
Adaptively Secure Garbling Schemes for Parallel
Computations

Kai-Min Chung1 and Luowen Qian2(�)

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
kmchung@iis.sinica.edu.tw

2 Boston University, MA, USA
luowenq@bu.edu

Abstract. We construct the first adaptively secure garbling scheme
based on standard public-key assumptions for garbling a circuit 𝐶 ∶
{0, 1}𝑛 ↦ {0, 1}𝑚 that simultaneously achieves a near-optimal online
complexity 𝑛 + 𝑚 + poly(𝜆, log |𝐶|) (where 𝜆 is the security parameter)
and preserves the parallel efficiency for evaluating the garbled circuit;
namely, if the depth of 𝐶 is 𝑑, then the garbled circuit can be evalu-
ated in parallel time 𝑑 ⋅ poly(log |𝐶|, 𝜆). In particular, our construction
improves over the recent seminal work of [GS18], which constructs the
first adaptively secure garbling scheme with a near-optimal online com-
plexity under the same assumptions, but the garbled circuit can only be
evaluated gate by gate in a sequential manner. Our construction com-
bines their novel idea of linearization with several new ideas to achieve
parallel efficiency without compromising online complexity.
We take one step further to construct the first adaptively secure garbling
scheme for parallel RAM (PRAM) programs under standard assumptions
that preserves the parallel efficiency. Previous such constructions we are
aware of is from strong assumptions like indistinguishability obfusca-
tion [ACC+16]. Our construction is based on the work of [GOS18] for
adaptively secure garbled RAM, but again introduces several new ideas
to handle parallel RAM computation, which may be of independent in-
terests. As an application, this yields the first constant round secure
computation protocol for persistent PRAM programs in the malicious
settings from standard assumptions.

Kai-Min Chung is partially supported by the Ministry of Science and Technology,
Taiwan, under Grant no. MOST 106-2628-E-001-002-MY3 and the Academia Sinica
Career Development Award under Grant no. 23-17.

1 Introduction

Garbled Circuits. The notion of garbled circuits were introduced by Yao [Yao82]
for secure computations. Yao’s construction of garbled circuits is secure in the
sense that given a circuit 𝐶 and an input 𝑥, the scheme gives out a garbled circuit

̃𝐶 and a garbled input ̃𝑥 such that it only allows adversaries to recover 𝐶(𝑥) and
nothing else. The notion of garbled circuits has found an enormous number of
applications in cryptography. It is well established that garbling techniques is
one of the important techniques in cryptography [BHR12,App17].

Garbled RAM. Lu and Ostrovsky [LO13] extended the garbling schemes to the
RAM settings and its applications to delegating database and secure multiparty
RAM program computation, and it has been an active area of research in garbling
ever since [GHL+14,GLOS15,GLO15]. Under this settings, it is possible to reduce
the size of the garbled program to grow only linearly in the running time of
the RAM program (and sometimes logarithmically in the size of the database),
instead of the size of the corresponding circuit (which must grow linearly with
the size of the database).

Parallel cryptography. It is a well established fact that parallelism is able to speed
up computation, even exponentially for some problems. Yao’s construction of
garbled circuits is conceptually simple and inherently parallelizable. Being able
to evaluate in parallel is more beneficial in the RAM settings where the persistent
database can be very large, especially when it is applied to big data processing.
The notion of parallel garbled RAM is introduced by Boyle et al [BCP16]. A
black-box construction of parallel garbled RAM is known from one-way function
[LO17].

Adaptively secure garbling. For certain applications of garbling, a stronger notion
of adaptive security is usually required. We note that the notion of adaptive
security is tightly related to efficiency.

For the circuit settings, the adversary is allowed to pick the input 𝑥 to the
program 𝐶 after he has seen the garbled version of the program ̃𝐶. In particular,
for the circuit settings, we refer to the size of ̃𝐶 as offline complexity and that
of the garbled input ̃𝑥 as online complexity. The efficiency requirement says
that the online complexity should not scale linearly with the size of the circuit1.
Constructing adaptively secure garbling schemes for circuits with small online
complexity has been an active area of investigation [HJO+16,JW16,JKK+17].

For the RAM settings, the adversary is allowed to adaptively pick multiple
programs Π1, ..., Π𝑡 and their respective inputs 𝑥1, ..., 𝑥𝑡 to be executed on the
same persistent database 𝐷, after he has seen the garbled version of the database
𝐷̃, and having executed some garbled programs on the database and obtained
1 Note that without this efficiency requirement, any selectively secure garbled circuit

can be trivially made adaptively secure, simply by sending everything only in the
online phase. This also holds similarly for the RAM setting.

1

their outputs Π𝑖(𝑥𝑖). Furthermore, he can choose his input after having seen the
garbled program. The efficiency requirement is that the time for garbling the
database, each program (and therefore the size of the garbled program) and the
respective input should depend linearly only on the size of the database, the
program, and the input respectively (up to poly logarithmic factors).

Parallel complexity of adaptively secure garbling. In two recent seminal works
[GS18,GOS18], Garg et al. introduce an adaptively secure garbling scheme for
circuits with near-optimal online complexity as well as for RAM programs. How-
ever, both constructions explicitly (using a linearization technique for circuits)
or implicitly (serial execution of RAM programs) requires the evaluation process
to proceed in a strict serial manner. Note that this would cause the parallel eval-
uation time of garbled circuits to blow up exponentially if the circuit depth is
exponentially smaller than the size of the circuit. We also note that the lineariza-
tion technique is their main technique for achieving near-optimal online complex-
ity. On the other hand, such requirement seems to be at odds with evaluating
the garbled version in parallel, which is something previous works [HJO+16]
can easily achieve (however, Hemenway et al.’s construction has asymptotically
greater online complexity). It’s also not clear how to apply the techniques used in
[GOS18] for adaptive garbled RAM to garble parallel RAM (PRAM) programs.
In this work, we aim to find out whether such trade-off is inherent, namely,

Can we achieve adaptively secure garbling with parallel efficiency from
standard assumptions?

1.1 Our Results

In this work, we obtained a construction of adaptively secure garbling schemes
that allows for parallel evaluation, incurring only a logarithmic loss in the number
of processors in online complexity based on the assumption that laconic oblivious
transfer exists. Laconic oblivious transfer can be based on a variety of public-
key assumptions [CDG+17,DG17,BLSV18,DGHM18]. More formally, our main
results are:

Theorem 1. Let 𝜆 be the security parameter. Assuming laconic oblivious trans-
fer, there exists a construction of adaptively secure garbling schemes,

– for circuits 𝐶 with optimal online communication complexity up to additive
poly(𝜆, log |𝐶|) factors, and can be evaluated in parallel time 𝑑⋅poly(𝜆, log |𝐶|)
given 𝑤 processors, where 𝑑 and 𝑤 are the depth and width of circuit 𝐶
respectively;

– for PRAM programs on persistent database 𝐷, and can be evaluated in paral-
lel time 𝑇 ⋅poly(𝜆, log 𝑀, log |𝐷|, log 𝑇), where 𝑀 is the number of processors
and 𝑇 is the parallel running time for the original program.

This result closes the gap between parallel evaluation and online complexity
for circuits, and also is the first adaptively secure garbling scheme for parallel

2

RAM program from standard assumptions. Previous construction for adaptively
secure garbled PRAM we are aware of is from strong assumptions like indistin-
guishability obfuscation [ACC+16].

We present our construction for circuit formally in Section 4. Please see the
full version of our paper for the construction for PRAM.

1.2 Applications

In this section, we briefly mention some applications of our results.

Applications for parallelly efficient adaptive garbled circuits. Our construction of
parallel adaptively secure garbled circuits can be applied the same way as already
mentioned in previous works like [HJO+16,GS18], e.g. to one-time program and
compact functional encryption. Our result enables improved parallel efficiency
for such applications.

Applications for adaptive garbled PRAM. This yields the first constant round
secure computation protocol for persistent PRAM programs in the malicious
settings from standard assumptions [GGMP16]. Prior works did not support
persistence in the malicious setting. As a special case, this also allows for evalu-
ating garbled PRAM programs on delegated persistent database.

2 Techniques

2.1 Parallelizing Garbled Circuits

Our starting point is to take Garg and Srinivasan’s construction of adaptively
secure garbled circuit with near-optimal online complexity [GS18] and allow it
to be evaluated in parallel. Recall that the main idea behind their construction
is to “linearize” the circuit before garbling it. Unfortunately, such transforma-
tion also ruins the parallel efficiency of their construction. We first explain why
linearization is important to achieving near-optimal online complexity.

