still secure (up to a loss of security parameter) like for delegated quantum
computation [18], or that not only the definitions but also the protocols are
insecure like in relativistic and bounded storage bit commitment and (biased)
coin tossing [44].2 It is thus necessary for a protocol to be proven to satisfy a
composable security definition before it may be considered (provably) secure and
safely used in an arbitrary environment.

Finite security. A third problem with the aforementioned security definitions
is that they are all asymptotic. This means that the protocols have a security
parameter k ∈ N— formally, one considers a sequence of protocols {Πk}k∈N —
and security is defined in the limit when k → ∞. An implementation of a
protocol will however always be finite, e.g., the honest players choose a specific
parameter k0 which they consider to be sufficient and run Πk0 . A security proof
for k →∞ does not tell us anything about security for any specific parameter k0
and thus does not tell us anything about the security of Πk0 , which is run by the
honest players. To resolve this issue, some works consider what is called concrete
security [7], i.e., instead of hiding parameters in O-notation, security bounds and
reductions are given explicitly. This is a first step at obtaining finite security,
but it still considers the security of a sequence {Πk}k∈N instead of security of
the individual elements Πk0 in this sequence. For example, one still considers
adversaries that are polynomial in k, simulators that must be efficient in k, and
errors that are negligible in k. But the security definition of some Πk0 should not
depend on any other elements in the sequence, on how the sequence is defined
or whether it is defined at all. Hence notions such as poly-time, efficiency, or
negligibility should not be part of a security definition for some specific Πk0 . We
call the security paradigm that analyzes individual elements Πk0 finite security,
and show in this work how to define it for computational security of quantum
message transmission.

1.2 Overview of Results

Our contributions are threefold. We first provide definitions for encryption and
authentication of quantum messages that satisfy the desideratum expressed
above. In particular, we show how to define finite security in the computational
case. In Sect. 1.3 below we explain the intuition behind this security paradigm.

We then show that (slightly modified) protocols from the literature [1, 2]
satisfy these definitions. These protocols use the quantum one-time pad and
quantum information-theoretic authentication as subroutine [6,36], but run them
with keys that are only computationally secure to encrypt multiple messages.
We explain the constructions and what is achieved in more detail in Sect. 1.4.

2Note that a negative result in a composable framework only proves that a proto-
col does not construct the desired ideal functionality. This does not exclude that the
protocol may construct some other ideal functionality or may be secure given some
additional set-up assumptions.
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Now that we have security definitions that satisfy our desideratum, we revisit
some game-based definitions from the literature, and compare them to our own
notions of security. An overview of these results is given in Sect. 1.5.

1.3 Finite Computational Security

In traditional asymptotic security, a cryptographic protocol is parameterized by
a single value k ∈ N— any other parameters must be expressed as a function
of k— and one studies a sequence of objects {Πk}k∈N. In composable security,
one uses this to define a parameterized real world R = {Rk}k∈N and ideal world
S = {Sk}k∈N, and argues that no polynomial distinguisher D = {Dk}k∈N can
distinguish one from the other with non-negligible advantage. At first glance
the notions of polynomial distinguishers and negligible functions might seem
essential, because an unbounded distinguisher can obviously distinguish the two,
and without a notion of negligibility, how can one define what is a satisfactory
bound on the distinguishability.

The latter problem is the simpler to address: instead of categorizing distin-
guishability as black or white (negligible or not), we give explicit bounds. The
former issue is resolved by observing that we never actually prove that the real
and ideal world are indistinguishable (except in the case of information-theoretic
security), since in most cases that would amount to solving a problem such as
P 6= NP. What one actually proves is a reduction, which is a finite statement,
not an asymptotic one. More precisely, one proves that if Dk can distinguish Rk
from Sk with advantage pk, then some (explicit) D′k can solve some problem Wk

with probability p′k — if one believes that Wk is asymptotically hard to solve,
then this implies that D cannot distinguish R from S.

A finite security statement stops after the reduction. We prove that for any
k0 and any Dk0 ,

dDk0 (Rk0 ,Sk0) ≤ f(Dk0), (1)

where dDk0 (·, ·) denotes the advantage Dk0 has in distinguishing two given sys-
tems, and f(·) is some arbitrary function, e.g., the probability that D′k0 (which
is itself some function of Dk0) can solve some problem Wk0 .

Equation 1 does not require systems to be part of a sequence with a single
security parameter k ∈ N. There may be no security parameter at all, or multiple
parameters. Information-theoretic security corresponds to the special case where
one can prove that f(Dk0) is small for all Dk0 .

1.4 Constructing Quantum Channels

As mentioned in Sect. 1.1, we use the Abstract and Constructive Cryptography
(AC) framework of Maurer and Renner [28, 30, 31] in this work. To define the
security of a message transmission protocol, we need to first define the type of
channel we wish to achieve — for simplicity, we always consider channels going
from Alice to Bob.
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The strongest channel we construct in this work is an ordered secure quan-
tum channel, OSC, which allows Eve to decide which messages that Alice sent
will be delivered to Bob and which ones get discarded. But it does not reveal
any information about the messages (except their size and number) to Eve and
guarantees that the delivered messages arrive in the same order in which they
were sent. A somewhat weaker channel, a secure channel SC, also allows Eve to
block or deliver each message, but additionally allows her to jumble their order
of arrival at Bob’s.

Our first result shows that a modified version of a protocol from [2] constructs
the strongest channel, OSC, from an insecure channel and a short key that is
used to select a function from a pseudo-random family (PRF). Security holds
for any distinguisher that cannot distinguish the output of the PRF from the
output of a uniform function. We also show how one can construct OSC from
SC by simply appending a counter to the messages.

The two channels described above are labeled “secure”, because they are
both confidential (Eve does not learn anything about the messages) and authen-
tic (Eve cannot change or insert any messages). If we are willing to sacrifice
authenticity, we can define weaker channels that allow Eve to modify or in-
sert messages in specific ways. We define a non-malleable confidential channel,
NMCC— which does not allow Eve to change a message sent by Alice, but does
allow her to insert a message of her choice — and a Pauli-malleable channel,
PMCC— which allows Eve to apply bit and phase flips to Alice’s messages or
insert a fully mixed state.

Our second construction modifies a protocol from [1] to construct PMCC
from an insecure channel and a short key that is used to select a function from
a pseudo-random family (PRF). Here too, security holds for any distinguisher
that cannot distinguish the PRF from uniform.

1.5 Comparison to Game-Based Definitions

In the last part of this work, we relate existing game-based security definitions
for quantum encryption with our new proposed security definitions phrased in
constructive cryptography. More concretely, we focus on the notions of quantum
ciphertext indistinguishability under adaptive chosen-ciphertext attack (QCCA2)
and quantum authenticated encryption (QAE), both introduced in [2].

We first note that encryption schemes are defined to be stateless in [1, 2, 11]
and the proposed game-based definitions are tailored to such schemes. The re-
stricted class of encryption protocols analyzed can thus not construct ordered
channels, because the players need to remember tags numbering the messages
to be able to preserve this ordering. The strongest notion of encryption from
these works, namely QAE, is thus closest to constructing a SC. In fact, we show
that QAE is strictly stronger than constructing a SC: a scheme satisfying QAE
constructs a SC, however there are (stateless) schemes constructing a SC that
would be considered insecure by the QAE game. These schemes are obtained
in the same way as the ones showing that classical IND-CCA2 is unnecessar-
ily strong: one starts with a scheme satisfying QAE and appends a bit to the
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ciphertext, resulting in a new scheme that still constructs a SC, but is not QAE-
secure. Our proof shows that QAE may be seen as constructing a SC with a fixed
simulator that is hard-coded in the game. A composable security definition only
requires the existence of a simulator, and the separation between the two notions
is obtained by considering schemes that can be proven secure using a different
simulator than the one hard-coded in the game.

