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Abstract. Starting from the one-way group action framework of Bras-
sard and Yung (Crypto’90), we revisit building cryptography based on
group actions. Several previous candidates for one-way group actions no
longer stand, due to progress both on classical algorithms (e.g., graph
isomorphism) and quantum algorithms (e.g., discrete logarithm).
We propose the general linear group action on tensors as a new candidate
to build cryptography based on group actions. Recent works (Futorny–
Grochow–Sergeichuk Lin. Alg. Appl., 2019) suggest that the underlying
algorithmic problem, the tensor isomorphism problem, is the hardest one
among several isomorphism testing problems arising from areas including
coding theory, computational group theory, and multivariate cryptogra-
phy. We present evidence to justify the viability of this proposal from
comprehensive study of the state-of-art heuristic algorithms, theoretical
algorithms, hardness results, as well as quantum algorithms.
We then introduce a new notion called pseudorandom group actions to
further develop group-action based cryptography. Briefly speaking, given
a group G acting on a set S, we assume that it is hard to distinguish
two distributions of (s, t) either uniformly chosen from S × S, or where
s is randomly chosen from S and t is the result of applying a random
group action of g ∈ G on s. This subsumes the classical Decisional Diffie-
Hellman assumption when specialized to a particular group action. We
carefully analyze various attack strategies that support instantiating this
assumption by the general linear group action on tensors.
Finally, we construct several cryptographic primitives such as digital sig-
natures and pseudorandom functions. We give quantum security proofs
based on the one-way group action assumption and the pseudorandom
group action assumption.

1 Introduction

Modern cryptography has thrived thanks to the paradigm shift to a formal ap-
proach: precise definition of security and mathematically sound proof of security
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of a given construction based on accurate assumptions. Most notably, computa-
tional assumptions originated from specific algebraic problem such as factoring
and discrete logarithm have enabled widely deployed cryptosystems.

Clearly, it is imperative to base cryptography on diverse problems to reduce
the risk that some problems turn out to be easy. One such effort was by Brassard
and Yung soon after the early development of modern cryptography [17]. They
proposed an approach to use a group action to construct a one-way function,
from which they constructed cryptographic primitives such as bit commitment,
identification and digital signature. The abstraction of one-way group actions
(OWA) not only unifies the assumptions from factoring and discrete logarithm,
but more importantly Brassard and Yung suggested new problems to instantiate
it such as the graph isomorphism problem (GI). Since then, many developments
fall in this framework [70,26,46,65]. In particular, the work of Couveignes [26]
can be understood as a specific group action based on isogenies between elliptic
curves, and it has spurred the development of isogeny-based cryptography [28].

However, searching for concrete group actions to support this approach turns
out to be a tricky task, especially given the potential threats from attackers capa-
ble of quantum computation. For graph isomorphism, there are effective heuris-
tic solvers [63,64] as well as efficient average-case algorithms [7], not to mention
Babai’s recent breakthrough of a quasipolynomial -time algorithm [5]. Shor’s cel-
ebrated work solves discrete logarithm and factoring in polynomial time on a
quantum computer [79], which would break a vast majority of public-key cryp-
tography. The core technique, quantum Fourier sampling, has proven powerful
and can be applied to break popular symmetric-key cryptosystems as well [54].
A subexponential-time quantum algorithm was also found for computing iso-
genies in ordinary curves [23], which attributes to the shift to super-singular
curves in the recent development of isogeny-based cryptography [40]. In fact,
there is a considerable effort developing post-quantum cryptography that can re-
sist quantum attacks. Besides isogeny-based, there are popular proposals based
on discrete lattices, coding problems, and multivariate equations [10,22].

1.1 Overview of our results

In this paper, we revisit building cryptography via the framework of group ac-
tions and aim to provide new candidate and tools that could serve as quantum-
safe solutions. Our contribution can be summarized below.

First, we propose a family of group actions on tensors of order at least three
over a finite field as a new candidate for one-way actions. We back up its via-
bility by comparison with other group actions, extensive analysis from heuristic
algorithms, provable algorithmic and hardness results, as well as demonstrating
its resistance to a standard quantum Fourier sampling technique.

Second, we propose the notion of pseudorandom group actions (PRA) that
extends the scope of the existing group-action framework. The PRA assumption
can be seen as a natural generalization of the Decisional Diffie-Hellman (DDH)
assumption. We again instantiate it with the group action on tensors, and we
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provide further evidence (in addition to those for one-wayness) by analyzing
various state-of-art attacking strategies.

Finally, based on any PRA, we show realization of several primitives in
Minicrypt such as digital signatures via the Fiat-Shamir transformation and
pseudorandom functions. We give complete security proofs against quantum ad-
versaries, thanks to recent advances in analyzing quantum superposition attacks
and the quantum random oracle model [85,82,81], which is known to be a tricky
business. Our constructions based on PRA are more efficient than known schemes
based on one-way group actions. As a side contribution, we also describe formal
quantum-security proofs for several OWA-based schemes including identification
and signatures, which are incomplete in the literature and deserve some care.

In what follows, we elaborate on our proposed group action based on tensors
and the new pseudorandom group action assumption. Readers interested in the
cryptographic primitives supported by PRA are referred to the full version of
this paper [53].

The general linear group action on tensors. The candidate group action we
propose is based on tensors, a central notion in quantum theory. In this paper, a
k-tensor T is a multidimensional array with k indices i1, i2, . . . , ik over a field F,
where ij ∈ {1, 2, . . . , dj} for j = 1, 2, . . . , k. For a tuple of indices (i1, i2, . . . , ik),
the corresponding component of T denoted as Ti1,i2,...,ik is an element of F. The
number k is called the order of the tensor. A matrix over field F can be regarded
as a tensor of order two.

We consider a natural group action on k-tensors that represents a local change
of basis. Let G =

∏k
j=1 GL(dj ,F) be the direct product of general linear groups.

For M =
(
M (j)

)k
j=1
∈ G, and a k-tensor T , the action of M on T is given by

α : (M,T ) 7→ T̂ , where T̂i1,i2,...,ik =
∑

l1,l2,...,lk

( k∏
j=1

M
(j)
ij ,lj

)
Tl1,l2,...,lk .

We shall refer to the above group action as the general linear group action on
tensors (GLAT) of dimensions (d1, . . . , dk) over F, or simply GLAT when there
is no risk of confusion. We will consider group actions on tensors of order at least
three, as the problem is usually easy for matrices. In fact, in most of the cases,
we focus on 3-tensors which is most studied and believed to be hard.

General linear actions on tensors as a candidate for one-way group actions. We
propose to use GLAT as an instantiation of one-way group actions. Roughly
speaking, a group action is called a one-way group action (OWA in short), if for
a random s ∈ S, a random g ∈ G, t = g · s, and any polynomial-time adversary
A given s and t as input, A outputs a g′ ∈ G such that t = g′ · s only with
negligible probability.

Breaking the one-wayness can be identified with solving some isomorphism
problem. Specifically, two k-tensors T and T̂ are said to be isomorphic if there
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exists an M ∈ G such that T̂ = α(M,T ). We define the decisional tensor isomor-
phism problem (DTI) as deciding if two given k-tensors are isomorphic; and the

search version (TI) is tasked with computing an M ∈ G such that T̂ = α(M,T )
if there is one. Clearly, our assumption that GLAT is a one-way group action is
equivalent to assuming that TI is hard for random M ∈ G, random k-tensor S,
and T := α(M,S). We focus on the case when the order k of the tensor equals
three and the corresponding tensor isomorphism problem is abbreviated as 3TI.
We justify our proposal from multiple routes; see Section 3 for a more formal
treatment.

1. The 3-tensor isomorphism problem can be regarded as “the most difficult”
one among problems about testing isomorphism between objects, such as
polynomials, graphs, linear codes, and groups, thanks to the recent work
of Futorny, Grochow, and Sergeichuk [39]. More specifically, it was proven
in [39] that several isomorphism problems, including graph isomorphism,
quadratic polynomials with 2 secrets from multivariate cryptography [70],
p-group isomorphism from computational group theory [69,59], and linear
code permutation equivalence from coding theory [73,77], all reduce to 3TI;
cf. Observation 2. Note that testing isomorphism of quadratic polynomials
with two secrets has been studied in multivariate cryptography for more
than two decades [70]. Isomorphism testing of p-groups has been studied in
computational group theory and theoretical computer science at least since
the 1980’s (cf. [69,59]). Current status of these two problems then could serve
as evidence for the difficulty of 3TI.