Pebbling game. Hemenway et al. [HJO+16] introduced the notion of somewhere
equivocal encryption, which enables us to equivocate a part of the garbled “gate”
circuits and send them in the online phase. By using such technique, online
complexity only needs to grow linearly in the maximum number of equivocated
garbled gates at the same time over the entire hybrid argument, which could be
much smaller than the length of the entire garbled circuit. Since an equivocated
gate can be opened to be any gate, the simulator can simulate the gate according
to the input chosen by the adversary, and send the simulated gate in the online
phase. The security proof involves a hybrid argument, where in each step we
change which gates we equivocate and show that this change is indistinguishable
to the adversary. At a high level, this can be abstracted into a pebbling game.

3

Given a directed acyclic graph with a single sink, we can put or remove a
pebble on a node if its every predecessor has a pebble on it or it has no prede-
cessors. The game ends when there is a pebble on the unique sink. The goal of
the pebble game is to minimize the maximum number of pebbles simultaneously
on the graph throughout the game. In our case, the graph we need to pebble
is what is called simulation dependency graph, where nodes represent garbled
gates in the construction; and an edge from 𝐴 to 𝐵 represents that the input
label for a piece 𝐵 is hardcoded in 𝐴, thus to turn 𝐵 into simulation mode, it is
necessary to first turn 𝐴 also into simulation mode. The simulation dependency
graph directly corresponds to the circuit topology. The game terminates when
the output gate is turned into simulation mode. As putting pebbles corresponds
to equivocating the circuit in the online phase, the goal of the pebbling game
also directly corresponds to the goal of minimizing online complexity.

Linearizing the circuit. It is known that there is a strong lower bound Ω(𝑛
log 𝑛)

for pebbling an arbitrary graph with 𝑛 being the size of the graph [PTC76].
Since the circuits to be garbled can also be arbitrary, this means that the con-
structions of Hemenway et al. still have large online complexity for those “bad”
circuits. Thus, Garg and Srinivasan pointed out that some change in the simu-
lation dependency graph was required. In their work, they were able to change
the simulation dependency graph to be a line, i.e. the simulation of any given
garbled gate depends on only one other garbled gate. There’s a good pebbling
strategy using only 𝑂(log 𝑛) pebbles. On the other hand, using such technique
also forces the evaluation to proceed sequentially, which would cause the parallel
time complexity of wide circuits to blow up, in the worst case even exponentially.

We now describe how they achieved such linearization. In their work, instead
of garbling the circuit directly, they “weakly” garble a special RAM program
that evaluates the circuit. Specifically, this is done by having an external memory
storing the values of all the intermediate wires and then transforming the circuit
into a sequence of CPU step circuit, where each step circuit evaluates a gate and
performs reads and writes to the memory to store the results. The step circuits
are then garbled using Yao’s garbling scheme and the memory is protected with
one-time pad and laconic oblivious transfer (ℓ𝑂𝑇). This garbling is weak since it
does not protect the memory access pattern (which is fixed) and only concerns
this specific type of program. Note that with this way, the input and output to
the circuit can be revealed by revealing the one-time pad protecting the memory
that store the circuit output, which only takes online complexity 𝑛 + 𝑚.

Overview of our approach. A natural idea is that we can partially keep the linear
topology, for which we know a good pebbling strategy; and at the same time, we
would use 𝑀 processors for each time step, each evaluating a gate in parallel. We
then store the evaluation results by performing reads and writes on our external
memory.

However, there are two challenges with this approach.
– Parallel writes. Read procedure in the original ℓ𝑂𝑇 scheme can be simply

evaluated in parallel for parallel reads. On the other hand, since (as we will

4

see later) the write procedure outputs an updated digest of the database,
some coordination is obviously required, and simply evaluating writes in
serial would result in a blow up in parallel time complexity. Therefore, we
need to come up with a new parallel write procedure for this case.

– Pebbling complexity. Since now there are 𝑀 gates being evaluated in
parallel and looking ahead, they also need to communicate with each other to
perform parallel writes, this will introduce complicated dependencies in the
graph, and in the end, we could incur a loss in online complexity. Therefore,
we must carefully layout our simulation dependency graph and find a good
pebbling strategy for that graph.

Laconic OT As mentioned earlier, we cannot use the write procedure in la-
conic oblivious transfer in a black-box way to achieve parallel efficiency. Thus,
first we will elaborate on laconic oblivious transfer. Laconic oblivious transfer
allows a receiver to commit to a large input via a short message of length 𝜆.
Subsequently, the sender responds with a single short message (which is also
referred to as ℓ𝑂𝑇 ciphertext) to the receiver depending on dynamically chosen
two messages 𝑚0, 𝑚1 and a location 𝐿 ∈ [|𝐷|]. The sender’s response, enables
the receiver to recover 𝑚𝐷[𝐿], while 𝑚1−𝐷[𝐿] remains computationally hidden.
Note that the commitment does not hide the database and one commitment is
sufficient to recover multiple bits from the database by repeating this process.
ℓ𝑂𝑇 is frequently composed with Yao’s garbled circuits to make a long process
non-interactive. There, the messages will be chosen as input labels to the garbled
circuit.

First, we briefly recall the original construction of ℓ𝑂𝑇 . The novel technique
of laconic oblivious transfer was introduced in [CDG+17], where the scheme is
constructed as a Merkle tree of “laconic oblivious transfer with factor-2 compres-
sion”, which we denote as ℓ𝑂𝑇const, where the database is of length 2𝜆 instead
of being arbitrarily large. For the read procedure, we simply start at the root
digest, traverse down the Merkle tree by using ℓ𝑂𝑇const to read out the digest
for the next layer. Such procedure is then made non-interactive using Yao’s gar-
bled circuits. For writes, similar techniques apply except that in the end, a final
garbled circuit would take another set of labels for the digests to evaluate the
updated root digest.

From the view of applying ℓ𝑂𝑇 to garbling RAM programs, an ℓ𝑂𝑇 scheme
allows to compress a large database into a small digest of length 𝜆 that binds
the entire database. In particular, given the digest, one can efficiently (in time
only logarithmic in the size of the database) and repeatedly (ask the database
holder to) read the database (open the commitment) or update the database
and obtain the (correctly) updated digest. For both cases, as the evaluation
results are returned as labels, the privacy requirement achieves “authentication”,
meaning the result has to be evaluated honestly as the adversary cannot obtain
the other label.

Now, we will describe how we solve these two challenges.

5

Solving Parallel Writes

First attempt. Now we address how to parallelize ℓ𝑂𝑇 writes, in particular the
garbled circuit evaluating the updated digest. First, we examine the task of de-
signing a parallel algorithm with 𝑀 processors that jointly compute the updated
digest after writing 𝑀 bits. At a high level, this can be done using the following
procedure: all processors start from the bottom, make their corresponding mod-
ifications, and hash their ways up in the tree to compute the new digest; in each
round, if two processors move to the same node, one of them is marked inactive
and moved to the end using a sorting network. This intuitive parallel algorithm
runs in parallel time poly(log 𝑀, log |𝐶|, 𝜆). By plugging such parallel algorithm
back to the single write procedure for ℓ𝑂𝑇 , we obtain a parallel write procedure
for ℓ𝑂𝑇 .

However, there are some issues for online complexity when we combine this
intuitive algorithm with garbling and somewhere equivocal encryption. First, if
we garble the entire parallel write circuit using Yao’s garbling scheme, we would
have to equivocate the entire parallel write circuit in the online phase at some
point. Since the size of such circuit must be Ω(𝑀), this leads to a large block
length and we will get high online complexity. Therefore, we will have to split
the parallel write circuit into smaller components and garble them separately
so that we can equivocate only some parts of the entire write circuit in the
online phase. However, this does not solve the problem completely, as in the
construction of parallel writes for ℓ𝑂𝑇 given above, inter-CPU communications
like sorting networks take place. In the end, this causes high pebbling complexity
of Ω(𝑀). This is problematic since 𝑀 can be as large as the width of the circuit.

Block-writing ℓ𝑂𝑇 . To fix this issue, we note that for circuits, we can arbitrarily
specify the memory locations for each intermediate wires, and this allows us to
arrange the locations such that the communication patterns can be simplified to
the extent that we can reduce the pebbling complexity to 𝑂(log 𝑀). One such
good arrangement is moving all 𝑀 updated locations into a single continuous
block.