For QCCA2, we first propose an alternative game-based security notion that
captures the same intuition, but which we consider more natural than the one
suggested in [2]. In particular, its classical analogue is easily shown to be equiv-
alent to a standard IND-CCA2 notion, whereas the notion put forth in [2], when
cast to a classical definition, incurs a concrete constant factor loss when com-
pared to IND-CCA2, and requires a complicated proof of this fact. We then show
that for a restricted class of protocols (which includes all the ones for which a se-
curity proof is given in previous work), our new game-based notion indeed implies
that the protocol constructs a NMCC. The same separation holds here as well:
QCCA2 definitions are unnecessarily strong, and exclude protocols that naturally
construct a NMCC. Note that in the classical case, the IND-RCCA game [15] that
was developed to avoid the problems of IND-CCA2 has been shown to be exactly
equivalent to constructing a classical non-malleable confidential channel in the
case of large message spaces [17].

1.6 Alternative Security Notions

Common security definitions often capture properties of (encryption) schemes,
e.g., let M be a plaintext random variable, let C be the corresponding ciphertext,
H is the entropy function, M ′ is the received plaintext, and accept is the event
that the message is accepted by the receiver, then

H(M |C) = H(M) and Pr[M 6= M ′ and accept] ≤ ε (2)

are simple notions of confidentiality and authenticity, respectively. But depend-
ing on how schemes satisfying these equations are used— e.g., encrypt-then-au-
thenticate or authenticate-then-encrypt— one gets drastically different results.3

The equations in (2) may be regarded as crucial security properties of encryption
schemes, but before schemes satisfying these may be safely used, one needs to
consider the context and prove what is actually achieved by such constructs (in
an operational sense).

The same applies to security definitions proposed for quantum key distri-
bution. The accessible information4 and the trace distance criterion5 capture

3Encrypt-then-authenticate is always secure, but one can find examples of schemes
satisfying (2) following the authenticate-then-encrypt paradigm that are insecure [9,
26,33].

4Iacc(K;E) := maxΓ I(K; Γ(E)), where ρKE is the joint state of the secret key K
and the adversary’s information E, and Γ(E) is the random variable resulting from
measuring the E system with a POVM Γ.

5‖ρKE − τK ⊗ ρE‖, where ρKE is the joint state of the secret key K and the
adversary’s information E and τK is a fully mixed state.
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different properties of a secret key. If a scheme satisfying the former is used with
an insecure quantum channel, then the resulting key could be insecure, but if
the channel only allows the adversary to measure and store classical information,
then the key has information-theoretic security [25,38]. A scheme satisfying the
latter notion— the trace distance criterion— constructs a secure key even when
the quantum channel used is completely insecure [10,38,39]. Neither criterion is
a satisfactory security definition on its own, they both require a further analysis
to prove whether a protocol satisfying them does indeed distribute a secure key.
But now that this has been done [10,38], the trace distance criterion has become
a reference for what a quantum key distribution scheme must satisfy [40,42].

Previous work on computational security of quantum message transmis-
sion [1, 2, 11] as well as the new definition of QCCA2 proposed on this paper
may be viewed in the same light. These game-based definitions capture proper-
ties of encryption schemes. But before a scheme satisfying these definitions may
be safely used, one needs to analyze how the scheme is used and what is achieved
by it. The constructive definitions introduced in this work and the reductions
from the game-based definitions do exactly this. As a result of this, QAE or
QCCA2 may be used as a benchmark for future schemes — though unlike the
trace distance criterion, they are only sufficient criteria, not necessary ones.

1.7 Other Related Work

The desideratum expressed in Sect. 1.1 is the fruit of many different lines of
research that go back to the late 90’s. We give an incomplete overview of some
of this work in this section.

Composable security was introduced independently by Pfitzmann and Waid-
ner [3, 4, 34, 35] and Canetti [12–14], who each defined their own framework,
dubbed reactive simulatability and universal composability (UC), respectively.
Unruh adapted UC to the quantum setting [43], whereas Maurer and Renner’s
AC applies to any model of computation, classical or quantum [30]. Quantum UC
may however not be used for finite security without substantial modifications,
since it hard-codes asymptotic security in the framework: machines are defined
by sequences of operators

{
E(k)

}
k
, where k ∈ N is a security parameter, and

distinguishability between networks of machines is then defined asymptotically
in k.6

Concrete security [7] addresses the issues of reductions and parameters being
hidden in O-notation by requiring them to be explicit. Theses works consider
distinguishing advantages (or game winning probabilities) as a function of the
allowed complexity or running time of the distinguisher, and aim at proving as

6The object about which ones makes a security statement is quite different in an
asymptotic and a finite framework. In the former it is an infinite sequence of behaviors
(e.g., a machine in UC), whereas in the later it is an element in such a sequence (the
sequence itself is not necessarily well-defined). One thus composes different objects
in the two models, and a composition theorem in one model does not immediately
translate to a composition theorem in the other.
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tight statements a possible. In such an approach, one would have to define a pre-
cise computational model. This, however, is avoided, meaning that any model in
a certain class of meaningful models is considered equivalent. This unavoidably
means that the security statements are asymptotic, at least with an unspecified
linear or sublinear term. In contrast, the objects we consider, including distin-
guishers, are discrete systems and are directly composed as such, without need
for considering a computational model for implementing the systems.

In the classical case, a model of discrete systems that may be used for finite
security is random systems [27, 29]. Generalizations to the quantum case have
been proposed by Gutoski and Watrous [19, 20] — and called quantum strate-
gies — by Chiribella, D’Ariano and Perinotti [16] — called quantum combs —
and by Hardy [21–23]— operator tensors. A model for discrete quantum systems
that can additionally model time and superpositions of causal structures is the
causal boxes framework [37].

None of the previous works on computational security of quantum message
transmission satisfy any of the three criteria outlined in Sect. 1.1. These crite-
ria are however standard by now for quantum key distribution [38, 42]. In the
classical case, they have also been used for computational security, e.g., [17,32].

1.8 Structure of this Paper

In Sect. 2 we introduce the elements needed from AC [28,30,31], and from the dis-
crete system model with which we instantiate AC, namely quantum combs [16].
This allows us to define the notion of a finite construction of a resource (e.g., a
secure channel) from another resource (e.g., an insecure channel and a key). In
Sect. 3 we first define the channels and other resources needed in this work. Then
we give protocols and prove that they construct various confidential and secure
channels, as outlined in Sect. 1.4. Finally, in Sect. 4 we compare our security
definitions to some game-based ones from the literature [2] and prove the results
described in Sect. 1.5.

2 Abstract & Constructive Cryptography

In this section we give a brief overview of the Abstract and Constructive Cryp-
tography (AC) framework, which is sufficient to understand the main claims of
this work. A more extended introduction to AC is provided in the full version [5],
which is needed to understand the proofs. We refer to [28, 30, 31, 38] for further
reading.

The AC framework views cryptography as a resource theory in which a proto-
col is a transformation between resources. Players may share certain resources—
e.g., secret key, an authentic channel, a public-key infrastructure, common refer-
ence strings, etc.—and use these to construct other resources—e.g., an authentic
channel, a secure channel, secret key, a bit commitment resource, an idealization
of a multipartite function, etc. More abstractly, a protocol π uses some resource
R (the assumed resource) to construct some other resource S (the constructed
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resource) within ε, where ε may be thought of as the error of the construction.
We denote this

R
π,ε−−→ S. (3)

A formal definition of Eq. (3) is provided in the full version [5].
Such a security statement is composable, because if π1 constructs S from R

within ε1 and π2 constructs T from S within ε2, the composition of the two
protocols, π2π1, constructs T from R within ε1 + ε2, i.e.,

R
π1,ε1−−−→ S

S
π2,ε2−−−→ T

}
=⇒ R

π2π1,ε1+ε2−−−−−−−→ T. (4)

In this work, resources R, S or T are instantiated with a model of quantum
interactive systems called quantum strategies [19, 20] or quantum combs [16]
in the literature. We use the term interface to denote the inputs and outputs
accessible to a specific player, e.g., most resources considered in this work have 3
interfaces for Alice, Bob and Eve. In the following we often provide pseudo-code
describing a resource. However, this always corresponds to a specific quantum
strategy/comb. When multiple resources R1, . . . ,Rn are accessible to players, we
write [R1, . . . ,Rn] for the new resource resulting from combining the individual
Ri in parallel. The mathematical meaning of this expression is explained in the
full version [5].