2. Known techniques that are effective on GI, including the combinatorial tech-
niques [83] and the group-theoretic techniques [3,60], are difficult to translate
to 3TI. Indeed, it is not even clear how to adapt a basic combinatorial tech-
nique for GI, namely individualizing a vertex [7], to the 3TI setting. It is also
much harder to work with matrix groups over finite fields than to work with
permutation groups. Also, techniques in computer algebra, including those
that lead to the recent solution of isomorphism of quadratic polynomials
with one secret [50], seem not applicable to 3TI.

3. Finally, there is negative evidence that quantum algorithmic techniques in-
volving the most successful quantum Fourier sampling may not be able to
solve GI and code equivalence [45,34]. It is expected that the same argument
holds with respect to 3TI as well. Loosely speaking, this is because the group
underlying 3TI is a direct product of general linear groups, which also has
irreducible representations of high dimensions.

A new assumption: pseudorandom group actions. Inspired by the Decisional
Diffie-Hellman assumption, which enables versatile cryptographic constructions,
we propose the notion of pseudorandom group actions, or PRA in short.

Roughly speaking, we call a group action α : G × S → S pseudorandom, if
any quantum polynomial-time algorithm A cannot distinguish the following two
distributions except with negligible probability: (s, t) where s, t ∈R S, and the
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other distribution (s, α(g, s)), where s ∈R S and g ∈R G. A precise definition
can be found in Section 4.

Note that if a group action is transitive, then the pseudorandom distribution
trivially coincides with the random distribution. Unless otherwise stated, we
will consider intransitive group actions when working with pseudorandom group
actions. In fact, we can assume that (s, t) from the random distribution are
in different orbits with high probability, while (s, t) from the pseudorandom
distribution are always in the same orbit.

Also note that PRA is a stronger assumption than OWA. To break PRA, it is
enough to solve the isomorphism testing problem on average in a relaxed sense,
i.e., on 1/poly(n) fraction of the input instances instead of all but 1/ poly(n)
fraction, where n is the input size.

The Decisional Diffie-Hellman (DDH) assumption [32,13] can be seen as the
PRA initiated with a certain group action; see Observation 4. However, DDH is
broken on a quantum computer. We resort again to GLAT as a quantum-safe
candidate of PRA. We investigate the hardness of breaking PRA from various
perspectives and provide further justification for using the general linear action
on 3-tensors as a candidate for PRA.

1. Easy instances on 3-tensors seem scarce, and average-case algorithms do not
speed up dramatically. Indeed, the best known average-case algorithm, while
improves over worst-case somewhat due to the birthday paradox, still inher-
ently enumerate all vectors in Fnq and hence take exponential time [15,59].

2. For 3-tensors, there have not been non-trivial and easy-to-compute isomor-
phism invariants, i.e., those properties that are preserved under the action.
For example, a natural isomorphism invariant, the tensor rank, is well-known
to be NP-hard [47]. Later work suggests that “most tensor problems are NP-
hard” [49].

3. We propose and analyze several attack strategies from group theory and ge-
ometry. While effective on some non-trivial actions, these attacks do not work
for the general linear action on 3-tensors. For instance, we notice that break-
ing our PRA from GLAT reduces to the orbit closure intersection problem,
which has received considerable attention in optimization, and geometric
complexity theory. Despite recent advances [66,20,19,1,29,52], any improve-
ment towards a more effective attack would be a breakthrough.

Recently, De Feo and Galbraith proposed an assumption in the setting of
supersingular isogeny-based cryptography, which can be viewed as another in-
stantiation of PRA [36, Problem 4]. This gives more reason to further explore
PRA as a basic building block in cryptography.

1.2 Discussions

In this paper, we further develop and extend the scope of group action based
cryptography by introducing the general linear group actions on tensors (GLAT)
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and formulating the pseudorandom assumption, generalizing the DDH assump-
tion. We construct and prove the quantum security of various cryptographic
primitives such as signatures and pseudorandom functions in this framework.

There are two key features of GLAT that are worth mentioning explicitly.
First, the general linear action is non-commutative simply because the general
linear group is non-abelian. This is, on the one hand, an attractive property
that enabled us to argue the quantum hardness and the infeasibility of quantum
Fourier sampling type of attacks. On the other hand, however, this also makes
it challenging to extend many attractive properties of discrete-logarithm and
decisional Diffie-Hellman to the more general framework of group action cryp-
tography. For example, while it is known that the worst-case DDH assumption
reduces to the average-case DDH assumption [68], the proof relies critically on
commutativity. Second, the general linear action is linear and the space of ten-
sors form a linear space. Linearity seems to be responsible for the supergroup
attacks on the PRA(d) assumption discussed in Section 5.1. It also introduces
the difficulty for building more efficient PRF constructions analogous to the
DDH-based ones proposed in [68].

Our work leaves a host of basic problems about group action based cryptog-
raphy as future work. First, we have been focusing on the general linear group
actions on tensors. A mixture of different types of group actions on different
indices of the tensor may enable more efficient constructions or other appealing
structural properties. It will be interesting to investigate how the hardness varies
with the group actions on tensors, and identify group actions for practicability
considerations. Second, it is appealing to recover the average-case to worst-case
reduction, at least to some extent, for the general group actions framework.
Finally, it is an important open problem to build quantum-secure public-key
encryption schemes based on hard problems about GLAT or its close variations.

2 The group action framework

In this section, we formally describe the framework for group action based cryp-
tography to be used in this paper. While such general frameworks were already
proposed by Brassard and Yung [17] and Couveignes [26], there are delicate dif-
ferences in several places, so we will have to still go through the details. This
section should be considered as largely expository.

2.1 Group actions and notations

Let us first formally define group actions. Let G be a group, S be a set, and
id the identity element of G. A (left) group action of G on S is a function
α : G × S → S satisfying the following: (1) ∀s ∈ S, α(id, s) = s; (2) ∀g, h ∈ G,
s ∈ S, α(gh, s) = α(g, α(h, s)). The group operation is denoted by ◦, e.g. for
g, h ∈ G, we can write their product as g ◦ h. We shall use · to denote the
left action, e.g. g · s = α(g, s). We may also consider the right group action
β : S×G→ S, and use the exponent notation for right actions, e.g. sg = β(s, g).
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Later, we will use a special symbol ⊥ 6∈ G∪S to indicate that a bit string does
not correspond to an encoding of an element in G or S. We extend the operators
◦ and · to ◦ : G∪{⊥}×G∪{⊥} → G∪{⊥} and · : G∪{⊥}×S∪{⊥} → S∪{⊥},
by letting g ◦ h = ⊥ whenever g = ⊥ or h = ⊥, and g · s = ⊥ whenever g = ⊥
or s = ⊥.

Let α : G × S → S be a group action. For s ∈ S, the orbit of s is Os =
{t ∈ S : ∃g ∈ G, g · s = t}. The action α partitions S into a disjoint union
of orbits. If there is only one orbit, then α is called transitive. Restricting α
to any orbit O gives a transitive action. In this case, take any s ∈ O, and let
Stab(s,G) = {g ∈ G : g · s = s} be the stabilizer group of s in G. For any t ∈ O,
those group elements sending s to t form a coset of Stab(s,G). We then obtain
the following easy observation.

Observation 1. Let α : G × S → S, s, and O be as above. The following two
distributions are the same: the uniform distribution of t ∈ O, and the distribution
of g · s where g is sampled from a uniform distribution over G.

2.2 The computational model

For computational purposes, we need to model the algorithmic representations
of groups and sets, as well as basic operations like group multiplication, group
inverse, and group actions. We review the group action framework as proposed in
Brassard and Yung [17]. A variant of this framework, with a focus on restricting
to abelian (commutative) groups, was studied by Couveignes [26]. However, it
seems to us that some subtleties are present, so we will propose another version,
and compare it with those by Brassard and Yung, and Couveignes, later.

– Let n be a parameter which controls the instance size. Therefore, polynomial
time or length in the following are with respect to n.

– (Representing group and set elements.) Let G be a group, and S be a set.
Let α : G× S → S be a group action. Group elements and set elements are
represented by bit strings {0, 1}∗. There are polynomials p(n) and q(n), such
that we only work with group elements representable by {0, 1}p(n) and set
elements representable by {0, 1}q(n). There are functions FG and FS from
{0, 1}∗ to G ∪ {⊥} and S ∪ {⊥}, respectively. Here, ⊥ is a special symbol,
designating that the bit string does not represent a group or set element. FG
and FS should be thought of as assigning bit strings to group elements.