We give a procedure for handling such special case of updating the garbled
database with ℓ𝑂𝑇 . Recall that in ℓ𝑂𝑇 , memory contents are hashed together
using Merkle trees. Here, to simplify presentation, we assume the continuous
block to be an entire subtree of the Merkle tree. In this case, it’s easy to compute
the digest of the entire subtree efficiently in parallel, after which we can just
update the rest of the Merkle tree using a single standard but truncated writing
procedure with time poly(log |𝐶|, 𝜆), as we only need to pass and update the
digest of the root of that sub-tree; and the security proof is analogous to that of
a single write.

Pebbling Strategy Before examining the pebbling strategy, we first give the
description of the evaluation procedure and our transformed simulation depen-
dency graph using the ideas mentioned in the previous section. In each round,

6

𝑀 garbled circuits take the current database digest as input and each outputs
a ℓ𝑂𝑇 ciphertext that allows the evaluator to obtain the input for a certain
gate. Another garbled circuit would then take the input and evaluate the gate
and output the label for the output for that gate. In order to hash together
the output of 𝑀 values for the gates we just evaluated, we use a Merkle tree of
garbled circuits where each circuit would be evaluating a ℓ𝑂𝑇 hash with factor-2
compression. At the end of the Merkle tree, we would obtain the digest of the
sub-tree we wish to update, which would then allow us to update the database
and compute the updated digest. We can then use the updated digest to enable
the evaluation of the next round.

Roughly, the pebbling graph we are dealing with is a line of “gadgets”, and
each gadget consists of a tree with children with an edge to their respective
parents. One illustration of such gadget can be seen in Figure 9. One important
observation here is that in order to start putting pebbles on any gadget, one
only needs to put a pebble at the end of the previous gadget. Therefore, it’s not
hard to prove that the pebbling cost for the whole graph is the pebbling cost
for a single gadget plus the pebbling cost for a line graph, whose length is the
parallel time complexity of evaluating the circuit.

Pebbling line graph. Garg and Srinivasan used a pebbling strategy for pebbling
line graphs with the number of pebbles logarithmic in the length of the line
graph. Such strategy is optimal for the line graph. [Ben89]

Pebbling the gadget. For the gadget, the straightforward recursive strategy works
very well:2

1. To put a pebble at the root, we first recursively put a pebble at its two
children respectively;

2. Now we can put pebble at the root;
3. We again recursively remove the pebbles at its two children.

By induction, it’s not hard to prove that such strategy uses the number of pebbles
linear in the depth of the tree (note that at any given time, there can be at most
2 pebbles in each depth of the tree) and the number of steps is polynomial in
the size of the graph.

Putting the two strategy together, we achieve online complexity 𝑛 + 𝑚 +
poly(𝜆, log |𝐶|, log 𝑀), where 𝑛, 𝑚 is the length of the input and the output
respectively. Note that 𝑀 is certainly at most |𝐶|, so the online complexity is in
fact 𝑛 + 𝑚 + poly(𝜆, log |𝐶|), which matches the online complexity in [GS18].

2 This strategy is similar to the second strategy in [HJO+16]. However, here the depth
of the tree is only logarithmic in the number of processors so we can prevent incurring
an exponential loss.

7

2.2 Garbling Parallel RAM

Now we expand our previous construction of garbled circuits (which is a “weak”
garbling of a special PRAM program) to garble more general PRAM programs,
employing similar techniques from the seminal work of [GOS18]. We start by
bootstrapping the garbling scheme into an adaptive garbled PRAM with unpro-
tected memory access (UMA).

As with parallelizing adaptive garbled circuits, here we also face the issue
of handling parallel writes. Note that here the previous approach of rearrang-
ing write locations would not work since due to the nature of RAM programs,
the write locations can depend dynamically on the input. Therefore, we have to
return to our first attempt of parallel writes and splitting the parallel evalua-
tion into several circuits so that we can garble them separately for equivocation.
Again, we run into the issue of communications leading to high pebbling com-
plexity.

Solution: Parallel Checkpoints. Our idea is to instead put the parallel write
procedure into the PRAM program and use a technique called “parallel check-
points” to allow for arbitrary inter-CPU communications. At a high level, at
the end of each parallel CPU step, we store all the CPUs’ encrypted interme-
diary states into a second external memory and compute a digest using laconic
oblivious transfer. Such digest can then act like a checkpoint in parallel com-
putation, which is then used to retrieve the states back from the new database
using another garbled circuit and ℓ𝑂𝑇 .

Fig. 1. Transforming a toy sorting network using “parallel checkpoints.” The undashed
vertices corresponds to the step circuits that do the actual sorting.

To see how this change affects the simulation dependency graph and why it
solves the complexity issue, consider the following toy example where we have a
small sorting network, as seen in the left side of Figure 1. Note that applying the
two pebbling strategeies from [HJO+16] directly on the untransformed network
will result in an online complexity linear in either the number of processors 𝑀 ,
or the running time 𝑇 (and in this case also a security loss exponential in 𝑇).
However, by doing the transformation as shown in Figure 1, we can pebble this

8

graph with only 𝑂(log 𝑀) pebbles, by moving the pebble on the final node of each
layer forward (and we can move the pebble forward by one layer using 𝑂(log 𝑀)
pebbles). We can also see that using this change, the size of the garbled program
will only grow by a factor of 2, and the parallel running time will only grow by
a factor of log 𝑀 . In general, this transformation allows us to perform arbitrary
inter-CPU communications without incuring large losses in online complexity,
which resolves the issue.

For a more extended version of this construction, please refer to the full
version.

Pebbling game for parallel checkpoints. As mentioned above, such parallel check-
points are implemented via creating a database using ℓ𝑂𝑇 . Thus the same strat-
egy for pebbling the circuit pebble graph can be directly applied here. The key
size of somewhere equivocal encryption is therefore only poly(𝜆, log |𝐷|, log 𝑀, log 𝑇).

With preprocessing and parallel checkpoints, we can proceed in a similar
way to construct adaptively secure garbled PRAM with unprotected memory
access. In order to bootstrap it from UMA to full security, the same techniques,
i.e. timed encryption and oblivious RAM compiler from [GOS18] can be used
in a similar way to handle additional complications in the RAM settings. In
particular, we argue that the oblivious parallel RAM compiler from [BCP16]
can be modified in the same way to achieve their strengthened notion of strong
localized randomness in the parallel setting and handle the additional subtleties
there. In the end, this allows us to construct a fully adaptively secure garbled
PRAM.

3 Preliminaries

3.1 Garbled Circuits
In this section, we recall the notion of garbled circuits introduced by Yao [Yao82].
We will follow the same notions and terminologies as used in [CDG+17]. A circuit
garbling scheme GC is a tuple of PPT algorithms (GCircuit, GCEval).

– C̃ ← GCircuit (1𝜆, C, {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1}). It takes as input a security pa-
rameter 𝜆, a circuit C, a set of labels key𝑤,𝑏 for all the input wires 𝑤 ∈ inp(C)
and 𝑏 ∈ {0, 1}. This procedure outputs a garbled circuit C̃.

– 𝑦 ← GCEval (C̃, {key𝑤,𝑥𝑤
}𝑤∈inp(C)). Given a garbled circuit C̃ and a garbled

input represented as a sequence of input labels {key𝑤,𝑥𝑤
}𝑤∈inp(C), GCEval

outputs 𝑦.

Correctness. For correctness, we require that for any circuit C and input 𝑥 ∈
{0, 1}𝑚, where 𝑚 is the input length to C, we have that

Pr [C(𝑥) = GCEval (C̃, {key𝑤,𝑥𝑤
}𝑤∈inp(C))] = 1,

where C̃ ← GCircuit (1𝜆, C, {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1}).

9

Security. We require that there is a PPT simulator GCircSim such that for any
C, 𝑥, and for {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1} uniformly sampled,

(C̃, {key𝑤,𝑥𝑤
}𝑤∈inp(C))

𝑐≈ (GCircSim (1𝜆, 1|C|, {key𝑤,𝑥𝑤
}𝑤∈inp(C), 𝑦) , {key𝑤,𝑥𝑤

}𝑤∈inp(C)) ,

where C̃ ← GCircuit (1𝜆, C, {key𝑤,𝑏}𝑤∈inp(C),𝑏∈{0,1}) and 𝑦 = C(𝑥).

Parallel efficiency. For parallel efficiency, we require that the parallel runtime of
GCircuit on a PRAM machine with 𝑀 processors is poly(𝜆) ⋅ |𝐶|/𝑀 if |𝐶| ≥ 𝑀 ,
and the parallel runtime of GCEval on a PRAM machine with 𝑤 processors is
poly(𝜆) ⋅ 𝑑, where 𝑤, 𝑑 is the width and depth of the circuit respectively.

3.2 Somewhere Equivocal Encryption

In this section, we recall the definition of Somewhere Equivocal Encryption from
the work of [HJO+16].