We often write a protocol π = (πA, πB) as a tuple, where each element πA
corresponds to the operations of a specific player (e.g., A for Alice), and only
interacts at the corresponding interface of the shared resources. Formally, these
are functions mapping a resource to another resource. Running several protocols
then corresponds to the composition of the functions as in Eq. (4).

Finally, the error of a construction ε that appears in Eq. (3) is a function
mapping distinguishers to real numbers. In information-theoretic security, one
has that ε(D) is small for all distinguishers D. In computational security this
might not be the case, since security does not hold against all adversaries, only
efficient ones. More precisely, let D[R] be the random variable corresponding to
the distinguisher’s output when interacting with R. Then the functions

∆D(R,S) := |Pr[D[R] = 0]− Pr[D[S] = 0]| and dD(R,S) := sup
D∈D

∆D(R,S)

are pseudo-metrics for any set of distinguishers D. We define the error of a
construction using one particular set D, namely the set of distinguishers obtained
from some distinguisher D by adding or removing converters between D and the
measured resources.7 Thus, for any distinguisher D, we define the class

B(D) := {D′|∃α such that Dα = D′ or D′α = D}, (5)

where ∆Dα(R,S) = ∆D(αR, αS). Abusing somewhat notation, we often write D
instead of B(D). In the following, dD(·, ·) always refers to the pseudo-metric using
the class of distinguishers generated from D as in Eq. (5).

7For more details on this, we refer to the full version [5].
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We now formalize the notion of (secure) resource construction in the three
party setting, with honest Alice and Bob and dishonest Eve.

Definition 1 (Cryptographic security [30]). Let ε be a function from dis-
tinguishers to real numbers. We say that a protocol πAB = (πA, πB) constructs
a resource S from a resource R within ε if there exists a converter simE (called
a simulator) such that for all D,

dD(πABR, simES) ≤ ε(D).

If this holds, then we write

R
π,ε−−→ S.

When the resources R,S are clear from the context, we say that π is ε-secure.

πABR is often referred to as the real system, and simES as the ideal one.
We emphasis that an ideal (or constructed) resource S will be used as the real
(or assumed) resource in the next construction, so the terms real and ideal are
relative. The details may be found in the full version [5].

3 Constructing Quantum Cryptographic Channels

In Sect. 3.1 we introduce the notations for Pauli operators and Bell basis. In
Sect. 3.2 and Sect. 3.3 we formalize the resources used in our constructions.
Then, starting from the insecure quantum channel IC, a shared secret key KEY
and local pseudo random function PRF, we show how to construct (1) the ordered
secure quantum channel OSC in Sect. 3.4 and (2) the Pauli-malleable confiden-
tial quantum channel PMCC in Sect. 3.5. A construction of the ordered secure
quantum channel OSC from one which is secure but not ordered (SC) is also
presented in the full version [5].

3.1 Quantum Operators and States

Pauli Operators. We write Pk or Px,z to denote a Pauli operator on m qubits,
where k = (x, z) are concatenation of two m-bits strings indicating in which
qubit bit flips and phase flips occur.

Pk = Px,z =

m⊗
i=1

Pxizi , where Pab =


I a = 0, b = 0,

X a = 1, b = 0,

Z a = 0, b = 1,

XZ a = 1, b = 1.

Note that Pk = P †k , therefore we simply write PkρPk when applying a Pauli-
operator Pk on state ρ. To undo Pauli-operator Pk, we simply apply Pk again,
namely, PkPkρPkPk = ρ.
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Bell Basis. We write |φ0〉 as the maximum entangled state of 2m qubits, |φ0〉 :=(
|00〉+|11〉√

2

)⊗m
, and |φk〉 := I⊗m ⊗ Pk |φ0〉 as the result of applying Pk to half of

the qubits. Then {|φk〉}k∈{0,1}2m forms the Bell basis for 2m qubits.

3.2 Key Resources

A (shared) secret key resource corresponds to a system that provides a key k to
the honest players, but nothing to the adversary.

Definition 2 (Symmetric (Classical) Key KEY). The resource KEY is as-
sociated with a probability distribution PK for (classical) key space K. A key
k ∈ K is drawn according to PK and stored in the resource.
– Interface A: On input getKey, k is output at interface A.
– Interface B: On input getKey, k is output at interface B.
– Interface E: Inactive.

In the computational setting, instead of sharing a long key, players often
share a short key which is used as seed in a local key expansion scheme. On such
key expansion scheme which we use in this work is a so-called pseudo random
function. It is essentially a family of functions which looks random.

Definition 3 (Pseudo Random Function PRFr,ν,µ). The resource PRFr,ν,µ

is associated to a family of functions {fk : {0, 1}ν → {0, 1}µ|k ∈ {0, 1}r} and
has an internal variable seed of length r. The functions in the family have input
length ν and output length µ. The resource is local to one party only. Let this
party’s interface be labeled X.
– Interface X:
• On input seed(s), set variable seed to s.
• On input input(x), output fseed(x) at interface X.

The above definition of a PRF does not contain any criterion for what it
means to “look random”. This is defined in a second step as distinguishability
from a uniform random function.

Definition 4 (Uniform Random Function URFν,µ). The resource URFν,µ

picks a function f from all functions {0, 1}ν → {0, 1}µ uniformly at random.
– Interface A: On input input(x), output f(x) at interface A.
– Interface B: On input input(x), output f(x) at interface B.
– Interface E: Inactive.

Let πPRF be the trivial protocol which uses a (short) shared key (from a
KEY resource) and plugs it as seed in a PRF resource, and let εPRF(D) be the
advantage the distinguisher D has in distinguishing such a construction from a
URF, i.e., for all D

dD(πPRF[KEYr,PRFr,ν,µA ,PRFr,ν,µB ],URFν,µ) ≤ εPRF(D),
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where dD(·, ·) is the distinguisher pseudo-metric as defined in Sect. 2. In terms
of AC construction, this means that

[KEYr,PRFr,ν,µA ,PRFr,ν,µB ]
πPRF,εPRF−−−−−→ URFν,µ. (6)

Concrete constructions of PRFs proven secure in the presence of quantum ad-
versaries may be found in [45].

3.3 Channel resources

We consider three-party channels in this work: the sending party Alice has access
to interface A, the receiving party Bob to interface B, and the adversary Eve
to interface E. We model all our channels in the following way: upon an input
at interface A, an output is generated at interface E, while upon an input at
interface E, an output is generated at interface B. Moreover, we consider multi-
message channels parameterized by `, that is, Alice and Eve can provide at most
` inputs at their respective interfaces. These inputs can be entangled with each
other. We model quantum channels, therefore inputs and outputs to and from the
channels’ interfaces are quantum systems. The channels are also parameterized
by m, the size of each message in qubits.

In the following we introduce the formal description of the channels consid-
ered in this work by specifying the behavior they assume upon inputs at their
A and E interfaces. First, we consider the weakest possible channel, that is, the
insecure one, which gives full control to the adversary Eve. Eve receives all the
message that Alice inputs to the channel. Bob receives all the messages that Eve
inputs to the channel.

Definition 5 (Insecure Quantum Channel IC`,m).
– Interface A: On receiving an input system in some state ρ, perform an

identity map and output the same system at interface E.
– Interface E: On receiving an input system in some state ρ′, perform an

identity map and output the same system at interface B.
Interface A and E will receive at most ` inputs and ignore the rest. The quantum
systems input at interface A and E and output at interface B have length m in
qubits.