– (Unique encoding of group and set elements.) For any g ∈ G, there exists a
unique b ∈ {0, 1}∗ such that FG(b) = g. In particular, there exists a unique
bit string, also denoted by id, such that FG(id) = id. Similarly, for any s ∈ S,
there exists a unique b ∈ {0, 1}∗ such that FS(b) = s.

– (Group operations.) There are polynomial-time computable functions PROD :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ and INV : {0, 1}∗ → {0, 1}∗, such that for
b, c ∈ {0, 1}∗, FG(PROD(b, c)) = FG(b)◦FG(c), and FG(INV(b))◦FG(b) = id.

– (Group action.) There is a polynomial-time function a : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗, such that for b ∈ {0, 1}∗ and c ∈ {0, 1}∗, satisfies FS(a(b, c)) =
α(FG(b), FS(c)).
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– (Recognizing group and set elements.) There are polynomial-time computable
functions CG and CS , such that CG(b) = 1 iff FG(b) 6= ⊥, and CS(b) = 1 iff
FS(b) 6= ⊥.

– (Random sampling of group and set elements.) There are polynomial-time
computable functions RG and RS , such that RG uniformly samples a group
element g ∈ G, represented by the unique b ∈ {0, 1}p(n) with FG(b) = g, and
RS uniformly samples a set element s ∈ S, represented by some b ∈ {0, 1}q(n)
with FS(b) = s.

Remark 1. Some remarks are due for the above model.

1. The differences with Brassard and Yung are: (1) allowing infinite groups and
sets; (2) adding random sampling of set elements. Note that in the case of
infinite groups and sets, the parameters p(n) and q(n) are used to control
the bit lengths for the descriptions of legitimate group and set elements.
This allows us to incorporate e.g. the lattice isomorphism problem [48] into
this framework. In the rest of this article, however, we will mostly work with
finite groups and sets, unless otherwise stated.

2. The main reason to consider infinite groups is the uses of lattice isomorphism
and equivalence of integral bilinear forms in the cryptographic setting.

3. The key difference with Couveignes lies in Couveignes’s focus on transitive
abelian group actions with trivial stabilizers.

4. It is possible to adapt the above framework to use the black-box group
model by Babai and Szemerédi [8], whose motivation was to deal with non-
unique encodings of group elements (like quotient groups). For our purposes,
it is more convenient and practical to assume that the group elements have
unique encodings.

5. Babai [4] gives an efficient Monte Carlo algorithm for sampling a group
element of a finite group in a very general setting which is applicable to
most of our instantiations with finite groups.

2.3 The isomorphism problem and the one-way assumption

Now that we have defined group actions and a computational model, let us
examine the isomorphism problems associated with group actions.

Definition 1 (The isomorphism problem). Let α : G × S → S be a group
action. The isomorphism problem for α is to decide, given s, t ∈ S, whether s and
t lie in the same orbit under α. If they are, the search version of the isomorphism
problem further asks to compute some g ∈ G, such that α(g, s) = t.

If we assume that there is a distribution on S and we require the algorithm
to succeed for (s, t) where s is sampled from this distribution and t is arbitrary,
then this is the average-case setting of the isomorphism problem. For example,
the first average-case efficient algorithm for the graph isomorphism problem was
designed by Babai, Erdős and Selkow in the 1970’s [7].
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The hardness of the isomorphism problem provides us with the basic intuition
for its use in cryptography. But for cryptographic uses, the promised search
version of the isomorphism problem is more relevant, as already observed by
Brassard and Yung [17]. That is, suppose we are given s, t ∈ S with the promise
that they are in the same orbit, the problem asks to compute g ∈ G such that
g · s = t. Making this more precise and suitable for cryptographic purposes, we
formulate the following problem.

Definition 2 (The group-action inversion (GA-Inv) problem). Let G be
a group action family, such that for a security parameter λ, G(1λ) consists of
descriptions of a group G, a set S with log(|G|) = poly(λ), log(|S|) = poly(λ),
and an group action α : G × S → S that can be computed efficiently, which we
denote as a whole as a public parameter params. Generate random s ← S and
g ← G, and compute t := α(g, s). The group-action inversion (GA-Inv) problem
is to find g given (s, t).

Definition 3 (Group-action inversion game). The group-action inversion
game is the following game between a challenger and an arbitrary adversary A:

1. The challenger and adversary A agree on the public parameter params by
choosing it to be G(1λ) for some security parameter λ.

2. Challenger samples s← S and g ← G using RS and RG, computes t = g · s,
and gives (s, t) to A.

3. The adversary A produces some g′ and sends it to the challenger.
4. We define the output of the game GA-InvA,G(1λ) = 1 if g′ · s = t, and say A

wins the game if GA-InvA,G(1λ) = 1.

Definition 4. We say that the group-action inversion (GA-Inv) problem is hard
relative to G, if for any polynomial time quantum algorithm A,

Pr
[
GA-InvA,G(1λ)

]
≤ negl(λ) .

We propose our first cryptographic assumption in the following. It generalizes
the one in [17].

Assumption 1 (One-way group action (OWA) assumption). There exists a
family G relative to which the GA-Inv problem is hard.

We informally call the group action family G in Assumption 1 a one-way
group action. Its name comes from the fact that, as already suggested in [17],
this assumption immediately implies that we can treat Γs : G → S given by
Γs(g) = α(g, s) as a one-way function for a random s. In fact, OWA assumption
is equivalent to the assertion that the function Γ : G × S → S × S given by
Γ (g, s) = (g · s, s) is one-way in the standard sense.

Note that the OWA assumption comes with the promise that s and t are
in the same orbit. The question is to compute a group element that sends s to
t. Comparing with Definition 1, we see that the OWA assumption is stronger
than the assumption that the search version of the isomorphism problem is hard
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for a group action, while incomparable with the decision version. Still, most
algorithms for the isomorphism problem we are aware of do solve the search
version.

Remark 2. Note that Assumption 1 has a slight difference with that of Brassard
and Yung as follows. In [17], Brassard and Yung asks for the existence of some
s ∈ S as in Definition 2, such that for a random g ∈ G, it is not feasible to
compute g′ that sends s to α(g, s). Here, we relax this condition, namely a
random s ∈ S satisfies this already. One motivation for Brassard and Yung to
fix s was to take into account of graph isomorphism, for which Brassard and
Crepéau defined the notion of “hard graphs” which could serve as this starting
point [16]. However, by Babai’s algorithm [5] we know that hard graphs could not
exist. Here we use a stronger notion by allowing a random s, which we believe is
a reasonable requirement for some concrete group actions discussed in Section 3.

A useful fact for the GA-Inv problem is that it is self-reducible to random
instances within the orbit of the input pair. For any given s, let Os be the
orbit of s under the group action α. If there is an efficient algorithm A that
computes g from (t, t′) where t′ = α(g, t) for at least 1/ poly(λ) fraction of
the pairs (t, t′) ∈ Os × Os, then the GA-Inv problem can be computed for any
(t, t′) ∈ Os × Os with probability 1 − e− poly(λ). On input (t, t′), the algorithm
samples random group elements h, h′ and calls A with (α(h, t), α(h′, t′)). If A
successfully returns g, the algorithm outputs h−1gh′ and otherwise repeats the
procedure for polynomial number of times.

The one-way assumption leads to several basic cryptographic applications as
described in the literature. First, it gives a identification scheme by adapting the
zero-knowledge proof system for graph isomorphism [42]. Then via the celebrated
Fiat-Shamir transformation [37], one also obtains a signature scheme. Proving
quantum security of these protocols, however, would need more care. Detailed
proofs may be found in the full version of this paper [53].

3 General linear actions on tensors: the one-way group
action assumption

In this section, we propose the general linear actions on tensors, i.e., the tensor
isomorphism problem, as our choice of candidate for the OWA assumption. We
first reflect on what would be needed for a group action to be a good candidate.

3.1 Requirements for a group action to be one-way

Naturally, the hardness of the GA-Inv problem for a specific group action needs
to be examined in the context of the following four types of algorithms.

– Practical algorithms: implemented algorithms with practical performance
evaluations but no theoretical guarantees;
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– Average-case algorithms: for some natural distribution over the input in-
stances, there is an algorithm that are efficient for most input instances
from this distribution with provable guarantees;

– Worst-case algorithms: efficient algorithms with provable guarantees for all
input instances;

– Quantum algorithms: average-case or worst-case efficient algorithms in the
quantum setting.