Definition 1. A somewhere equivocal encryption scheme with block-length 𝑠,
message length 𝑛 (in blocks) and equivocation parameter 𝑡 (all polynomials in the
security parameter) is a tuple of PPT algorithms (KeyGen, Enc, Dec, SimEnc, SimDec)
such that:

– key ← KeyGen(1𝜆): It takes as input the security parameter 𝜆 and outputs a
key key.

– ̄𝑐 ← Enc(key, 𝑚̄): It takes as input a key key and a vector of messages
𝑚̄ = 𝑚1...𝑚𝑛 with each 𝑚𝑖 ∈ {0, 1}𝑠 and outputs a ciphertext ̄𝑐.

– 𝑚̄ ← Dec(key, ̄𝑐): It is a deterministic algorithm that takes as input a key
key and a ciphertext ̄𝑐 and outputs a vector of messages 𝑚̄ = 𝑚1...𝑚𝑛.

– (st, ̄𝑐) ← SimEnc((𝑚𝑖)𝑖∉𝐼 , 𝐼): It takes as input a set of indices 𝐼 ⊆ [𝑛] and a
vector of messages (𝑚𝑖)𝑖∉𝐼 and outputs a ciphertext ̄𝑐 and a state st.

– key′ ← SimKey(st, (𝑚𝑖)𝑖∈𝐼): It takes as input the state information st and a
vector of messages (𝑚𝑖)𝑖∈𝐼 and outputs a key key′.

It is required to satisfy the following properties:

Correctness. For every key ← KeyGen(1𝜆), every 𝑚̄ ∈ {0, 1}𝑠×𝑛, we require that

Dec(key, Enc(key, 𝑚̄)) = 𝑚̄.

Simulation with No Holes. We require that simulation when 𝐼 = ∅ is identical
to the honest key generation and encryption, i.e. the distribution of (̄𝑐, key)
computed via (st, ̄𝑐) ← SimEnc(𝑚̄, ∅) and key ← SimKey(st, ∅) to be identical to
key ← KeyGen(1𝜆) and ̄𝑐 ← Enc(key, 𝑚̄).

10

SimEncExpt𝑏∈{0,1}(1𝜆, 𝒜)
Let 𝐼0 = 𝐼 and 𝐼1 = 𝐼 ∪ {𝑗}
(st, ̄𝑐) ← SimEnc((𝑚𝑖)𝑖∉𝐼𝑏 , 𝐼𝑏)
((𝑚𝑖)𝑖∈𝐼 , st′) ← 𝒜1(̄𝑐)
key ← SimKey(st, (𝑚𝑖)𝑖∈𝐼𝑏)
Output 𝒜2(st′, key)

Fig. 2. Simulated Encryption Experiment

Security. For any non-uniform PPT adversary 𝒜 = (𝒜1, 𝒜2), for any 𝐼 ⊆ [𝑛]
s.t. |𝐼| ≤ 𝑡, 𝑗 ∈ [𝑛] − 𝐼 and vector (𝑚𝑖)𝑖∉𝐼, there exists a negligible function
negl(⋅) s.t.

| Pr[SimEncExpt0(1𝜆, 𝒜) = 1] − Pr[SimEncExpt1(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where SimEncExpt0 and SimEncExpt1 are described in Figure 2.

Theorem 2 ([HJO+16]). Assuming the existence of one-way functions, there
exists a somewhere equivocal encryption scheme for any polynomial message-
length 𝑛, block-length 𝑠 and equivocation parameter 𝑡, having key size 𝑡⋅𝑠⋅poly(𝜆)
and ciphertext of size 𝑛 ⋅ 𝑠 ⋅ poly(𝜆) bits.

3.3 Parallel RAM Programs

We follow the formalization of parallel RAM (PRAM) programs used in [LO17].
A 𝑀 parallel random-access machine is a collection of 𝑀 processors CPU1, ..., CPU𝑚,
having concurrent access to a shared external memory 𝐷.

A PRAM program Π, given input 𝑥1, ..., 𝑥𝑀 , provides instructions to the
CPUs that can access to the shared memory 𝐷. The CPUs execute the program
until a halt state is reached, upon which all CPUs collectively output 𝑦1, ..., 𝑦𝑀 .3

Here, we formalize each processor as a step circuit, i.e. for each step, CPU𝑖
evaluates the circuit 𝐶Π

CPU𝑖
(state, wData) = (state′, R/W, 𝐿, rData). This circuit

takes as input the current CPU state state and the data rData read from the
database, and it outputs an updated state state′, a read or write bit R/W, the
next locations to read/write 𝐿, and the data wData to write to that location. We
allow each CPU to request up to 𝛾 bits at a time, therefore here rData, wData are
both bit strings of length 𝛾. For our purpose, we assume 𝛾 ≥ 2𝜆. The (parallel)
time complexity 𝑇 of a PRAM program Π is the number of time steps taken to
evaluate Π before the halt state is reached.

We note that the notion of parallel random-access machine is a commonly
used extension of Turing machine when one needs to examine the concrete par-
allel time complexity of a certain algorithm.
3 Similarly, here we assume the program is deterministic. We can allow for randomized

execution by providing it random coins as input.

11

Memory access patterns. The memory access pattern of PRAM program Π(𝑥) is
a sequence (R/W𝑖, 𝐿𝑖)𝑖∈[𝑇], each element represents at time step 𝑖, a read/write
R/W𝑖 was performed on memory location 𝐿𝑖.

3.4 Sorting Networks

Our construction of parallel ℓ𝑂𝑇 uses sorting networks, which is a fixed topology
of comparisons for sorting values on 𝑛 wires. In our instantiation, 𝑛 equals the
number of processors 𝑀 in the PRAM model. As PRAM can simulate circuits
efficiently, on a high level, a sorting network of depth 𝑑 corresponds to a parallel
sorting algorithm with parallel time complexity 𝑂(𝑑). As mentioned previously,
the topology of the sorting network is not relevant to our construction.

Theorem 3 ([AKS83]). There exists an 𝑛-wire sorting network of depth 𝑂(log 𝑛).

3.5 Laconic Oblivious Transfer

Definition 2 ([CDG+17]). An updatable laconic oblivious transfer (ℓ𝑂𝑇)
scheme consists of four algorithms crsGen, Hash, Send, Receive, SendWrite, Re-
ceiveWrite.

– crs ← crsGen(1𝜆). It takes as input the security parameter 1𝜆 and outputs a
common reference string crs.

– (digest, D̂) ← Hash(crs, 𝐷). It takes as input a common reference string crs
and a database 𝐷 ∈ {0, 1}∗ and outputs a digest digest of the database and
a state D̂.

– e ← Send(crs, digest, 𝐿, 𝑚0, 𝑚1). It takes as input a common reference string
crs, a digest digest, a database location 𝐿 ∈ N and two messages 𝑚0 and 𝑚1
of length 𝜆, and outputs a ciphertext e.

– 𝑚 ← ReceiveD̂(crs, e, 𝐿). This is a RAM algorithm with random read access
to D̂. It takes as input a common reference string crs, a ciphertext e, and a
database location 𝐿 ∈ N. It outputs a message 𝑚.

– ew ← SendWrite (crs, digest, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1}). It takes
as input the common reference string crs, a digest digest, 𝑀 locations {𝐿𝑘}𝑘
with the corresponding bits {𝑏𝑘}𝑘, and 𝜆 pairs of messages {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1},
where each 𝑚𝑗,𝑐 is of length 𝜆. It outputs a ciphertext ew.

– {𝑚𝑗}𝑗∈[𝜆] ← ReceiveWriteD̃(crs, {𝐿𝑘}𝑘∈[𝑀], {𝑏𝑘}𝑘∈[𝑀], ew). This is a RAM al-
gorithm with random read/write access to D̃. It takes as input the common
reference string crs, 𝑀 locations {𝐿𝑘}𝑘∈[𝑀] and bits to be written {𝑏𝑘}𝑘∈[𝑀]
and a ciphertext ew. It updates the state D̃ (such that 𝐷[𝐿𝑘] = 𝑏𝑘 for every
𝑘 ∈ [𝑀]) and outputs messages {𝑚𝑗}𝑗∈[𝜆].