Next, we enhance the insecure channel by providing some form of confiden-
tiality on the states input by Alice. More precisely, we allow Eve to only get a
notification that a new message has arrived in interface A, but still, Eve will
retain the capability to modify each input ρAi (held in register Ai).

Here, one may consider different ways in which Eve is allowed to modify the
messages. The first channel we consider grants Eve the power to insert fully
mixed states on the channel, as well as performing Pauli operators (bit flips and
phase flips) on Alice’s message and decide when each message gets delivered.
This is modeled by keeping registers Ai for each new input at interface A, and
allowing Eve to input indices specifying which register should be modified and
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output at interface B. Along with the index, Eve also inputs a string of length
2m, indicating on which qubits of the message to apply Pauli operators. If Eve
wants a fully mixed state to be output at Bob’s, she inputs ⊥ at her interface
and the channel generates the corresponding state.

Definition 6 (Pauli-Malleable Confidential Quantum Channel PMCC`,m).
The channel keeps registers A1, A2, . . . , A`, initially set to ⊥.
– Interface A: Upon receiving the i-th input in some state ρ, this system is

stored in register Ai, and newMsg is output at interface E.
– Interface E:
• On input (j, k) ∈ [l] × {0, 1}2m, output system in state Pkρ

AjPk at in-
terface B, where ρAj is the state of the system held in register Aj and
Pk is the Pauli operator defined by the string k. If the tuple is invalid
or ρAj is ⊥, the input is considered as ⊥. After the output, the state in
register Aj becomes ⊥.

• On input ⊥, output a fully mixed stated 1
2m I2m at interface B.

Interface A and E will receive at most ` inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

Another type of confidential channel we consider is obtained by removing
Eve’s capability to modify Alice’s messages, while giving her the ability to inject
any system (instead of only systems in the fully mixed state).

Definition 7 (Non-Malleable Confidential Quantum Channel NMCC`,m).
The channel keeps registers A1, A2, . . . , A`, initially set to ⊥.
– Interface A: Upon receiving the i-th input in some state ρ, this system is

stored in register Ai, and newMsg is output at interface E.
– Interface E:
• On receiving an input system in some state ρ′, perform an identity map

and output the same system at interface B.
• On input index j ∈ [`], output the system in state ρAj held in register
Aj at interface B. After the output, the state of register Aj becomes ⊥.

Interface A and E will receive at most ` inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

The next property to consider is authenticity: recall that in the quantum
setting, authenticity implies confidentiality, thus it does not make sense to con-
sider a “non-confidential authentic channel”, since a state cannot be cloned to
be given to both Bob and Eve. An authentic channel will automatically also be a
confidential one [6]. Therefore, as a next channel we directly consider the secure
one— by secure we mean both authentic and confidential. Eve only knows a new
message has arrived but cannot read, modify, nor inject messages. Eve still has
the power to block and reorder Alice’s message.

Definition 8 (Secure Quantum Channel SC`,m). The channel keeps regis-
ters A1, A2, . . . , A`, initially set to ⊥.
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– Interface A: Upon receiving the i-th input in some state ρ, this system is
stored in register Ai, and newMsg is output at interface E.

– Interface E: On input index j ∈ [`], output the system in state ρAj held in
register Aj at interface B. After the output, the state in register Aj becomes
⊥.

Interface A and E will receive at most ` inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

Finally, we consider an even stronger version of the secure channel which
preserves the order of the transmitted messages. In particular, the adversary
now only retains the power to delete messages, but cannot change the order in
which they are transmitted. This is enforced by replacing the capability to input
indices by the ability of only inputting either send or skip.

Definition 9 (Ordered Secure Quantum Channel OSC`,m). The channel
keeps registers A1, A2, . . . , A`, initially set to ⊥.
– Interface A: Upon receiving the i-th input in some state ρ, this system is

stored in register Ai, and newMsg is output at interface E.
– Interface E: On i-th input send or skip: If the input is send, output the

system in state ρAi held in register Ai at interface B. If the input is skip, then
output ⊥ at interface B. After the output, the state in register Ai becomes
⊥.

Interface A and E will receive at most ` inputs and ignore the rest. The quantum
systems input at interface A and output at interface B always have length m in
qubits.

3.4 Constructing an Ordered Secure Quantum Channel

As shown in [36], there is a construction of one time secure quantum channel
from one time insecure quantum channel resource and a uniform key resource
within εq-auth, i.e.[

IC1,n,KEYµ,QC1,m,n
A ,QC1,m,n

B

]
πq-auth
AB ,εq-auth

−−−−−−−−−→
[
SC1,m,QC2,m,n

E

]
.

Here, IC, SC and KEY are channel and key resources, as defined above. QCA/B/E
denote a resource that does quantum computation for Alice, Bob or Eve, and
allows them to perform encryption and decryption operations (we informally
refer to such resources as quantum computers in the following). These appear in
the construction statement since for finite security one makes all computational
operations explicit— see the full version [5] for more details.

We denote the encoding and decoding CPTP maps in this construction by
encq-auth : K × L(HA)→ L(HC) and decq-auth : K × L(HC̃)→ L(HB ⊕ |⊥〉〈⊥|).
We also denote by E the CPTP map that always discards the state and replaces
it with error state |⊥〉〈⊥|. In this section, we build on top of these encoding and
decoding maps to construct a multi-message ordered secure quantum channel



Composable and Finite Computational Security of Quantum Message Trans. 15

πA πB QCA QCB

1. πA: Alice inputs a message ρA and requests her computer to encrypt ρA.
2. QCA: On the i-th input ρA, the computer requests (through πA) ki = input(i)

from URF, computes ciphertext σC = encq-auth
ki

(ρA), appends index |i〉〈i| on the

ciphertext and outputs ψCT = σC ⊗ |i〉〈i|T to Alice.
3. πA: Alice sends ciphertext ψCT to Bob through insecure quantum channel IC.

4. πB : Bob receives ciphertext ψ̃C̃T̃ and requests his computer to decrypt ψ̃C̃T̃ .

5. QCB : On the i-th input ψ̃C̃T̃ , the computer takes first n qubits as σ̃C , measures
last log ` qubits and obtains the measurement result ı̃. If ı̃ = i, the computer
requests (through πB) ki = input(i) from resource URF, computes plaintext
ρ̃ = decq-auth

ki
(σ̃). If it decrypts successfully, the computer outputs ρ̃ to Bob. If

ı̃ 6= i or it does not decrypt successfully, the computer outputs ⊥ to Bob.
6. πB : Bob outputs the decrypted message ρ̃B .

Fig. 1. Converters and computing resources to construct OSC`,m from IC`,n+log `.
QC`,m,n+log `

A and QC`,m,n+log `
B will be queried ` times. The plaintext has length

m and the ciphertext has length n + log `. URFlog `,µ has input length log ` and
output length µ.

from a multi-message insecure quantum channel, with a shared uniform ran-
dom function resource URFlog `,µ. The real system is drawn in Fig. 2 and the
components are described in Fig. 1.

Theorem 1. Let πAB = (πA, πB),QC`,m,n+log `
A ,QC`,m,n+log `

B and URFlog `,µ de-
note converters and computing resources as described in Fig. 1, corresponding to
Alice and Bob both applying the following CPTP maps with increasing index i:

ΛA→CTi (·) = encq-authki
(·)⊗ |i〉〈i|T

ΛC̃T̃→Bi (·) = decq-authki

(
(IC̃ ⊗ 〈i|T̃ )(·)(IC̃ ⊗ |i〉T̃ )

)
+ E

(
P̄ T̃i (·)P̄ T̃i )

)
,

where P̄i = I−|i〉〈i|, and ki is the output of URFlog `,µ with input i. Let QC2`,m,n+log `
E

be the computing resource of Eve capable of doing ` encryption operations and
` decryption operations. Let εq-auth be the upper bound on the distinguishing
advantage of the one time secure quantum channel construction. Then,[

IC`,n+log `,URFlog `,µ,QC`,m,n+log`A ,QC`,m,n+log`B

]
πAB ,`ε

q-auth

−−−−−−−−→
[
OSC`,m,QC2`,m,n+log `

E

]
.