Here, efficient means sub-exponential, and most means 1 − 1/ poly(n) fraction.
It is important to keep in mind all possible attacks by these four types of algo-
rithms. Past experience suggests that one problem may look difficult from one
viewpoint, but turns out to be easy from another.

The graph isomorphism problem has long been thought to be a difficult
problem from the worst-case viewpoint. Indeed, a quasipolynomial-time algo-
rithm was only known very recently, thanks to Babai’s breakthrough [5]. How-
ever, it has long been known to be effectively solvable from the practical view-
point [63,64]. This shows the importance of practical algorithms when justifying
a cryptographic assumption.

Patarin proposed to use polynomial map isomorphism problems in his instan-
tiation of the identification and signature schemes [70]. He also proposed the one-
sided version of such problems, which has been studied intensively, mostly from
the viewpoint of practical cryptanalysis [71,41,72,35,55,14,61,15,74,11]. However,
the problem of testing isomorphism of quadratic polynomials with one secret
was recently shown to be solvable in randomized polynomial time [50], using
ideas including efficient algorithms for computing the algebra structure, and the
∗-algebra structure underlying such problems. Hence, the investigation of theo-
retical algorithms is also valuable.

Considering of quantum attacks is necessary for security in the quantum
era. Shor’s algorithm, for example, invalidates the hardness assumption of the
discrete logarithm problems.

Guided by the difficulty met by the hidden subgroup approach on tackling
graph isomorphism [45], Moore, Russell, and Vazirani proposed the code equiv-
alence problem as a candidate for the one-way assumption [65]. However, this
problem turns out to admit an effective practical algorithm by Sendrier [77].

One-way group action assumption and the hidden subgroup approach
From the post-quantum perspective, a general remark can be made on the OWA
assumption and the hidden subgroup approach in quantum algorithm design.

Recall that the hidden subgroup approach is a natural generalization of Shor’s
quantum algorithms for discrete logarithm and factoring [79], and can accom-
modate both lattice problems [75] and isomorphism testing problems [45]. The
survey paper of Childs and van Dam [24] contains a nice introduction to this
approach.

A well-known approach to formulate GA-Inv as an HSP problem is the fol-
lowing [24, Sec. VII.A]. Let α : G × S → S be a group action. Given s, t ∈ S
with the promise that t = g · s for some g ∈ G, we want to compute g. To cast
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this problem as an HSP instance, we first formulate it as an automorphism type
problem. Let G̃ = G o S2, where S2 is the symmetric group on two elements,
and o denotes the wreath product. The action α induces an action β of G̃ on
S × S as follows. Given (g, h, i) ∈ G̃ = G o S2 where g, h ∈ G, i ∈ S2, if i is
the identity, it sends (s, t) ∈ S × S to (g · s, h · t); otherwise, it sends (s, t) to
(h · t, g · s). Given (s, t) ∈ S × S, we define a function f(s,t) : G̃ → S × S, such
that f(s,t) sends (g, h, i) to (g, h, i) · (s, t), defined as above. It can be verified

that f(s,t) hides the coset of the stabilizer group of (s, t) in G̃. Since s and t lie
in the same orbit, any generating set of the stabilizer group of (s, t) contains an
element of the form (g, h, i), where i is not the identity element in S2, g · s = t,
and h ·t = s. In particular, g is the element required to solve the GA-Inv problem.
In the above reduction to the HSP problem, the ambient group is G o S2 instead
of the original G. In some cases like the graph isomorphism problem, because
of the polynomial-time reduction from isomorphism testing to automorphism
problem, we can retain the ambient group to be G. However, such a reduction
is not known for GLAT.

There has been notable progress on the HSP problems for various ambient
groups, but the dihedral groups and the symmetric groups have withstood the
attacks so far. Indeed, one source of confidence on using lattice problems in
post-quantum cryptography lies in the lack of progress in tackling the hidden
subgroup problem for dihedral groups [75]. There is formal negative evidence
for the applicability of this approach for certain group actions where the groups
have high-dimensional representations, like Sn and GL(n, q) in the case of the
graph isomorphism problem [45] and the permutation code equivalence prob-
lem [34]. The general lesson is that current quantum algorithmic technologies
seem incapable of handling groups which have irreducible representations of
high dimensions.

As mentioned, the OWA assumption has been discussed in post-quantum
cryptography with the instantiation of the permutation code equivalence prob-
lem [65,33,78,34]. Though this problem is not satisfying enough due to the exis-
tence of effective practical algorithms [77], the following quoted from [65] would
be applicable to our choice of candidate to the discussed below.

The design of efficient cryptographic primitives resistant to quantum at-
tack is a pressing practical problem whose solution can have an enormous
impact on the practice of cryptography long before a quantum computer
is physically realized. A program to create such primitives must necessar-
ily rely on insights into the limits of quantum algorithms, and this paper
explores consequences of the strongest such insights we have about the
limits of quantum algorithms.

3.2 The tensor isomorphism problem and others

We now formally define the tensor isomorphism problem and other isomorphism
testing problems. For this we need some notation and preparations.
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Notation and preliminaries We usually use F to denote a field. The finite
field with q elements and the real number field are denoted by Fq and R, re-
spectively. The linear space of m by n matrices over F is denoted by M(m,n,F),
and M(n,F) := M(n, n,F). The identity matrix in M(n,F) is denoted by In.
For A ∈ M(m,n,F), At denotes the transpose of A. The group of n by n in-
vertible matrices over F is denoted by GL(n,F). We will also meet the notation
GL(n,Z), the group of n by n integral matrices with determinant ±1. We use a
slightly non-standard notation GL(m,n,F) to denote the set of rank min(m,n)
matrices in M(m,n,F). We use 〈·〉 to denote the linear span; for example, given
A1, . . . , Ak ∈ M(m,n,F), 〈A1, . . . , Ak〉 is a subspace of M(m,n,F).

We will meet some subgroups of GL(n,F) as follows. The symmetric group Sn
on n objects is embedded into GL(n,F) as permutation matrices. The orthogonal
group O(n,F) consists of those invertible matrices A such that AtA = In. The
special linear group SL(n,F) consists of those invertible matrices A such that
det(A) = 1. Finally, when n = `2, there are subgroups of GL(`2,F) isomorphic to
GL(`,F)×GL(`,F). This can be seen as follows. First we fix an isomorphism of

linear spaces φ : F`2 → M(`,F)4. Then M(`,F) admits an action by GL(`,F) ×
GL(`,F) by left and right multiplications, e.g. (A,D) ∈ GL(`,F) × GL(`,F)
sends C ∈ M(`,F) to ACDt. Now use φ−1 and we get one subgroup of GL(`2,F)
isomorphic to GL(`,F)×GL(`,F).

Definitions of several group actions We first recall the concept of tensors
and the group actions on the space of k-tensors as introduced in Section 1.

Definition 5 (Tensor). A k-tensor T of local dimensions d1, d2, . . . , dk over
F, written as

T = (Ti1,i2,...,ik),

is a multidimensional array with k indices and its components Ti1,i2,...,ik cho-
sen from F for all ij ∈ {1, 2, . . . , dj}. The set of k-tensors of local dimensions
d1, d2, . . . , dk over F is denoted as

T(d1, d2, . . . , dk,F).

The integer k is called the order of tensor T .

Group Action 1 (The general linear group action on tensors). Let F be a field,
k, d1, d2, . . . , dk be integers.

– Group G:
∏k
j=1 GL(dj ,F).

– Set S: T(d1, d2, . . . , dk,F).
– Action α: for a k-tensor T ∈ S, a member M = (M (1),M (2), . . . ,M (k)) of

the group G,

α(M,T ) =

( k⊗
j=1

M (j)

)
T =

∑
l1,l2,...,lk

( k∏
j=1

M
(j)
ij ,lj

)
Tl1,l2,...,lk .

4 For example, we can let the first ` components be the first row, the second ` com-
ponents be the second row, etc..
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We refer to the general linear group action on tensors in Action 1 as GLAT.
In the following, let us formally define several problems which have been referred
to frequently in the above discussions.

As already observed by Brassard and Yung [17], the discrete logarithm prob-
lem can be formulated using the language of group actions. More specifically, we
have:

Group Action 2 (Discrete Logarithm in Cyclic Groups of Prime Orders). Let
p be a prime, Zp the integer.

– Group G: Z∗p, the multiplicative group of units in Zp.
– Set S: Cp \ {id}, where Cp is a cyclic group of order p and id is the identity

element.
– Action α: for a ∈ Z∗p, and s ∈ S, α(a, s) = sa.