It is required to satisfy the following properties:

12

– Correctness: For any database 𝐷 of size at most poly(𝜆) for any polynomial
function poly(⋅), any memory location 𝐿 ∈ [|𝐷|], and any pair of messages
(𝑚0, 𝑚1) ∈ {0, 1}𝜆 × {0, 1}𝜆 that

Pr
⎡
⎢
⎢
⎢
⎣

𝑚 = 𝑚𝐷[𝐿]

∣
∣
∣
∣
∣

crs ← crsGen(1𝜆)
(digest, D̂) ← Hash(crs, 𝐷)

e ← Send(crs, digest, 𝐿, 𝑚0, 𝑚1)
𝑚 ← ReceiveD̂(crs, e, 𝐿)

⎤
⎥
⎥
⎥
⎦

= 1,

where the probability is taken over the random choices made by crsGen and
Send.

– Correctness of Writes: For any database 𝐷 of size at most poly(𝜆) for any
polynomial function poly(⋅), any 𝑀 memory locations {𝐿𝑗}𝑗 ∈ [|𝐷|]𝑀 and
any bits {𝑏𝑗}𝑗, and any pairs of messages {𝑚𝑗,𝑐}𝑗,𝑐 ∈ {0, 1}2𝜆2 , let 𝐷∗ be the
database to be 𝐷 after making the modifications 𝐷[𝐿𝑗] ← 𝑏𝑗 for 𝑗 = 1, ..., 𝑀 ,
we require that

Pr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑚′
𝑗 = 𝑚𝑗,𝐷[𝐿]

∀𝑗 ∈ [𝜆]

∣
∣
∣
∣
∣
∣
∣

crs ← crsGen(1𝜆)
(d, D̂) ← Hash(crs, 𝐷)

(d∗, ̂D∗) ← Hash(crs, 𝐷∗)
e ← SendWrite (crs, d, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, {𝑚𝑗,𝑐}𝑗,𝑐)

{𝑚′
𝑗}𝑗 ← ReceiveWriteD̃(crs, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, e)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1,

where the probability is taken over the random choices made by crsGen and
Send.

– Sender Privacy: There exists a PPT simulator ℓOTSim such that for any
non-uniform PPT adversary 𝒜 = (𝒜1, 𝒜2) there exists a negligible function
negl(⋅) s.t.

SenPrivExpt𝜏∈{real, ideal}(1𝜆, 𝒜)
crs ← crsGen(1𝜆)
(𝐷, 𝐿, 𝑚0, 𝑚1, st) ← 𝒜1(crs)
(𝑑, 𝐷̂) ← Hash(crs, 𝐷)
If 𝜏 is real, e ← Send(crs, d, 𝐿, 𝑚0, 𝑚1)
If 𝜏 is ideal, e ← ℓOTSim(crs, 𝐷, 𝐿, 𝑚𝐷[𝐿])
Output 𝒜2(st, e)

Fig. 3. Sender Privacy Security Game

| Pr[SenPrivExptreal(1𝜆, 𝒜) = 1] − Pr[SenPrivExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

13

where SenPrivExptreal and SenPrivExptideal are described in Figure 3.
– Sender Privacy for Writes: There exists a PPT simulator ℓOTSimWrite

such that for any non-uniform PPT adversary 𝒜 = (𝒜1, 𝒜2) there exists a
negligible function negl(⋅) s.t.

SenPrivWriteExpt𝜏∈{real, ideal}(1𝜆, 𝒜)
crs ← crsGen(1𝜆)
(𝐷, 𝑀, {𝐿𝑗}𝑗∈[𝑀], {𝑚𝑗,𝑐}𝑗,𝑐, st) ← 𝒜1(crs)
(𝑑, 𝐷̂) ← Hash(crs, 𝐷)
(𝑑∗, 𝐷̂∗) ← Hash(crs, 𝐷∗) where 𝐷∗ is 𝐷 after making the modifications 𝐷[𝐿𝑗] ←

𝑏𝑗 for 𝑗 = 1, ..., 𝑀
If 𝜏 is real, e ← SendWrite (crs, d, {𝐿𝑘}𝑘, {𝑏𝑘}𝑘, {𝑚𝑗,𝑐}𝑗,𝑐)
If 𝜏 is ideal, e ← ℓOTSimWrite(crs, 𝐷, {𝐿𝑘}𝑘, {𝑚𝑗,𝑑∗

𝑗
}𝑗)

Output 𝒜2(st, e)

Fig. 4. Sender Privacy Security Game for Writes

| Pr[SenPrivWriteExptreal(1𝜆, 𝒜) = 1]−Pr[SenPrivWriteExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where SenPrivWriteExptreal and SenPrivWriteExptideal are described in Fig-
ure 4.

– Efficiency: The algorithm Hash runs in time |𝐷|poly(log |𝐷|, 𝜆). The algo-
rithms Send, Receive run in time poly(log |𝐷|, 𝜆), and the algorithms Send-
Write, ReceiveWrite run in time 𝑀 ⋅ poly(log |𝐷|, 𝜆).

It is also helpful to introduce the ℓ𝑂𝑇 scheme with factor-2 compression,
which is used in ℓ𝑂𝑇 ’s original construction [CDG+17].

Definition 3. An ℓ𝑂𝑇 scheme with factor-2 compression ℓ𝑂𝑇const is an ℓ𝑂𝑇
scheme where the database 𝐷 has to be of size 2𝜆.

Remark 1. The sender privacy requirement here is from [GS18]. It requires crs
to be given to the adversary before the adversary chooses his challenge instead of
after, and is therefore stronger than the original security requirement [CDG+17].
But we note that in the security proof of laconic oblivious transfer, such adaptive
security requirement can be directly reduced to adaptive security for ℓ𝑂𝑇const.
And in the construction of [CDG+17], in every hybrid, crs is generated either
truthfully, or generated statistically binding to one of 2𝜆 possible positions.
Therefore, we will incur at most a 1/2𝜆 loss in the security reduction, simply by
guessing which position we need to bind to in those hybrids. This also applies
to the sender privacy for parallel writes we will discuss later.

14

Theorem 4 ([CDG+17,DG17,BLSV18,DGHM18]). Assuming either the
Computational Diffie-Hellman assumption or the Factoring assumption or the
Learning with Errors assumption, there exists a construction of laconic oblivious
transfer.

4 Adaptive Garbled Circuits Preserving Parallel Runtime

In this section, we construct an adaptively secure garbling scheme for circuits
that allows for parallel evaluation without compromising near-optimal online
complexity. We follow the definition of adaptive garbled circuits from [HJO+16].

Definition 4. An adaptive garbling scheme for circuits is a tuple of PPT algo-
rithms
(AdaGCircuit, AdaGInput, AdaEval) such that:

– (̃𝐶, st) ← AdaGCircuit (1𝜆, 𝐶). It takes as input a security parameter 𝜆, a
circuit 𝐶 ∶ {0, 1}𝑛 ↦ {0, 1}𝑚 and outputs a garbled circuit ̃𝐶 and state
information st.

– ̃𝑥 ← AdaGInput(st, 𝑥): It takes as input the state information st and an input
𝑥 ∈ {0, 1}𝑛 and outputs the garbled input ̃𝑥.

– 𝑦 ← AdaEval(̃𝐶, ̃𝑥). Given a garbled circuit C̃ and a garbled input ̃𝑥, AdaEval
outputs 𝑦 ∈ {0, 1}𝑚.

Correctness. For any 𝜆 ∈ N circuit C ∶ {0, 1}𝑛 ↦ {0, 1}𝑚 and input 𝑥 ∈ {0, 1}𝑛,
we have that

Pr [𝐶(𝑥) = AdaEval(̃𝐶, ̃𝑥)] = 1,

where (̃𝐶, st) ← AdaGCircuit (1𝜆, 𝐶) and ̃𝑥 ← AdaGInput(st, 𝑥).

Adaptive Security. There is a PPT simulator AdaGSim = (AdaGSimC, AdaGSimIn)
such that, for any non-uniform PPT adversary 𝒜 = (𝒜1, 𝒜2, 𝒜3) there exists a
negligible function negl(⋅) such that

| Pr[AdaGCExptreal(1𝜆, 𝒜) = 1] − Pr[AdaGCExptideal(1𝜆, 𝒜) = 1]| ≤ negl(𝜆),

where AdaGCExptreal and AdaGCExptideal are described in Figure 5.

Online Complexity. The running time of AdaGInput is called the online compu-
tational complexity and | ̃𝑥| is called the online communication complexity. We
require that the online computational complexity does not scale linearly with the
size of the circuit |𝐶|.

Furthermore, we call the garbling scheme is parallelly efficient, if the algo-
rithms are given as probabilistic PRAM programs with 𝑀 processors, and the
parallel runtime of AdaGCircuit is poly(𝜆) ⋅ |𝐶|/𝑀 if |𝐶| ≥ 𝑀 , the parallel run-
time of AdaGInput on a PRAM machine to be 𝑛/𝑀 ⋅ poly(𝜆, log |𝐶|), and the
parallel runtime of AdaEval is poly(𝜆) ⋅ 𝑑 if 𝑀 ≥ 𝑤, where 𝑤, 𝑑 is the width and
depth of the circuit respectively.