Proof. The proof of Theorem 1 appears in the full version [5].

Remark 1. Theorem 1 is meaningful only if the protocol is also correct, i.e., if
the distinguisher always puts back the same ciphertext on the insecure channel
in the right order, then Bob always successfully decrypts. This follows trivially
from the correctness of the underlying quantum authentication protocol, so we
omit a formal discussion of it.
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IC

QCA QCB

URF
πA πB

ρA

ψCT ψ̃C̃T̃

ρ̃B/⊥

ki ki

i i

ρA, ki

ψCT

ψ̃C̃T̃ , ki

ρ̃B/⊥

Fig. 2. The real system consisting of the shared resources IC`,n+log ` and
URFlog `,µ, Alice and Bob’s computing resources QC`,m,n+log `

A QC`,m,n+log `
B , and

the protocol converters πA and πB .

Suppose now that one has a PRF resource and a bound εPRF satisfying Eq. (6),
that is, indistinguishable from URF within εPRF, the following corollary follows
trivially from the composition theorem.

Corollary 1.[
IC`,n+log `,KEYr,PRFr,log `,µA ,PRFr,log `,µB ,QC`,m,n+log`A ,QC`,m,n+log`B

]
π′AB ,ε−−−−→

[
OSC`,m,QC2`,m,n+log `

E

]
,

where π′AB = (πAB , π
PRF), ε(D) = εPRF(DC) + `εq-auth and C is the system in-

cluding πAB , IC
`,n+log `,QC`,m,n+log`A ,QC`,m,n+log`B .

3.5 Constructing a Pauli-Malleable Confidential Quantum Channel

In this section, we construct a Pauli-malleable confidential quantum channel
PMCC`,m from an insecure quantum channel IC`,m+ν . In the Pauli-malleable
confidential channel, the adversary can only get a notification of a new message
arriving but has no access to the message. The adversary has the ability to
block, reorder and modify the message via Pauli operators (bit flip and phase
flip), as well as ask the channel to output a fully mixed state at Bob’s interface,
as defined in Definition 6.

Now we present the protocol in the multi-message case, described in Fig. 3.
In the protocol, Alice’s computer will generate a new random string x of length ν
for each message different from previous random strings and input it to URFν,2m,
a key k is returned by URFν,2m , the Pauli-operator Pk is applied to the message
and x is appended to the ciphertext. Bob’s computer will do the measurement



Composable and Finite Computational Security of Quantum Message Trans. 17

πA πB QCA QCB

1. πA: Alice inputs a message ρAi and requests her computer to encrypt it.
2. QCA: On input ρAi , it generates a new random string x of length ν different

from previously generated random strings, requests (through πA) k = input(x)
from URF. Then the computer applies Pauli operator Pk on the state ρAi and
gets σC = Pkρ

AiPk. The computer appends |x〉〈x|T to σC and outputs ψCT =
σC ⊗ |x〉〈x|T to Alice.

3. πA: Alice sends ψCT to Bob through secure quantum channel IC`,m+ν .

4. πB : Bob receives ψ̃C̃T̃ and requests his computer to decrypt it.

5. QCB : On input ψ̃C̃T̃ , the computer takes the first m qubits as σ̃C̃ . Then the
computer measures the last ν qubits and get measurement result x̃. Then the
computer requests (through πB) k̃ = input(x̃) from URF. Then the computer

applies Pauli operator Pk̃ on the state σ̃C̃ . Then the computer outputs ρ̃B =
Pk̃σ̃Pk̃ to Bob.

6. πB : Bob outputs the decrypted message ρ̃B .

Fig. 3. Converters and computer resources to construct PMCC`,m from IC`,m+ν .
QC`,m,m+ν

A and QC`,m,m+ν
B will be queried ` times. The plaintext has length m

and ciphertext has length m+ ν. URFν,2m has input length ν and output length
2m.

on the last ν qubits to get x̃, which is input to URFν,2m, from which k̃ is obtained
and finally the Pauli operator Pk̃ is applied to the ciphertext. The real system
is drawn in Fig. 4.

Theorem 2. Let πAB = (πA, πB),QC`,m,m+ν
A and QC`,m,m+ν

B denote converters
and computing resources, described in Fig. 3, corresponding to Alice and Bob
applying the following CPTP maps,

ΛAi→CT (·) =
1

2ν

∑
x

Pkx(·)Pkx ⊗ |x〉〈x|
T

ΛC̃T̃→B(·) =
∑
x

(Pkx ⊗ 〈x|
T̃

)(·)(Pkx ⊗ |x〉
T̃

),

where kx is the output of URFν,2m with input x. Let QC2`,m,m+ν
E be the com-

puting resource of Eve capable of doing ` encryption operations and ` decryption
operations. Then πAB constructs a Pauli-malleable confidential quantum channel
PMCC`,m from an insecure quantum channel resource IC`,m+ν , a shared uniform
random function resource URFν,2m within `2 · 2−ν , i.e.,[

IC`,m+ν ,URFν,2m,QC`,m,m+ν
A ,QC`,m,m+ν

B

]
πAB ,`

22−ν−−−−−−−→
[
PMCC`,m,QC2`,m,m+ν

E

]
.

Proof. The proof of Theorem 2 appears in the full version [5].
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IC

QCA QCB

URF
πA πB

ρAi

ψCT ψ̃C̃T̃

ρ̃B

k k̃

x x̃

ρAi , k

ψCT

ψ̃C̃T̃ , k̃

ρ̃B

Fig. 4. The real system consisting of shared resources IC`,m+ν and URFν,2m, Al-
ice and Bob’s computing resources QC`,m,m+ν

A and QC`,m,m+ν
B , and the protocol

converters πA and πB .

Remark 2. The protocol given in Theorem 2 also has to satisfy correctness, i.e.,
when the distinguisher always puts back the same state Bob should decrypt
correctly. One can easily see that this holds, since in the real world, the state will
be flipped on Alice’s side and be flipped back on Bob side, thus the distinguisher
will get the same state back at interface B.

Suppose now that one has a PRF resource and a bound εPRF satisfying Eq. (6),
that is, indistinguishable from URF within εPRF, the following corollary follows
trivially from the composition theorem.

Corollary 2.[
IC`,m+ν ,KEYr,PRFr,ν,2m,PRFr,ν,2m,QC`,m,m+ν

A ,QC`,m,m+ν
B

]
π′AB ,ε−−−−→

[
PMCC`,m,QC2`,m,m+ν

E

]
.

where π′AB = (πAB , π
PRF), ε(D) = εPRF(DC)+`22−ν and C is the system including

πAB , IC
`,m+ν ,QC`,m,m+ν

A ,QC`,m,m+ν
B .

4 Relations to Game-Based Security Definitions

In this section we explore the relations between our constructive security defi-
nitions and two game based security definitions for (specific protocols making
use of) symmetric quantum encryption schemes, both introduced in [2]. The two
notions we consider are those of quantum ciphertexts indistinguishability under
adaptive chosen-ciphertext attack (AGM-QCCA2) and quantum authenticated en-
cryption (QAE). Both definitions are inspired by classical security notions which
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intrinsically require the ability to copy data, which in [2] were successfully trans-
lated into quantum analogue by circumventing the no-cloning theorem.

We will first show that QAE security exactly implies the constructive cryp-
tography security notion of constructing a secure channel from an insecure one
and a shared secret key, which we call CC-QSEC (but is actually stronger, and
thus we also show a separation). Secondly, we will relate the AGM-QCCA2 secu-
rity definition to the constructive cryptography security notion of constructing a
confidential channel from an insecure one and a shared secret key, which we call
CC-QCNF, but the implication will be less direct. In fact, we introduce two new
(intermediate) game-based security definitions, RRC-QCCA2 and RRO-QCCA2,
and show that:
1. The classical versions of AGM-QCCA2 and RRC-QCCA2 are asymptotically

equivalent;
2. For a restricted class of schemes, RRC-QCCA2 implies RRO-QCCA2 (they are

actually equivalent);
3. RRO-QCCA2 implies CC-QCNF (but is actually stronger).