Note that in the above, we refrained from giving a specific realization of the
cyclic group Cp for the sake of clarify; the reader may refer to Boneh’s excellent
survey [13] for concrete proposals that can support the security of the Decisional
Diffie-Hellman assumption.

The linear code permutation equivalence (LCPE) problem asks to decide
whether two linear codes (i.e. linear subspaces) are the same up to a permutation
of the coordinates. It has been studied in the coding theory community since
the 1990’s [73,77].

Group Action 3 (Group action for Linear Code Permutation Equivalence prob-
lem (LCPE)). Let m, d be integers, m ≤ d, and let F be a field.

– Group G: GL(m,F)× Sd.
– Set S: GL(m, d,F).
– Action α: for A ∈ S, M = (N,P ) ∈ G, α(M,A) = NAP t.

The connection with coding theory is that A can be viewed as the generating
matrix of a linear code (a subspace of Fnq ), and N is the change of basis matrix
taking care of different choices of bases. Then, P , as a permutation matrix, does
not change the weight of a codeword— that is a vector in Fn. (There are other
operations that preserve weights [78], but we restrict to consider this setting for
simplicity.) The GA-Inv problem for this group action is called the linear code
permutation equivalence (LCPE) problem, which has been studied in the coding
theory community since the 1980’s [57], and we can dodge the only successful
attack [77] by restricting to self-dual codes.

The following group action induces a problem called the polynomial isomor-
phism problems proposed by Patarin [70], and has been studied in the multi-
variate cryptography community since then.

Group Action 4 (Group action for the Isomorphism of Quadratic Polynomials
with two Secrets problem (IQP2S)). Let m, d be integers and F a finite field.

– Group G: GL(d,F)×GL(m,F).
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– Set S: The set of tuples of homogeneous polynomials (f1, f2, . . . , fm) for
fi ∈ F[x1, x2, . . . , xd] the polynomial ring of d variables over F.

– Action α: for f = (f1, f2, . . . , fm) ∈ S, M = (C,D) ∈ G, C ′ = C−1, define
α(M,f) = (g1, g2, . . . , gm) by gi(x1, x2, . . . , xd) =

∑m
j=1Di,jfi(x

′
1, . . . , x

′
d),

where x′i =
∑d
j=1 C

′
i,jxj .

The GA-Inv problem for this group action is essentially the isomorphism of
quadratic polynomials with two secrets (IQP2S) assumption. The algebraic inter-
pretation here is that the tuple of polynomials (f1, . . . , fn) is viewed as a polyno-
mial map from Fn to Fm, by sending (a1, . . . , an) to (f1(a1, . . . , an), . . . , fm(a1, . . . , an)).
The changes of bases by C and D then are naturally interpreted as saying that
the two polynomial maps are essentially the same.

Finally, the GA-Inv problem for the following group action originates from
computational group theory, and is basically equivalent to a bottleneck case of
the group isomorphism problem (i.e. p-groups of class 2 and exponent p) [69,59].

Group Action 5 (Group action for alternating matrix space isometry (AMSI)).
Let d,m be integers and F be a finite field.

– Group G: GL(m,F).
– Set S: the set of all linear spans A of d alternating5 matrices Ai of size
m×m.

– Action α: for A = 〈A1, A2, . . . , Ad〉 ∈ S, C ∈ G, α(C,A) = 〈B1, B2, . . . , Bd〉
where Bi = CAiC

t for all i = 1, 2, . . . , d.

3.3 General linear actions on tensors as one-way action candidates

The central position of 3-tensor isomorphism As mentioned, the four
problems, linear code permutation equivalence (LCPE), isomorphism of polyno-
mials with two secrets (IQP2S), and alternating matrix space isometry (AMSI),
have been studied in coding theory, multivariate cryptography, and computa-
tional group theory, respectively, for decades. Only recently we begin to see
connections among these problems which go through the 3TI problem thanks to
the work of Futorny, Grochow, and Sergeichuk [39]. We spell out this explicitly.

Observation 2 ([39,43]). IQP2S, AMSI, GI, and LCPE reduce to 3TI.

Proof. Note that the set underlying Group Action 5 consists of d-tuples of m×m
alternating matrices. We can write such a tuple (A1, . . . , Ad) as a 3-tensor A
of dimension m × m × d, such that Ai,j,k = (Ak)i,j . Then AMSI asks to test
whether two such 3-tensors are in the same orbit under the action of (M,N) ∈
GL(m,F)×GL(d,F) by sending a 3-tensor A to the result of applying (M,M,N)
to A as in the definition of GLAT.

Such an action belongs to the class of actions on 3-tensors considered in [39]
under the name linked actions. This work constructs a function r from 3-tensors

5 An m×m matrix A is alternating if for any v ∈ Fn, vtAv = 0.
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to 3-tensors, such that A and B are in the same orbit under GL(m,F)×GL(d,F)
if and only if r(A) and r(B) are in the same orbit under GL(m,F)×GL(m,F)×
GL(d,F). This function r can be computed efficiently [39, Remark 1.1].

This explains the reduction of the isomorphism problem for Group Action 5
to the 3-tensor isomorphism problem. For Group Action 4, by using the classi-
cal correspondence between homogeneous quadratic polynomials and symmetric
matrices, we can cast it in a form similar to Group Action 5, and then apply the
above reasoning using again [39].

Finally, to reduce the graph isomorphism problem (GI) and the linear code
permutation equivalent problem (LCPE) to the 3-tensor isomorphism problem,
we only need to take care of LCPE as GI reduces to LCPE [73]. To reduce LCPE
to 3TI, we can reduce it to the matrix Lie algebra conjugacy problem by [43],
which reduces to 3TI by [39] along the linked action argument, though this time
linked in a different way.

This put 3TI at a central position of these difficult isomorphism testing prob-
lems arising from multivariate cryptography, computational group theory, and
coding theory. In particular, from the worst-case analysis viewpoint, 3TI is the
hardest problem among all these. This also allows us to draw experiences from
previous research in various research communities to understand 3TI.

Current status of the tensor isomorphism problem and its one-way ac-
tion assumption We now explain the current status of the tensor isomorphism
problem to support it as a strong candidate for the OWA assumption. Because
of the connections with isomorphism of polynomials with two secrets (IQP2S)
and alternating matrix space isometry (AMSI), we shall also draw results and
experiences from the multivariate cryptography and the computational group
theory communities.

For convenience, we shall restrict to finite fields Fq, though other fields are
also interesting. That is, we consider the action of GL(`,Fq) × GL(n,Fq) ×
GL(m,Fq) on T ∈ T(`, n,m,Fq). Without loss of generality, we assume ` ≥
n ≥ m. The reader may well think of the case when ` = n = m, which seems
to be the most difficult case in general. Correspondingly, we will assume that
the instances for IQP2S are m-tuples of homogeneous quadratic polynomials
in n variables over Fq, and the instances for AMSI are m-tuples of alternating
matrices of size n× n over Fq.

To start, we note that 3TI over finite fields belongs to NP∩ coAM, following
the same coAM-protocol for graph isomorphism.

For the worst-case time complexity, it can be solved in time qm
2 ·poly(`,m, n, log q),

by enumerating GL(m, q), and then solving an instance of the matrix tuple equiv-
alence problem, which asks to decide whether two matrix tuples are the same
under the left-right multiplications of invertible matrices. This problem can be
solved in deterministic polynomial time by reducing [50] to the module iso-
morphism problem, which in turn admits a deterministic polynomial-time solu-
tion [25,18,51]. It is possible to reduce the complexity to qcm

2 ·poly(`,m, n, log q)
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for some constant 0 < c < 1, by using some dynamic programming technique as
in [59]. But in general, the worst-case complexity could not go beyond this at
present, which matches the experiences of IQP2S and AMSI as well; see [50].

For the average-case time complexity, it can be solved in time qO(m)·poly(`, n),
by adapting the average-case algorithm for AMSI in [59]. This also matches the
algorithm for IQP2S which has an average-case running time of qO(n) [15].

For practical algorithms, we draw experiences from the computational group
theory community and the multivariate cryptography community. In the com-
putational group theory community, the current status of the art is that one
can hope to handle 10-tuples of alternating matrices of size 10 × 10 over F13,
but absolutely not, for 3-tensors of local dimension say 100, even though in this
case the input can still be stored in only a few megabytes.6 In the multivariate
cryptography community, the Gröbner basis technique [35] and certain combi-
natorial technique [15] have been studied to tackle IQF2S problem. However,
these techniques are not effective enough to break it [15]7.