15

AdaGCExpt𝜏∈{real, ideal}[1𝜆, 𝒜]
(𝐶, 𝑠) ← 𝒜1(1𝜆)
If 𝜏 is real, (̃𝐶, st) ← AdaGCircuit (1𝜆, 𝐶)
If 𝜏 is ideal, (̃𝐶, st) ← AdaGSimC (1𝜆, 1|𝐶|)
(𝑥, 𝑠) ← 𝒜2(𝑠, ̃𝐶)
If 𝜏 is real, ̃𝑥 ← AdaGInput(st, 𝑥)
If 𝜏 is ideal, ̃𝑥 ← AdaGSimIn(st, 𝐶(𝑥))
Output 𝒜3(𝑠, ̃𝑥)

Fig. 5. Adaptive Security Game of Adaptive Garble Circuits

4.1 Construction Overview

First, we recall the construction of [GS18], which we will use as a starting point.
At a high level, their construction can be viewed as a “weak” garbling of a special
RAM program that evaluates the circuit.

In the ungarbled world, a database 𝐷 is used as RAM to store all the wires
(including input, output, and intermediate wires). Initially, 𝐷 only holds the
input and everything else is uninitialized. In each iteration, the processor takes
a gate, read two bits according to the gate, evaluate the gate, and write the
output bit back into the database. Finally, after all iterations are finished, the
output of the circuit is read from the database.

In the garbled world, the database 𝐷 will be hashed as 𝐷̂ using ℓ𝑂𝑇 and
protected with an one-time pad 𝑟 as ℓ𝑂𝑇 does not protect its memory content.
The evaluation process is carried out by a sequence of Yao’s garbled circuits
and laconic OT “talking” to each other. In each iteration, two read operations
correspond to a selectively secure garbled circuit, which on given digest as in-
put, outputs two ℓ𝑂𝑇 read ciphertexts that the evaluator can decrypt to the
input label for the garbled gate, which is a selectively secure garbled circuit that
unmasks the input, evaluates the gate, and then unmasks the output. To store
the output, the garbled gate generates a ℓ𝑂𝑇 block-write ciphertext, which also
enables the evaluator to obtain the input labels for the updated digest in the
next iteration. This garbled RAM program is then encrypted using a somewhere
equivocal encryption, after which it is given to the adversary as the garbled cir-
cuit. On given input 𝑥, we generate the protected database 𝐷̂ and compute the
input labels for the initial digest, and we give out the labels, the masked input,
the decryption key, and masks for output in the database.

This garbling is weak as in it only concerns a particular RAM program, and
it does not protect the memory access pattern, but it is sufficient for the adaptive
security requirement of garbled circuits as the pattern is fixed and public. As
we will see in the security proof that online complexity is tightly related to
the pebbling complexity of a pebbling game. The pebbling game is played on a
simulation dependency graph, where pieces of garbled circuits in the construction

16

correspond to nodes and hardwiring of input labels correspond to edges. As the
input labels for every selectively secure circuit is only hardcoded in the previous
circuit, the simulation dependency is a line and there is a known good pebbling
strategy.

To parallelize this construction, we naturally wish to evaluate 𝑀 gates in
parallel using a PRAM program instead of evaluating sequentially. This way,
we preserve its mostly linear structure, for which we know a good pebbling
strategy. Reading from the database is inherently parallelizable, but writing is
more problematic as the processors need to communicate with each other to
compute the updated digest and we need to be more careful.

4.2 Block-writing Laconic OT

Recall from Section 2.1 that we cannot hope to use ℓ𝑂𝑇 as a black box in parallel,
thus we first briefly recall the techniques used in [CDG+17] to bootstrap an ℓ𝑂𝑇
scheme with factor-2 compression ℓ𝑂𝑇const into a general ℓ𝑂𝑇 scheme with an
arbitrary compression factor.

Consider a database 𝐷 with size |𝐷| = 2𝑑⋅𝜆. In order to obtain a hash function
with arbitrary (polynomial) compression factor, it’s natural to use a Merkle tree
to compress the database. The Hash function outputs (digest, D̂), where D̂ is the
Merkle tree and digest is the root of the tree. Using ℓ𝑂𝑇const combined with a
Merkle tree, the sender is able to traverse down the Merkle tree, simply by using
ℓ𝑂𝑇const.Send to obtain the digest for any child he wishes to, until he reaches
the block he would like to query. For writes, the sender can read out all the
relevant neighbouring digests from the Merkle tree and compute the updated
digest using the information. In order to compress the round complexity down
to 1 from 𝑑, we can use Yao’s garble circuit to garble ℓ𝑂𝑇const.Send so that the
receiver can evaluate it for the sender, until he gets the final output. On a high
level, the receiver makes the garbled circuits and ℓ𝑂𝑇const talk to each other to
evaluate the read/write ciphertexts.

As mentioned in Section 2.1, we wish to construct a block-write procedure
such that the following holds:

– The parallel running time should be poly(𝜆, log |𝐶|);
– For near-optimal online complexity, both the size of each piece of the garbled

circuit and the pebbling complexity needs to be poly(𝜆, log |𝐶|).
Note that changing the ciphertext to contain all 𝑀 bits directly do not work

in this context, as now the write ciphertext would be of length Ω(𝑀), therefore
the garbled circuit generating it must be of length Ω(𝑀), which violates what
we wish to have. The way to fix this is to instead let the ciphertext only hold the
digest of the sub-tree, and the block write ciphertext simply needs to perform
a “partial” write to obtain the updated digest, therefore its size is no larger
than an ordinary write ciphertext. As it turns out, a tree-like structure in the
simulation dependency graph also has good pebbling complexity and we can
obtain the sub-tree digest using what we call a garbled Merkle tree, which we
will construct in the next section. This way, we resolve all the issues.

17

Now, we first direct our attention back to constructing block-writes. For-
mally, we will construct two additional algorithms for updatable laconic oblivi-
ous transfer that handles a special case of parallel writes. As we will see later,
these algorithms can be used to simplify the construction of adaptive garbled
circuit.

– ew ← SendWriteBlock (crs, digest, 𝐿, d, {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1}). It takes as input
the common reference string crs, a digest digest, a location prefix 𝐿 ∈ {0, 1}𝑃

with length 𝑃 ≤ log |𝐷| and the digest of the subtree d to be written to lo-
cation 𝐿00...0, 𝐿00...1, ..., 𝐿11...1, and 𝜆 pairs of messages {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1},
where each 𝑚𝑗,𝑐 is of length 𝜆. It outputs a ciphertext ew.

– {𝑚𝑗}𝑗∈[𝜆] ← ReceiveWriteBlockD̃(crs, 𝐿, {𝑏𝑘}𝑘∈[2𝑀], ew). This is a RAM algo-
rithm with random read/write access to D̃. It takes as input the common
reference string crs, 𝑀 locations {𝐿𝑘}𝑘∈[𝑀] and bits to be written {𝑏𝑘}𝑘∈[𝑀]
and a ciphertext ew. It updates the state D̃ (such that 𝐷[𝐿𝑘] = 𝑏𝑘 for every
𝑘 ∈ [𝑀]) and outputs messages {𝑚𝑗}𝑗∈[𝜆].

The formal construction of block-writing ℓ𝑂𝑇 is as follows:

– SendWriteBlock (crs, digest, 𝐿, d, {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1})
Reinterpret the ℓ𝑂𝑇 Merkle tree by truncating at the |𝐿|-th layer
Output ℓ𝑂𝑇 .SendWrite (crs, digest, 𝐿, d, {𝑚𝑗,𝑐}𝑗∈[𝜆],𝑐∈{0,1})

– ReceiveWriteBlockD̃(crs, 𝐿, {𝑏𝑘}𝑘∈[2𝑀], ew)
Compute the digest d of database {𝑏𝑘}𝑘∈[2𝑀]
Reinterpret the ℓ𝑂𝑇 Merkle tree by truncating at the |𝐿|-th layer and D̃

as the corresponding truncated version of the database
Label ← ℓ𝑂𝑇 .ReceiveWriteD̃(crs, 𝐿, {𝑏𝑘}𝑘∈[2𝑀], ew)
Update D̃ at block location 𝐿 using data {𝑏𝑘}𝑘∈[2𝑀]
Output Label

ℓOTSimWriteBlock(crs, 𝐷, 𝐿, {𝑏𝑗}𝑗∈[𝜆], {𝑚𝑗,digest∗
𝑗
}𝑗∈[𝜆])

Output ℓOTSimWrite(crs, 𝐷, {𝐿||𝑗}𝑗∈[𝜆], {𝑏𝑗}𝑗∈[𝜆], {𝑚𝑗,digest∗
𝑗
}𝑗∈[𝜆])

Fig. 6. Block-writing security simulator

We require similar security and efficiency requirements for block-writing ℓ𝑂𝑇 .
It’s not hard to see that the update part of ReceiveWriteBlock can be evaluated
efficiently in parallel (and the call to normal ReceiveWrite only needs to run
once), and the security proof can be easily reduced to that of SendWrite.