We leave open the question whether it is possible to generalize (2.) to general
schemes. Throughout this section we will assume that both the plaintext and
the ciphertext spaces comprise elements of the same length, an thus ignore the
corresponding superscripts for channels and quantum computers.

4.1 Background and Notation

In [6], a characterization of any symmetric quantum encryption schemes (SQES)
was given, which states that encryption works by attaching some (possibly)
key-dependent auxiliary state, and applying a unitary operator, and decryption
undoes the unitary, and then checks whether the support of the state in the
auxiliary register has changed. Thus, as pointed out in [2], for key-generation
function Gen (inducing a probability distribution over some key-space K), en-
cryption function Enc, and decryption function Dec, we can characterize a SQES
S := (Gen, Enc, Dec) as follows.

Lemma 1 ([2, Corollary 1]). Let S = (Gen, Enc, Dec) be a SQES. Then for
every k ∈ K there exists a probability distribution pk : R → [0, 1] and a family

of quantum states {|ψk,r〉T }r∈R, with ΠT
k,r := |ψk,r〉〈ψk,r|T , such that:

– Enck(%M ) := Vk

(
%M ⊗ΠT

k,r

)
V †k , where r is sampled according to pk;

– Deck(σC) := TrT

(
PTωk(V †k σ

CVk)PTωk

)
+ D̂k

(
P̄Tωk(V †k σ

CVk)P̄Tωk

)
;

where PTωk and P̄Tωk are the orthogonal projectors onto the support of

ωTk :=
∑
r∈R

pk(r) ·ΠT
k,r =

∑
r∈R

pk(r) · |ψk,r〉〈ψk,r|T .

For a SQES S, we define a security notion XXX in terms of the advantage
Advxxx

S,D of a distinguisher D in solving some (usually distinction) problem in-
volving S. In the asymptotic setting, security of S according to notion XXX
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should be interpreted as Advxxx
S,D being negligible for every D from some class D

of distinguishers (usually, efficient distinguishers). Following the finite security
approach, here we are just interested in relating advantages of different notions,
making use of black-box reductions. Therefore, for a second notion YYY, we say
that XXX (security) implies YYY (security) if and only if Advyyy

S,D ≤ c·Advxxx
S,DC,

for some c ≥ 1, where C denotes the black-box reduction that uses the distin-
guisher D for YYY to make a new distinguisher DC for XXX.

When describing experiments involving interaction between a distinguisher8

D and a game system G, we use pseudo-code from G’s perspective, that is, the
return statement indicates what is output by the latter. Note that this implies
that for distinction problems we always make the game system output the bit
output by the distinguisher. In this case we use the expression D[G] to denote
the bit output by D after interacting with G. On the other hand, if the output
bit is decided by G (as is the case for the AGM-QCCA2 definition, which is
not a distinction problem), we use the expression G[D]. Moreover, we use both
expressions not only for the returned value, but also for denoting the whole
random experiments. When specifying that a distinguisher D has access to a list
of oracles, e.g. O1(·) and O2(·), we write x← DO1(·),O2(·), where the variable x
holds the value output by D after the interaction with the oracles. We denote
the application of a two-outcome projective measurement, e.g. {PTωk ,1 − P

T
ωk
},

as {PTωk ,1 − P
T
ωk
} ⇒ b, where b ∈ {0, 1} is the result of the measurement (we

associate 0 to the the first outcome and 1 to the second). The state |φ0〉 is
the EPR pair (one of the Bell state), to which we associate the two-outcome
projective measurement {Π+,1 − Π+}. Furthermore, by XY ← |φ0〉 we mean
that the EPR pair has been prepared on registers XY , and we use τX as a
shorthand for the reduced state in register X, that is, half of a maximally-
entangled state.

4.2 Relating QAE and CC-QSEC

In this section we first present the quantum authenticated encryption security
definition introduced in [2], and then show that it directly implies our construc-
tive security notion CC-QSEC of constructing a secure channel from an insecure
one and a shared secret key.

QAE Security Definition ([2]). We begin by restating what it means for a
SQES S to be secure in the QAE sense according to [2]. On a high level, a
distinguisher D must not be able to distinguish between two scenarios: in the
first (the real one), it has access to regular encryption and decryption oracles,
whereas in the second (the ideal one), it has access to an encryption oracle which
replaces its queried plaintexts by random ones (half of a maximally-entangled
state), and a decryption oracle that normally decrypts ciphertext not returned

8We understand the distinguisher D as stateful, which can therefore be invoked
multiple times (without making explicit the various updated states).
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by the encryption oracle, but answers with the originally queried plaintexts oth-
erwise (thus not really performing correct decryption). Note that this security
notion, as shown in [2], when phrased classically is equivalent to the canonical
notion of authenticated encryption (dubbed IND-CCA3 by Shrimpton in [41]).
The only difference with the latter, is that the decryption oracle returns ⊥ when
queried on ciphertexts previously returned by the encryption oracle. But cru-
cially, this detail is what would not make it possible to adapt IND-CCA3 into a
quantum definition: returning ⊥ would require the game to copy data (store the
ciphertexts returned by the encryption oracle, and then compare them to each
query to the decryption oracle), which is not allowed in general in the quantum
world. Nevertheless, the formulation of QAE introduced in [2] works quantumly
because, intuitively, “it is possible to compare random states generated as half
of a maximally-entangled state”: the trick consists of first ignoring (but storing)
each plaintext submitted by the adversary to the encryption oracle, and then,
for each plaintext, prepare an EPR pair |φ0〉, encrypt just half of it, and store
the other half (as well as the involved randomness) together with the original
plaintext submitted by the distinguisher; then the decryption oracle normally
decrypts each ciphertext, and subsequently applies a projective measurement on
the support of |φ0〉 to the obtained plaintext against each stored half, and the
associated original plaintext can thus be easily retrieved. We now restate the
definition from [2] (Definition 10 therein), adapted to our notation, and in the
concrete setting (as opposed to the asymptotic one).

Definition 10 (QAE Security [2]). For SQES S := (Gen, Enc, Dec) (implicit
in all defined systems) we define the QAE-advantage of S for distinguisher D as

Advqae
S,D := Pr

[
D[Gqae-real] = 1

]
− Pr

[
D[Gqae-ideal] = 1

]
,

where the interactions of D with game systems Gqae-real and Gqae-ideal are defined
in Fig. 5.

QAE Implies CC-QSEC. Here we denote by Gqae-real,` and Gqae-ideal,` the games
Gqae-real and Gqae-ideal where the distinguisher is allowed to make at most `
queries to each oracle (and analogously for Advqae,`

S,D ).

Theorem 3. Let S := (Gen, Enc, Dec) be a SQES (implicit in all defined sys-
tems). Then with protocol πq-enc

AB = (πq-enc
A , πq-enc

B ) making use of quantum com-

puters QC`A and QC`B as defined in Fig. 6, simulator simqae
E making use of quan-

tum computer QC`E as defined in Fig. 7 (until the dashed line), and (trivial)
reduction system C as specified in the proof, for any distinguisher D we have

∆D(πq-enc
AB [KEY, IC`,QC`A,QC

`
B ], simqae

E [SC`,QC`E ]) ≤ Advqae,`
S,DC.