For quantum algorithms, 3TI seems difficult for the hidden subgroup ap-
proach, due to the reasons presented in Section 3.1.

Finally, let us also elaborate on the prospects of using those techniques for
graph isomorphism [5] and for isomorphism of quadratic polynomials with one
secret [50] to tackle 3TI. In general, the difficulties of applying these techniques
seem inherent.

We first check out the graph isomorphism side. Recall that most algorithms
for graph isomorphism, including Babai’s [5], are built on two families of tech-
niques: group-theoretic, and combinatorial. To use the group-theoretic tech-
niques, we need to work with matrix groups over finite fields instead of per-
mutation groups. Algorithms for matrix groups over finite fields are in general
far harder than those for permutation groups. For example, the basic member-
ship problem is well-known to be solvable by Sims’s algorithm [80], while for
matrix groups over finite fields of odd order, this was only recently shown to
be efficiently solvable with a number-theoretic oracle and the algorithm is much
more involved [6]. To use the combinatorial techniques, we need to work with
linear or multilinear structures instead of combinatorial structures. This shift
poses severe limitations on the use of most combinatorial techniques, like indi-
vidualizing a vertex. For example, it is quite expensive to enumerate all vectors
in a vector space over a finite field, while this is legitimate to go over all elements
in a set.

We then check out the isomorphism of quadratic polynomials with one se-
cret side. The techniques for settling this problem as in [50] are based on those
developed for the module isomorphism problem [25,18,51], involutive algebras

6 We thank James B. Wilson, who maintains a suite of algorithms for p-group isomor-
phism testing, for communicating this insight to us from his hands-on experience.
We of course maintain responsibility for any possible misunderstanding, or lack of
knowledge regarding the performance of other implemented algorithms.

7 In particular, as pointed out in [15], one needs to be careful about certain claims
and conjectures made in some literature on this research line.
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[84], and computing algebra structures [38]. The starting point of that algo-
rithm solves an easier problem, namely testing whether two matrix tuples are
equivalent under the left-right multiplications. That problem is essentially linear,
so the techniques for the module isomorphism problem can be used. After that
we need to utilize the involutive algebra structure [84] based on [38]. However,
for 3TI, there is no such easier linear problem to start with, so it is not clear
how those techniques can be applied.

To summarize, the 3-tensor isomorphism problem is difficult from all the
four types of algorithms mentioned in Section 3.1. Furthermore, the techniques
in the recent breakthrough on graph isomorphism [5], and the solution of the
isomorphism of quadratic polynomials with one secret [50], seem not applicable
to this problem. All these together support this problem as a strong candidate
for the one-way assumption.

Choices of the parameters Having reviewed the current status of the tensor
isomorphism problem, we lay out some principles of choosing the parameters for
the security, namely the order k, the dimensions di, and the underlying field F.

Let us first explain why we focus on k = 3, namely 3-tensors. Of course, k
needs to be ≥ 3 as most problems about 2-tensors, i.e. matrices, are easy. Re-
cently, Grochow and the third author show that k-tensor isomorphism reduces to
3-tensor isomorphism [44]. This justifies our choice of k = 3 from the worst-case
analysis viewpoint. From the practical viewpoint though, it will be interesting
to investigate into the tradeoff between the local dimensions di and k.

After fixing k = 3, it is suggested to set d1 = d2 = d3. This is because
of the argument when examining the worst-case time complexity in the above
subsection.

Then for the underlying finite field Fq, the intuition is that setting q to be a
large prime would be more secure. Note that we can still store an exponentially
large prime using polynomially-many bits. This is because, if q is small, then
the “generic” behaviors as ensured by the Lang–Weil type theorems [56] may
not be that generic. So some non-trivial properties may arise which then help
with isomorphism testing. This is especially important for the pseudorandom
assumption to be discussed Section 4. We then examine whether we want to set
q to be a large prime, or a large field with a small characteristic. The former one is
preferred, because the current techniques in computer algebra and computational
group theory, cf. [50] and [6], can usually work efficiently with large fields of small
characteristics.

However, let us emphasize that even setting q to be a constant, we do not have
any concrete evidence for breaking GLAT as a one-way group action candidate.
Furthermore, there are certain problems that are easy over large fields, while
NP-hard over small fields; one such example is the maximum rank problem for
matrix spaces [21]. To summarize, the above discussion on the field size issue is
rather hypothetical and conservative.
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4 The pseudorandom action assumption

In this section, we introduce the new security assumption for group actions,
namely pseudorandom group actions, which generalizes the Decisional Diffie-
Hellman assumption. In Section 5, we shall study the prospect of using the
general linear action on tensors as a candidate for this assumption. In the full
version of this paper [53], the reader can find the cryptographic uses of this
assumption including signatures and pseudorandom functions.

Definition 6. Let G be a group family as specified before. Choose public param-
eters params = (G,S, α) to be G(1λ). Sample s ← S and g ← G. The group
action pseudorandomness (GA-PR) problem is that given (s, t), where t = α(g, s)
or t← S, decide which case t is sampled from.

Definition 7 (Pseudorandom group action game). The pseudorandom group
action game is the following game between a challenger and an adversary A:

– The challenger and the adversary A agree on the public parameters params =
(G,S, α) by choosing it to be G(1λ) for some security parameter λ.

– Challenger samples random bit b ∈ {0, 1}, s← S, g ← G, and chooses t← S
if b = 0 and t = g · s if b = 1.

– Give (s, t) to A who produces a bit a ∈ {0, 1}.
– We define the output of the game GA-PRA,G(1λ) = 1 and say A wins the

game if a = b.

Definition 8. We say that the group-action pseudorandomness (GA-PR) prob-
lem is hard relative to G, if for any polynomial-time quantum algorithm A,

Pr[GA-PRA,G(1λ) = 1] = negl(λ).

Some remarks on this definition are due here.

For transitive and almost transitive actions. In the case of transitive group
actions, as an easy corollary of Observation 1, we have the following.

Observation 3. GA-PR problem is hard, if the group action α is transitive.

Indeed, when α is transitive, the two distributions in Definition 6 are the
same, so in fact statistically impossible to distinguish.

Slightly generalizing the transitive case, it is not hard to see that GA-PR prob-
lem is hard, if there exists a “dominant” orbit O ⊆ S. Intuitively, this means that
O is too large such that random s and t from S would both lie in O with high
probability. For example, consider the action of GL(n,F)×GL(n,F) on M(n,F)
by the left and right multiplications. The orbits are determined by the ranks
of matrices in M(n,F), and the orbit of matrices of full-rank is dominant. But
again, such group actions do not seem very useful for cryptographic purposes.
Indeed, we require the orbit structure to satisfy that random s and t do not fall
into the same orbit. Let us formally put forward this condition.
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Definition 9. We say that a group action α of G on S does not have a dominant
orbit, if

Pr
s,t←S

[s, t lie in the same orbit] = negl(λ).

This definition is closely related to a classical question in geometry, namely
classifying representations with a Zariski-dense orbit. When the group is a con-
nected linear algebraic group over C and the representation is irreducible, this
question has been settled by Sato and Kimura [76].

We now put forward a key assumption.

Assumption 2 (Pseudorandom group action (PRA) assumption). There exists
an G outputting a group action without a dominant orbit, relative to which the
GA-PR problem is hard.

The name comes from the fact that the PRA assumption says ‘in spirit’ that
the function Γ : G × S → S × S given by Γ (g, s) = (g · s, s) is a secure PRG.
Here, it is only ‘in spirit’, because the PRA assumption does not include the
usual expansion property of the PRG. Rather, it only includes the inexistence
of a dominant orbit.

The applications of the PRA assumption including more efficient quantum-
secure digital signature schemes and pseudorandom function constructions are
given in the full version of this paper [53].

Subsuming the classical Diffie-Hellman assumption. We now formulate the clas-
sical decisional Diffie-Hellman (DDH) assumption as an instance of the pseudo-
random group action assumption. To see this, we need the following definition.

Definition 10. Let α : G× S → S be a group action. The d-diagonal action of
α, denoted by α(d), is the group action of G on Sd, the Cartesian product of d
copies of S, where g ∈ G sends (s1, . . . , sd) ∈ Sd to (g · s1, . . . , g · sd).

The following observation shows that the classical DDH can be obtained by
instantiating GA-PR with a concrete group action.