18

4.3 Garbled Merkle Tree
We will now describe an algorithm called garbled Merkle tree. Roughly speak-
ing, a garbled Merkle tree is a binary tree of garbled circuits, where each of the
circuit takes arbitrary 2𝜆 bits as input and outputs the labels of 𝜆 bit digest.
Looking ahead, this construction allows for exponentially smaller online com-
plexity compared to simply garbling the entire hash circuit when combined with
adaptive garbling schemes we will construct later, since its tree structure allows
for small pebbling complexity.

A garbled Merkle tree has very similar syntax as the one for garbled circuit.
It consists of 2 following PPT algorithms:

Hashing Sub-Circuit C
Hardwired Values/Circuit: 𝐻, Keys
Input: 𝑥 ∈ {0, 1}2𝜆

Output Keys𝐻(𝑥)

Fig. 7. Hashing Sub-Circuit

– GHash(1𝜆, 𝐻, {Key𝑖}𝑖∈[|𝐷|], {Key′
𝑖}𝑖∈[𝜆]): it takes as input a security parameter

𝜆, a hashing circuit H that takes 2𝜆 bits as input and outputs 𝜆 bits, keys
{Key𝑖}𝑖∈[|𝐷|] for all bits in the database 𝐷 and {Key′

𝑖}𝑖∈[𝜆] for all output bits
Keys1 ← {Key′

𝑖}𝑖∈[𝜆]
Sample {Keys𝑖}𝑖=2,...,|𝐷|/𝜆−1
{Keys𝑖}𝑖=|𝐷|/𝜆,...,2|𝐷|/𝜆−1 ← {Key𝑖}𝑖∈[|𝐷|]
For 𝑖 = 1 to |𝐷|/𝜆 − 1 do

̃𝐶𝑖 ← GCircuit(1𝜆, C[𝐻, Keys𝑖], (Keys2𝑖, Keys2𝑖+1))
Output { ̃𝐶𝑖}𝑖∈[|𝐷|/𝜆−1]

The circuit C here is given in Figure 7.
– GHEval ({ ̃𝐶𝑖}, {lab𝑖}𝑖∈[|𝐷|]): it takes as input the garbled circuits { ̃𝐶𝑖}𝑖∈[|𝐷|/𝜆−1]

and input labels for the database {lab𝑖}𝑖∈[|𝐷|]
{Label𝑖}𝑖=|𝐷|/𝜆,...,2|𝐷|/𝜆−1 ← {lab𝑖}𝑖∈[|𝐷|]
For 𝑖 = |𝐷|/𝜆 − 1 down to 1 do

Label𝑖 ← GCEval(̃𝐶𝑖, (Label2𝑖, Label2𝑖+1))
Output Label1

Later, we will also invoke this algorithm in garbled PRAM for creating par-
allel checkpoints.

4.4 Construction
We will now give the construction of our adaptive garbled circuits. Let ℓ𝑂𝑇
be a laconic oblivious transfer scheme, (GCircuit, GCEval) be a garbling scheme

19

for circuits, (GHash, GHEval) be a garbling scheme for Merkle trees, and SEE
be a somewhere equivocal encryption scheme with block length poly(𝜆, log |𝐶|)
to be the maximum size of garbled circuits {C̃

eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 }, message length

2𝑀ℓ = 𝑂(|𝐶|2) (we will explain ℓ shortly after) and equivocation parameter
log ℓ + 2 log 𝑀 + 𝑂(1) (the choice comes from the security proof).

Furthermore, we assume both 𝑀 and 𝜆 is a power of 2 and 𝜆 divides 𝑀 . We
also have a procedure {𝑃𝑖}𝑖∈[ℓ] ← Partition(𝐶, 𝑀) (as an oracle) that partition
the circuit’s wires 1, 2, ..., |𝐶| into ℓ continuous partitions of size 𝑀 , such that
for any partition 𝑃𝑖, its size is at most 𝑀 (allowing a few extra auxilary wires
and renumbering wires), and every gate in the partition can be evaluated in
parallel once every partition 𝑃𝑗 with 𝑗 < 𝑖 has been evaluated. Clearly 𝑑 ≤ ℓ ≤
|𝐶|, but it’s also acceptable to have a sub-optimal partition to best utilize the
computational resources on a PRAM machine. We assume the input wires are
put in partition 0. This preprocessing is essentially scheduling the evaluation of
the circuit to a PRAM machine and it is essential to making our construction’s
online complexity small.

We now give an overview of our construction. At a high level, instead of
garbling the circuit directly, our construction can be viewed as a garbling of a
special PRAM program that evaluates the circuit in parallel. The database 𝐷
will be hashed as 𝐷̂ using ℓ𝑂𝑇 and protected with an one-time pad 𝑟 as ℓ𝑂𝑇
does not protect its memory content. In each iteration, two read operations for
every processor correspond to two selectively secure garbled circuits, which on
given digest as input, outputs a ℓ𝑂𝑇 read ciphertext that generates the input
label for the garbled gate; the garbled gate unmasks the input, evaluates the
gate, and then output the masked output of the gate. After all 𝑀 processors
have done evaluating their corresponding gates, a garbled Merkle tree will take
their outputs as input to obtain the digest for the 𝑀 bits of output, and then
generate a ℓ𝑂𝑇 block-write ciphertext to store the outputs into the database.
During evaluation, this block-write ciphertext can be used to obtain the input
labels for the read circuits in the next iteration. This garbled PRAM program is
then encrypted using a somewhere equivocal encryption, after which it is given to
the adversary as the garbled circuit. On given input 𝑥, we generate the protected
database 𝐷̂ and compute the input labels for the initial digest, and we give out
the labels, the masked inputs, the decryption key, and masks for outputs in the
database.

Now we formally present the construction. Inside the construction, we omit
𝑘 ∈ [𝑀] when the context is clear. It might also be helpful to see Figure 9 for
how the garbled circuits are organized.

– AdaGCircuitPartition (1𝜆, 𝐶):
crs ← ℓ𝑂𝑇 .crsGen(1𝜆)
key ← SEE.KeyGen(1𝜆)
𝐾 ← PRFKeyGen(1𝜆)
{𝑃𝑖}𝑖∈[ℓ] ← Partition(𝐶)
Sample 𝑟 ← {0, 1}𝑀ℓ

20

Circuit C𝜏∈{real, ideal}
eval

Hardwired Values: crs, 𝑖, 𝑗, 𝑔, (𝑟𝑖, 𝑟𝑗, 𝑟𝑔), lab0, lab1
Input: d
If 𝜏 is real, define for all 𝛼, 𝛽 ∈ {0, 1}, 𝛾(𝛼, 𝛽) ∶= NAND(𝛼 ⊕ 𝑟𝑖, 𝛽 ⊕ 𝑟𝑗) ⊕ 𝑟𝑔
If 𝜏 is ideal, define for all 𝛼, 𝛽 ∈ {0, 1}, 𝛾(𝛼, 𝛽) ∶= 𝑟𝑔
𝑓𝑏 ← Send (crs, d, 𝑗, (𝛾(𝑏, 0), lab𝛾(𝑏,0)), (𝛾(𝑏, 1), lab𝛾(𝑏,1))) for each 𝑏 ∈ {0, 1}
Output Send(crs, d, 𝑖, 𝑓0, 𝑓1)

Fig. 8. Description of the Evaluation Circuit

For 𝑖 = 1 to ℓ do:
Let 𝐶𝑔,1, 𝐶𝑔,2 denote the two input gates of gate 𝑔
C̃

eval
𝑖,𝑘 ← GCircuit(1𝜆, Creal

eval[crs, 𝐶𝑃𝑖,𝑘,1, 𝐶𝑃𝑖,𝑘,2, 𝑃𝑖,𝑘, (𝑟𝐶𝑃𝑖,𝑘,1
, 𝑟𝐶𝑃𝑖,𝑘,2

, 𝑟𝑃𝑖,𝑘
),

PRF𝐾(1, 𝑖, 𝑘, 0), PRF𝐾(1, 𝑖, 𝑘, 1)],
{PRF𝐾(0, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})