Proof. The proof of Theorem 3 appears in the full version [5].
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Experiments D[Gqae-real] and D[Gqae-ideal] for SQES S := (Gen, Enc, Dec)

k ← Gen()
return DEnck(·),Deck(·)

k ← Gen()
M← ∅
return DEnc(·),Dec(·)

oracle Enc(%M ):
r̂

pk←− R
M̂M̃ ← |φ0〉
σ̂Ĉ ← Vk(%̂M̂ ⊗ΠT

k,r̂)V
†
k . Ignore %M

M←M∪ {(r̂, M̃ ,M)}
return σ̂Ĉ

oracle Dec(σC):
M̂T ← V †k σ

CVk
for each (r̂, M̃ ,M) ∈M do

if {Πk,r̂,1−Πk,r̂}(ωT )⇒ 0 then

if {Π+,1−Π+}(ϕM̂M̃ )⇒ 0 then
return %M

return |⊥〉〈⊥|

Fig. 5. QAE security games Gqae-real (left) and Gqae-ideal (right).

Corollary 3. With ε(D) := supD′∈B(D) Advqae,`
S,D′ , we have[

KEY, IC`,QC`A,QC
`
B

]
πq-enc
AB ,ε
−−−−−→

[
SC`,QC`E

]
,

where the class B(D) is defined in Eq. (5).

QAE is Stronger than CC-QSEC. We remark that even though QAE implies
CC-QSEC, the converse is not true. In particular, we find that QAE is an (un-
necessarily) stronger notion than CC-QSEC. We can in fact show that there are

πq-enc
A QC`A

1. QC`A request the key k from KEY
and stores it in its memory.

2. For the i-th input %M at the out-
side interface, QC`A samples ran-
domness r

pk←− R, computes the ci-
phertext σC ← Vk(%M ⊗ ΠT

k,r)V
†
k ,

and outputs σC at the inside inter-
face to IC`.

πq-enc
B QC`B

1. QC`B request the key k from KEY
and stores it in its memory.

2. For the i-th input σC at the inside
interface from IC`, QC`B computes
MT ← Vkσ

CV †k , and if {PTωk ,1 −
PTωk}(ω

T ) ⇒ 0, outputs the plain-
text message %M at the outside in-
terface.

Fig. 6. Encryption and decryption protocols.



Composable and Finite Computational Security of Quantum Message Trans. 23

simqae,`
E QC`E / simqcca2,`

E QC`E

1. QC`E generates a key k ← Gen(), stores it in its memory, and sets M← ∅.
2. QC`E performs the following two tasks in parallel:

(a) For the i-th input newMsg at the inside interface from SC`, QC`E samples

randomness r̂
pk←− R, prepares M̂M̃ ← |φ0〉, computes σC ← Vk(%̂M̂ ⊗

ΠT
k,r̂)V

†
k , and outputs the ciphertext σC at the outside interface. Finally, it

performs the update M←M∪ {(r̂, M̃ , i)}.
(b) For the i-th input σC at the outside interface, QC`E computes M̂T ←

V †k σ
CVk. Then for each (r̂, M̃ , j) ∈M, it computes {Πk,r̂,1−Πk,r̂}(ωT ); if

the result of the measurement is 0, then it computes {Π+,1−Π+}(ϕM̂M̃ );
if the result of the measurement is again 0, then it outputs the index j at
the inside interface to SC`.

Otherwise, it computes {PTωk ,1 − P
T
ωk}(ω

T ), and if the result of the mea-

surement is 0, then it outputs the message %̂M̂ at the inside interface to
SC`.

Fig. 7. QAE (until the dashed line) and QCCA2 (until the end) simulators.

SQESs that satisfy CC-QSEC, but not QAE. Following [15], in order to show this
fact it suffices to take any SQES S which is QAE secure, and slightly modify
it into a new SQES S′ so that a classical 0-bit is appended to every encryp-
tion, which is then ignored upon decryption. Now an adversary can flip the bit
of a ciphertext that it got from the encryption oracle, and then query the de-
cryption oracle on the new ciphertext: in the real setting it will get back the
original message, while in the ideal setting it will get back |⊥〉〈⊥|, and can thus
perfectly distinguish between the two, hence S′ cannot be QAE secure. On the
other hand, S′ is still CC-QSEC secure because it can still be used to achieve
the construction of a secure channel from an insecure one and a shared secret
key. This is possible by using a simulator which works essentially as simqae,`

E QC`E
from Fig. 7, but which ignores the bit.

4.3 Relating QCCA2 and CC-QCNF

The goal of this section is to present and relate several QCCA2 security defini-
tions. We begin by introducing a new definition, RRC-QCCA2 (where RRC stands
for “real-or-random challenge”), which is similar to AGM-QCCA2. Both notions
define a challenge phase, and thus we introduce a third variant, RRO-QCCA2
(where RRO stands for “real-or-random oracles”), in which there is no real-or-
random challenge, but rather access to real-or-random oracles. Crucially, the
latter is identical to QAE as introduced by [2], up to a small detail: upon de-
cryption, if the ciphertext was not generated by the encryption oracle, instead
of returning |⊥〉〈⊥|, return the decrypted plaintext. Finally, we show that for a
restricted class of SQESs, RRC-QCCA2 implies RRO-QCCA2, and for any SQESs,
RRO-QCCA2 implies CC-QCNF.
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Experiments Grrc-qcca2-real[D] and Grrc-qcca2-ideal[D] for SQES S := (Gen, Enc, Dec)

k ← Gen()
%M ← DEnck(·),Deck(·)

σC ← Enck(%M )
b′ ← DEnck(·),Deck(·)(σC)
return b′

k ← Gen()

%̄M̄ ← DEnck(·),Deck(·) . Keep %̄M̄

r̂
pk←− R . Keep r̂

M̂M̃ ← |φ0〉
σ̂Ĉ ← Vk(%̂M̂ ⊗ΠT

k,r̂)V
†
k . Ignore %̄M

b′ ← DEnck(·),Dec(·)(σ̂Ĉ)
return b′

oracle Dec(σC):
MT ← V †k σ

CVk
if {PTωk ,1− P

T
ωk}(ω

T )⇒ 0 then
if {Πk,r̂,1−Πk,r̂}(ωT )⇒ 0 then

if {Π+,1−Π+}(ϕMM̃ )⇒ 0 then

return %̄M̄ . Original challenge

else
return D̂k(ρMT ) . Invalid ciphertext

return %M

Fig. 8. RRC-QCCA2 games Grrc-qcca2-real (left) and Grrc-qcca2-ideal (right).

RRC-QCCA2 Security Definition. We now introduce an alternative game-
based security definition that seems more natural than AGM-QCCA2. This no-
tion is defined in terms of a distinction problem (as opposed to AGM-QCCA2),
and essentially it is analogous to the test setting of the latter, but where the
decryption oracle provided to the distinguisher behaves differently: after the
real-or-random challenge phase, upon querying the challenge ciphertext, it will
respond with the plaintext originally submitted by the distinguisher, in both the
real and ideal settings. Note that this is possible in the ideal setting, because
we make use of the same trick as in the fake setting of AGM-QCCA2, but we
do not just set a flag whenever we detect that the adversary is cheating, but
rather return the original message that it submitted as challenge. Since a similar
behavior is implemented in the real setting, the adversary must really be able
to distinguish between ciphertexts in order to win.

Definition 11 (RRC-QCCA2 Security). For SQES S := (Gen, Enc, Dec) (im-
plicit in all defined systems) we define the RRC-QCCA2-advantage of S for dis-
tinguisher D as

Advrrc-qcca2
S,D := Pr

[
D[Grrc-qcca2-real] = 1

]
− Pr

[
D[Grrc-qcca2-ideal] = 1

]
,

where the interactions of D with game systems Grrc-qcca2-real and Grrc-qcca2-ideal

are defined in Fig. 8.
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Experiments D[Grro-qcca2-real] and D[Grro-qcca2-ideal] for SQES S := (Gen, Enc, Dec)

k ← Gen()
return DEnck(·),Deck(·)

k ← Gen()
M← ∅
return DEnc(·),Dec(·)

oracle Enc(%M ):
r̂

pk←− R
M̂M̃ ← |φ0〉
σ̂Ĉ ← Vk(%̂M̂ ⊗ΠT

k,r̂)V
†
k . Ignore %M

M←M∪ {(r̂, M̃ ,M)}
return σ̂Ĉ

oracle Dec(σC):
M̂T ← V †k σ

CVk
for each (r̂, M̃ ,M) ∈M do

if {Πk,r̂,1−Πk,r̂}(ωT )⇒ 0 then

if {Π+,1−Π+}(ϕM̂M̃ )⇒ 0 then
return %M

if {PTωk ,1− P
T
ωk}(ω

T )⇒ 0 then

return %̂M̂

else
return D̂k(ρM̂T ) . Invalid ciphertext

Fig. 9. RRO-QCCA2 games Grro-qcca2-real (left) and Grro-qcca2-ideal (right).