Observation 4. Let α be the group action in Group Action 2. The classical
Decisional Diffie-Hellman assumption is equivalent to the PRA assumption in-
stantiated with α(2), the 2-diagonal action of α.

Proof. Recall from Group Action 2 defines an action α ofG ∼= Z∗p on S = Cp\{id}
where Cp is a cyclic group of order p. The 2-diagonal action α(2) is defined by
a ∈ Z∗p sending (s, t) ∈ S × S to (sa, ta). Note that while α is transitive, α(2) is
not, and in fact it does not have a dominant orbit.

PRA instantiated with α(2) then asks to distinguish between the follow-
ing two distributions. The first distribution is ((s, t), (s′, t′)) where s, t, s′, t′ ∈R
S. Since α is transitive, by Observation 1, this distribution is equivalent to
((s, sa), (sb, sc)), where s ∈R S and a, b, c ∈R G. The second distribution is
((s, t), (sb, tb)), where s, t ∈R S, and b ∈R G. Again, by Observation 1, this
distribution is equivalent to ((s, sa), (sb, sab)), where s ∈R S, and a, b ∈R G.
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We then see that this is just the Decisional Diffie-Hellman assumption8.

As will be explained in Section 5.1, the pseudorandom assumption is a strong
one, in a sense much stronger than the one-way assumption. Therefore, Observa-
tion 4 is important because, by casting the classical Diffie-Hellman assumption
as an instance of the pseudorandom assumption, it provides a non-trivial and
well-studied group action candidate for this assumption.

Of course, the DDH assumption is no longer secure under quantum attacks.
Recently, this assumption in the context of supersingular isogeny based cryp-
tography has been proposed by De Feo and Galbraith in [36]. We will study
the possibility for the 3-tensor isomorphism problem as a pseudorandom group
action candidate in Section 5

The d-diagonal pseudorandomness assumption. Motivated by Observation 4,
it will be convenient to specialize GA-PR to diagonal actions, and make the
following assumption.

Definition 11. The d-diagonal pseudorandomness (GA-PR(d)) problem for a
group action α, is defined to be the pseudorandomness problem for the d-diagonal
group action α(d).

We emphasize that GA-PR(d) is just GA-PR applied to group actions of a
particular form, so a special case of GA-PR. Correspondingly, we define PRA(d)
to be the assumption that GA-PR(d) is hard relative to some G.

Given a group action α : G× S → S, let Fα = {fg : S → S | g ∈ G, fg(s) =
g · s}. It is not hard to see that PRA(d) is equivalent to say that Fα is a d-query
weak PRF in the sense of Maurer and Tessaro [62]. This gives a straightforward
cryptographic use of the PRA(d) assumption.

Given d, e ∈ Z+, d < e, it is clear that PRA(e) is no weaker than PRA(d).
Indeed, given an algorithm A that distinguishes between

((s1, . . . , sd), (g · s1, . . . g · sd)) and ((s1, . . . , sd), (t1, . . . , td)),

where si, tj ← S, and g ← G, one can useA to distinguish between ((s1, . . . , se), (g·
s1, . . . g · se)) and ((s1, . . . , se), (t1, . . . , te)), by just looking at the first d com-
ponents in each tuple. It is an interesting question whether PRA(e) is strictly
stronger than PRA(d). Note though that in the following, we will exhibit some
group actions, for which PRA(d) does not hold for large enough d.

5 General linear actions on tensors: the pseudorandom
action assumption

5.1 Requirements for a group action to be pseudorandom

Clearly, a first requirement for a group action to be pseudorandom is that it
should be one-way. Further requirements naturally come from certain attacks.

8 Here we use the version of DDH where the generator of the cyclic group is ran-
domly chosen as also used in [27]. A recent discussion on distinction between fixed
generators and random generators can be found in [9].
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We have devised the following attack strategies. These attacks suggest that the
pseudorandom assumption is closely related to the orbit closure intersection
problem which has received considerable attention recently.

Isomorphism testing in the average-case setting. To start with, we consider the
impact of an average-case isomorphism testing algorithm on the pseudorandom
assumption. Recall that for a group action α : G×S → S, an average-case algo-
rithm is required to work for instances (s, t) where s← S and t is arbitrary. Let
n be the input size to this algorithm. The traditional requirement for an average-
case algorithm is that it needs to work for all but at most 1/poly(n) fraction
of s ∈ S, like such algorithms for graph isomorphism [7] and for alternating
matrix space isometry [59]. However, in order for such an algorithm to break
the pseudorandom assumption, it is enough that it works for a non-negligible,
say 1/ poly(n), fraction of the instances. This is quite relaxed compared to the
traditional requirement.

The supergroup attack. For a group action α : G× S → S, a supergroup action
of α is another group action β : H×S → S, such that (1) G is a subgroup of H,
(2) the restriction of β to G, β|G, is equal to α. If it further holds that (3.1) the
isomorphism problem for H is easy, and (3.2) β is not dominant, we will then
have the following so-called supergroup attack. Give input s, t ∈ S, the adversary
for the GA-PR problem of α will use the solver for the isomorphism problem for
H to check if s, t are from the same orbit induced by H and return 1 if they
are from the same orbit and 0 otherwise. If s, t are from the same orbit induced
by G, the adversary always returns the correct answer as G is a subgroup of H.
In the case that s, t are independently chosen from S, by the fact that β is not
dominant, the adversary will return the correct answer 0 with high probability.

The isomorphism invariant attack. Generalizing the condition (3) above, we can
have the following more general strategy as follows. We now think of G and H as
defining equivalence relations by their orbit structures. Let ∼G (resp. ∼H) be the
equivalence relation defined by G (resp. H). By the conditions (1) and (2), we
have (a) ∼H is coarser than ∼G. By the condition (3.1), we have (b) ∼H is easy to
decide. By the condition (3.2), we have (c) ∼H have enough equivalence classes.
Clearly, if a relation ∼, not necessarily defined by a supergroup H, satisfies (a),
(b), and (c), then ∼ can also be used to break the PRA assumption for G.

Such an equivalence relation is more commonly known as an isomorphism
invariant, namely those properties that are preserved under isomorphism. The
sources of isomorphism invariants can be very versatile. The supergroup attack
can be thought of as a special case of category where the equivalence relation
is defined by being isomorphic under a supergroup action. Another somewhat
surprising and rich “invariant” comes from geometry, as we describe now.

The geometric attack. In the case of matrix group actions, the underlying vector
spaces usually come with certain geometry which can be exploited for the attack
purpose. Let α be a group action of G on V ∼= Fd. For an orbit O ⊆ V , let
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its Zariski closure be O. Let ∼ be the equivalence relation on V , such that for
s, t ∈ O, s ∼ t if and only if Os ∩ Ot 6= ∅. It is obvious that ∼ is a coarser
relation than ∼G. Furthermore, except some degenerate settings when m or n
are very small, there would be enough equivalence classes defined by ∼, because
of the dimension reason. So (a) and (c) are satisfied. Therefore, if we could test
efficiently whether the orbit closures of s and t intersect, (b) would be satisfied
and we could break the PRA for α. This problem, known as the orbit closure
intersection problem, has received considerable attention recently.

Another straightforward approach based on this viewpoint is to recall that
the geometry of orbit closures is determined by the ring of invariant polynomials
[67]. More specifically, the action of G on V induces an action on F[V ], the ring of
polynomial functions on V . As V ∼= Fd, F[V ] ∼= F[x1, . . . , xd]. Those polynomials
invariant under this induced action form a subring of F[V ], denoted as F[V ]G.
If there exists one easy-to-compute, non-trivial, invariant polynomial f from
F[V ]G, we could then use f to evaluate on the input instances and distinguish
between the random setting (where f is likely to evaluate differently) and the
pseudorandom setting (where f always evaluates the same).

Example attacks We now list some examples to illustrate the above attacks.

An example of using the isomorphism invariant attack. We first consider the
isomorphism invariant attack in the graph isomorphism case. Clearly, the degree
sequence, consisting of vertex degrees sorted from large to small, is an easy to
compute isomorphism invariant. A brief thought suggests that this invariant is
already enough to break the pseudorandom assumption for graph isomorphism.