Let keyEval = {PRF𝐾(1, 𝑖, 𝑘, 𝑏)}𝑘∈[𝑀],𝑏∈{0,1}
Let keyHash = {PRF𝐾(2, 𝑖, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1}

{C̃
hash
𝑖,𝑗 }𝑗∈[𝑀−1] ← GHash(1𝜆, ℓ𝑂𝑇const.Hash, keyEval, keyHash)

Let 𝐶write
𝑖 = ℓ𝑂𝑇 .SendWriteBlock (crs, ⋅, 𝑖, {PRF𝐾(0, 𝑖 + 1, 𝑗, 𝑏)}𝑗∈[𝜆],𝑏∈{0,1})

C̃
write
𝑖 ← GCircuit (1𝜆, 𝐶write

𝑖 , keyHash)
𝑐 ← SEE.Enc (key, {C̃

eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 })

Output ̃𝐶 ∶= (crs, 𝑐, {𝑃𝑖}𝑖∈[ℓ]) and st ∶= (crs, 𝑟, key, ℓ, 𝐾)
– AdaGInput(st, 𝑥):

Parse st ∶= (crs, 𝑟, key, ℓ, 𝐾)
𝐷 ← 𝑟1 ⊕ 𝑥1||...||𝑟𝑛 ⊕ 𝑥𝑛||0𝑀ℓ−𝑛

(d, 𝐷̂) ← ℓ𝑂𝑇 .Hash(crs, 𝐷)
Output ({PRF𝐾(0, 1, 𝑗, d𝑗)}𝑗∈[𝜆], 𝑟1 ⊕ 𝑥1||...||𝑟𝑛 ⊕ 𝑥𝑛, key, 𝑟𝑁−𝑚+1||...||𝑟𝑁)

– AdaEval(̃𝐶, ̃𝑥):
Parse ̃𝐶 ∶= (crs, 𝑐, {𝑃𝑖}𝑖∈[ℓ])
Parse ̃𝑥 ∶= ({lab0,𝑗}𝑗∈[𝜆], 𝑠1||...||𝑠𝑛, key, 𝑟𝑁−𝑚+1||...||𝑟𝑁)
𝐷 ← 𝑠1||...||𝑠𝑛||0𝑀ℓ−𝑛

(d, 𝐷̂) ← ℓ𝑂𝑇 .Hash(crs, 𝐷)
{C̃

eval
𝑖,𝑘 , C̃

hash
𝑖,𝑗 , C̃

write
𝑖 } ← SEE.Dec(key, 𝑐)

For 𝑖 = 1 to ℓ do:
Let 𝐶𝑔,1, 𝐶𝑔,2 denote the two input gates of gate 𝑔
e ← GCEval(C̃

eval
𝑖,𝑘 , {lab0,𝑗}𝑗∈[𝜆])

e ← ℓ𝑂𝑇 .Receive𝐷̂(crs, e, 𝐶𝑃𝑖,𝑘,1)

21

(𝛾𝑘, lab1,𝑘) ← ℓ𝑂𝑇 .Receive𝐷̂(crs, e, 𝐶𝑃𝑖,𝑘,2)
{lab2,𝑗}𝑗∈[𝜆] ← GHEval({C̃

hash
𝑖,𝑗 }𝑗∈[𝑀−1], {lab1,𝑘}𝑘∈[𝑀])

e ← GCEval(C̃
write
𝑖 , {lab2,𝑗}𝑗∈[𝜆])

{lab0,𝑗}𝑗∈[𝜆] ← ℓ𝑂𝑇 .ReceiveWriteBlockD̃(crs, 𝑖, {𝛾𝑘}𝑘∈[𝑀], e)
Recover the contents of the memory 𝐷 from the final state 𝐷̂
Output 𝐷𝑁−𝑚+1 ⊕ 𝑟𝑁−𝑚+1||...||𝐷𝑁 ⊕ 𝑟𝑁

… …

…

…

Fig. 9. Illustration of the pebbling graph for one layer: C̃
eval
𝑖,𝑘 are leaf nodes, C̃

hash
𝑖,𝑗 are

intermediate nodes and the root node, finally C̃
write
𝑖 is the extra node at the end. Dotted

edges indicate where ℓ𝑂𝑇 is invoked. Note that WriteBlock is only invoked once and
its result is reused 𝑀 times.

Communcation Complexity of AdaGInput. It follows from the construction that
the communication complexity of AdaGInput is 𝜆2 + 𝑛 + 𝑚 + |key|. From the
parameters used in the somewhere equivocal encryption and the efficiency of
block writing for laconic oblivious transfer, we note that |key| = poly(𝜆, log |𝐶|).

Computational Complexity of AdaGInput. The running time of AdaGInput grows
linearly with |𝐶|. However, it’s possible to delegate the hashing of zeros to the

22

offline phase, i.e. AdaGCircuit. In that case, the running time only grows linearly
with 𝑛 + log |𝐶|.

Parallel Efficiency. With a good Partition algorithm and number of processors
as many as the width of the circuit, AdaEval is able to run in 𝑑 ⋅ poly(𝜆, log |𝐶|)
where 𝑑 is the depth of the circuit.

Correctness. We note that for each wire (up to permutation due to rewiring),
our construction manipulates the database and produces the final output the
same way as the construction given by [GS18]. Therefore by the correctness of
their construction, our construction outputs 𝐶(𝑥) with probability 1.

Adaptive Security. We formally prove the adaptive security in the full version.

Acknowledgements

The authors would like to thank Tsung-Hsuan Hung and Yu-Chi Chen for their
helpful discussions in the early stage of this research.

References

ACC+16. Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-
Kai Lin. Delegating RAM computations with adaptive soundness and pri-
vacy. In Theory of Cryptography Conference, pages 3–30. Springer, 2016.

AKS83. M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’83, pages 1–9, New York, NY, USA, 1983. ACM.

App17. Benny Applebaum. Garbled circuits as randomized encodings of functions:
a primer. In Tutorials on the Foundations of Cryptography, pages 1–44.
Springer, 2017.

BCP16. Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM
and applications. In Theory of Cryptography Conference, pages 175–204.
Springer, 2016.

Ben89. Charles H Bennett. Time/space trade-offs for reversible computation.
SIAM Journal on Computing, 18(4):766–776, 1989.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 784–796. ACM, 2012.

BLSV18. Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan.
Anonymous ibe, leakage resilience and circular security from new assump-
tions. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 535–564. Springer, 2018.

CDG+17. Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao,
and Antigoni Polychroniadou. Laconic oblivious transfer and its appli-
cations. In Annual International Cryptology Conference, pages 33–65.
Springer, 2017.

23

DG17. Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-
hellman assumption. In Annual International Cryptology Conference, pages
537–569. Springer, 2017.

DGHM18. Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny.
New constructions of identity-based and key-dependent message secure en-
cryption schemes. In IACR International Workshop on Public Key Cryp-
tography, pages 3–31. Springer, 2018.

GGMP16. Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure
multiparty RAM computation in constant rounds. In Theory of Cryptog-
raphy Conference, pages 491–520. Springer, 2016.

GHL+14. Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova,
and Daniel Wichs. Garbled RAM revisited. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages
405–422. Springer, 2014.

GLO15. Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM.
In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 210–229. IEEE, 2015.

GLOS15. Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled
RAM from one-way functions. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 449–458. ACM, 2015.

GOS18. Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive gar-
bled RAM from laconic oblivious transfer. In Annual International Cryp-
tology Conference, pages 515–544. Springer, 2018.

GS18. Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with
near optimal online complexity. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 535–565.
Springer, 2018.

HJO+16. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Annual Cryptology Conference, pages 149–178. Springer, 2016.

JKK+17. Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting.
In Annual International Cryptology Conference, pages 133–163. Springer,
2017.

JW16. Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled
circuits. In Theory of Cryptography Conference, pages 433–458. Springer,
2016.

LO13. Steve Lu and Rafail Ostrovsky. How to garble RAM programs? In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 719–734. Springer, 2013.

LO17. Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In Annual
International Cryptology Conference, pages 66–92. Springer, 2017.

PTC76. Wolfgang J Paul, Robert Endre Tarjan, and James R Celoni. Space bounds
for a game on graphs. Mathematical systems theory, 10(1):239–251, 1976.

Yao82. Andrew C Yao. Protocols for secure computations. In Foundations of
Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–
164. IEEE, 1982.

24

	Adaptively Secure Garbling Schemes for Parallel Computations