RRO-QCCA2 Security Definition. In order to relate the latter definition with
a constructive notion of confidentiality, it is helpful to have a game-based security
definition which analogously to QAE defines a real and an ideal setting (by
specifying real-or-random oracles, and in particular, not only a real-or-random
challenge). We do this by introducing the notion RRO-QCCA2, which can be
seen as a natural extension of RRC-QCCA2.

Definition 12 (RRO-QCCA2 Security). For SQES S := (Gen, Enc, Dec) (im-
plicit in all defined systems) we define the RRO-QCCA2-advantage of S for dis-
tinguisher D as

Advrro-qcca2
S,D := Pr

[
D[Grro-qcca2-real] = 1

]
− Pr

[
D[Grro-qcca2-ideal] = 1

]
,

where the interactions of D with game systems Grro-qcca2-real and Grro-qcca2-ideal

are defined in Fig. 9.

Relating AGM-QCCA2 and RRC-QCCA2. We feel that RRC-QCCA2 is a
much simpler and more natural definition than AGM-QCCA2. In fact, in [2] the
authors claim that AGM-QCCA2 is a “natural” security definition based on the
fact that its classical analogon is shown to be equivalent to (a variation of) the
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standard classical IND-CCA2 security definition. We claim that our RRC-QCCA2
is more natural in the sense that it is formulated as a normal distinction prob-
lem (as opposed to AGM-QCCA2), and its classical analogon can be shown to
be equivalent to standard classical IND-CCA2 security much more directly (in
particular, with no concrete security loss, as opposed to AGM-QCCA2, where it
is shown that the concrete reduction has a factor 2 security loss).

Similarly as done in [2] for QAE, whose classical restriction was shown to be
equivalent to the common classical notion of authenticated encryption IND-CCA3
from [41], we now show that our RRC-QCCA2 security notion, when casted to a
classical definition, dubbed RRC-CCA2, is equivalent (in particular, with no loss
factors, as opposed to AGM-QCCA2) to a common classical notion of IND-CCA2.
The latter definition is the same mentioned in [2], and comprises a real-or-random
challenge, but the decryption oracle returns ⊥ upon submitting the challenge ci-
phertext. On the other hand, RRC-CCA2 behaves exactly the same as IND-CCA2,
except that it always returns the challenge plaintext as originally submitted by
the adversary upon querying the challenge ciphertext, independently from the
(real or ideal) setting.

Lemma 2. RRC-CCA2 and IND-CCA2 are equivalent.

Proof. To transform RRC-CCA2 into IND-CCA2, the reduction simply stores the
challenge ciphertext ĉ, and returns ⊥ whenever the decryption oracle is queried
upon ĉ. To transform IND-CCA2 into RRC-CCA2, the reduction simply stores the
challenge plaintext m̂ and the challenge ciphertext ĉ, and returns m̂ whenever
the decryption oracle is queried upon ĉ.

RRC-QCCA2 Implies RRO-QCCA2. As above, here we add as superscript the
parameter ` to games and advantages to denote that the distinguisher is allowed
to make at most ` queries to the oracles. Note that we relate RRC-QCCA2 and
RRO-QCCA2 for only the subclass of SQESs which satisfy the following condition.

Condition 1 SQES S is such that the auxiliary state does not depend on the
key (but possibly on the randomness), and it appends explicitly the randomness
to the ciphertext, that is:

Enck(%M ) = Uk,r(%
M ⊗ΠT

r )U†k,r ⊗ |r〉〈r|
R
,

for some unitary Uk,r depending on both the key k and the randomness r.

We remark that this restriction still captures all the explicit protocols considered
in [2].

Lemma 3. Let S be a SQES satisfying Condition 1. Then for reduction system
CI as specified in the proof, for any distinguisher D we have

Advrro-qcca2,`
S,D ≤ ` ·Advrrc-qcca2,`−1

S,DCI
.

Proof. The proof of Lemma 3 appears in the full version [5].
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It is easy to show that the other direction of Lemma 3 also holds (for the
same class of SQES), that is, RRO-QCCA2 implies RRC-QCCA2. For this, the
reduction C flips a bit B̃ and uses the RRO-QCCA2 security game to emulate
the RRC-QCCA2 game, resulting in perfect emulation with probability 1

2 , and
perfect unguessability otherwise. Thus, with DC outputting 1 if and only if D
correctly guesses B̃, we have Advrrc-qcca2,`

S,D ≤ 2 ·Advrro-qcca2,`−1
S,DC , and therefore

the two notions are asymptotically equivalent, as we formalize in the following
lemma.

Lemma 4. For SQES satisfying Condition 1, RRC-QCCA2 and RRO-QCCA2
are asymptotically equivalent.

Just as we casted RRC-QCCA2 into the classical definition RRC-CCA2, we
can cast RRO-QCCA2 into RRO-CCA2. Then it is possible to obtain analogous
results as above for the classical notions (without restrictions on the (classical)
encryption scheme).

Corollary 4. RRC-CCA2 and RRO-CCA2 are asymptotically equivalent.

RRO-QCCA2 Implies CC-QCNF. We can now finally relate QCCA2 game-
based security definitions to the constructive cryptography notion of confiden-
tiality, CC-QCNF. We do that by showing that RRO-QCCA2 security implies
CC-QCNF, and therefore, by Lemma 3, so does RRC-QCCA2 (with concrete se-
curity loss factor `).

Theorem 4. Let S := (Gen, Enc, Dec) be a SQES (implicit in all defined sys-
tems). Then with protocol πq-enc

AB = (πq-enc
A , πq-enc

B ) making use of quantum com-

puters QC`A and QC`B (already defined in Fig. 6 for Theorem 3), simulator
simqcca2

E making use of quantum computer QC`E as defined in Fig. 7 (until the
end), and (trivial) reduction system C as specified in the proof, for any distin-
guisher D we have

∆D(πq-enc
AB [KEY, IC`,QC`A,QC

`
B ], simqcca2

E [NMCC`,QC`E ]) ≤ Advrro-qcca2,`
S,DC .

Proof. The proof of Theorem 4 appears in the full version [5].

Corollary 5. With ε(D) := supD′∈B(D) Advrro-qcca2,`
S,D′ , we have[

KEY, IC`,QC`A,QC
`
B

]
πq-enc
AB ,ε
−−−−−→

[
NMCC`,QCqcca2,`

E

]
,

where the class B(D) is defined in Eq. (5).

Using Lemma 3, we finally obtain the following corollary.

Corollary 6. With ε(D) := supD′∈B(D) Advrrc-qcca2,`
S,D′ , we have[

KEY, IC`,QC`A,QC
`
B

]
πq-enc
AB ,(`+1)·ε
−−−−−−−−−→

[
NMCC`,QCqcca2,`

E

]
,

where the class B(D) is defined in Eq. (5).



28 F. Banfi, U. Maurer, C. Portmann, and J. Zhu

RRO-QCCA2 is Stronger than CC-QCNF. We remark that even though
RRO-QCCA2 implies CC-QCNF, the converse is not true for the same reason
outlined above for QAE and CC-QSEC: it is possible to show that there are
SQESs that satisfy CC-QCNF but not RRO-QCCA2 by applying the same prin-
ciple of extending a RRO-QCCA2 secure scheme into one which is not anymore
RRO-QCCA2, but still satisfies CC-QCNF.
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