An example of using the geometric attack. We consider a group action similar
to the 3-tensor isomorphism case (Group Action 1), inspired by the quantum
marginal problem [19]. Given a 3-tensor of size ` × n ×m, we can “slice” this
3-tensor according to the third index to obtain a tuple of m matrices of size `
by n. Consider the action of G = O(`,F)×O(n,F)× SL(m,F) on matrix tuples
M(`× n,F)m, where the three direct product factors act by left multiplication,
right multiplication, and linear combination of the m components, respectively.
For a matrix tuple (A1, . . . , Am) where Ai ∈ M(`×n,F), form an `n×m matrix
A where the i-th column of A is obtained by straightening Ai according to
columns. Then AtA is an m by m matrix. The polynomial f = det(AtA) is then a
polynomial invariant for this action. For this note that the group O(`,F)×O(n,F)
can be embedded as a subgroup of O(`n,F), so its action becomes trivial on AtA.
Then the determinant is invariant under the SL(m,F). When m < `n, which is
the interesting case, det(AtA) is non-zero. It follows that we have a non-trivial,
easy-to-compute, polynomial invariant which can break the PRA assumption for
this group action.

An example of using the supergroup attack. We then explain how the supergroup
attack invalidates the PRA(d) assumption for certain families of group actions
with d > 1.
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Let α be a linear action of a group G on a vector space V ∼= FN . We show
that as long as d > N , PRA(d) does not hold. To see this, the action of G on
V gives a homomorphism φ from G to GL(V ) ∼= GL(N,F). For any g ∈ G, and
v1, . . . , vd ∈ V , we can arrange an N × d matrix S = [v1, . . . , vd], such that T =
[φ(g)v1, . . . , φ(g)vd] = φ(g)[v1, . . . , vd]. On the other hand, for u1, . . . , ud ∈ V ,
let T ′ = [u1, . . . , ud]. Let us consider the row spans of S, T and T ′, which are
subspaces of Fd of dimension ≤ N < d. Clearly, the row spans of S and T are
the same. On the other hand, when ui’s are random vectors, the row span of
T ′ is unlikely to be the same as that of S. This gives an efficient approach to
distinguish between T and T ′.

We can upgrade the above attack even further as follows. Let α be a linear
action of G on the linear space of matrices M = M(m × n,F). Recall that
GL(m,F) × GL(n,F) acts on M by left and right multiplications. Suppose α
gives rise to a homomorphism φ : G → GL(m,F) × GL(n,F). For g ∈ G, if
φ(g) = (A,B) ∈ GL(m,F) × GL(n,F), we let φ1(g) := A ∈ GL(m,F), and
φ2(g) = B ∈ GL(n,F). We now show that when d > (m2 + n2)/(mn), PRA(d)
does not hold for α. To see this, for any g ∈ G, and S = (A1, . . . , Ad) ∈ M(m×
n,F)d, let

T = (φ1(g)tA1φ2(g), . . . , φ1(g)tAdφ2(g)).

On the other hand, let T ′ = (B1, . . . , Bd) ∈Md. Since

dim(S) = dim(GL(m× n,F)d) = mnd > m2 + n2 = dim(GL(m,F)×GL(n,F)),

α does not have a dominant orbit (cf. Definition 9) This means that, when Bi’s
are sampled randomly from S, T ′ is unlikely to be in the same orbit as S. Now we
use the fact that, the isomorphism problem for the action of GL(m,F)×GL(n,F)
on S can be solved in deterministic polynomial time [50, Proposition 3.2]. This
gives an efficient approach to distinguish between T and T ′.

Note that the set up here captures the Group Actions 3 and 4 in Section 3.2.
For example, suppose for Group Action 3, we consider linear codes which are
n/2-dimensional subspaces of Fnq . Then we have m = n/2, so PRA(3) for this
action does not hold, as 3 > (m2 + n2)/(mn) = 5/2.

On the other hand, when d ≤ (m2 + n2)/(mn), such an attack may fail,
simply because of the existence of a dominant orbit.

5.2 The general linear action on tensors as a pseudorandom action
candidate

We have explained why the general linear action on tensors is a good candidate
for the one-way assumption in Section 3. We now argue that, to the best of our
knowledge, it is also a candidate for the pseudorandom assumption.

We have described the current status of average-case algorithms for 3-tensor
isomorphism problem in Section 3.3. One may expect that, because of the re-
laxed requirement for the average-case setting as discussed in Section 5.1, the
algorithms in [59,15] may be accelerated. However, this is not the case, because
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these algorithms inherently enumerate all vectors in Fnq , or improve somewhat
by using the birthday paradox.

We can also explain why the relaxed requirement for the average-case setting
is still very difficult, by drawing experiences from computational group theory,
because of the relation between GLAT and Group Action 5, which in turn is
closely related to the group isomorphism problem as explained in Section 3.2.
In group theory, it is known that the number of non-isomorphic p-groups of
class 2 and exponent p of order p` is bounded as p

2
27 `

3+Θ(`2) [12]. The relaxed
average-case requirement in this case then asks for an algorithm that could test
isomorphism for a subclass of such groups containing non-isomorphic groups as
many as p

2
27 `

3+Θ(`2)/ poly(`, log p) = p
2
27 `

3+Θ(`2). This is widely regarded as a
formidable task in computational group theory: at present, we only know of a
subclass of such groups with pO(`2) many non-isomorphic groups that allows for
an efficient isomorphism test [58].

The supergroup attack seems not useful here. The group G = GL(`,F) ×
GL(n,F) × GL(m,F) naturally lives in GL(`nm,F). However, by Aschbacher’s
classification of maximal subgroups of finite classical groups [2], there are few
natural supergroups of G in GL(`nm,F). The obvious ones include subgroups
isomorphic to GL(`n,F)×GL(m,F), which is not useful because it has a domi-
nant orbit (Definition 9).

The geometric attack seems not useful here either. The invariant ring here is
trivial [31]9. For the orbit closure intersection problem, despite some recent excit-
ing progress in [20,19,1,29,52], the current best algorithms for the corresponding
orbit closure intersection problems still require exponential time.

Finally, for the most general isomorphism invariant attack, the celebrated
paper of Hillar and Lim [49] is just titled “Most Tensor Problems Are NP-
Hard.” This suggests that getting one easy-to-compute and useful isomorphism
invariant for GLAT is already a challenging task. Here, useful means that the
invariant does not lead to an equivalence relation with a dominant class in the
sense of Definition 9.

The above discussions not only provide evidence for GLAT to be pseudoran-
dom, but also highlight how this problem connects to various mathematical and
computational disciplines. We believe that this could serve a further motivation
for all these works in various fields.
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26-31, 2007, Proceedings. pp. 333–345 (2007)

47. H̊astad, J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990).
https://doi.org/10.1016/0196-6774(90)90014-6

48. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Portland, Oregon, USA, January 5-7, 2014. pp. 391–404 (2014)

49. Hillar, C.J., Lim, L.: Most tensor problems are NP-hard. J. ACM 60(6), 45:1–45:39
(2013). https://doi.org/10.1145/2512329

50. Ivanyos, G., Qiao, Y.: Algorithms based on *-algebras, and their applications
to isomorphism of polynomials with one secret, group isomorphism, and poly-
nomial identity testing. SIAM Journal on Computing 48(3), 926–963 (2019).
https://doi.org/10.1137/18M1165682

https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1016/j.laa.2018.12.022
https://doi.org/10.1145/116825.116852
https://doi.org/10.1109/CCC.2012.34
https://doi.org/10.1145/1857914.1857918
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1145/2512329
https://doi.org/10.1137/18M1165682


General Linear Group Action on Tensors 29

51. Ivanyos, G., Karpinski, M., Saxena, N.: Deterministic polynomial time algorithms
for matrix completion problems. SIAM J. Comput. 39(8), 3736–3751 (2010).
https://doi.org/10.1137/090781231

52. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Constructive non-commutative rank
computation is in deterministic polynomial time. In: 8th Innovations in Theoretical
Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA.
pp. 55:1–55:19 (2017)

53. Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: A candi-
date for post-quantum cryptography. Cryptology ePrint Archive, Report 2019/687
(2019), https://eprint.iacr.org/2019/687

54. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Advances in Cryptology –
CRYPTO 2016. pp. 207–237. Springer (2016)

55. Kayal, N.: Efficient algorithms for some special cases of the polynomial equivalence
problem. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-
25, 2011. pp. 1409–1421 (2011)

56. Lang, S., Weil, A.: Number of points of varieties in finite fields. American Journal
of Mathematics 76(4), 819–827 (1954)

57. Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE
Trans. Information Theory 28(3), 496–510 (1982)

58. Lewis, M.L., Wilson, J.B.: Isomorphism in expanding families of indistinguishable
groups. Groups Complex. Cryptol. 4(1), 73–110 (2012)

59. Li, Y., Qiao, Y.: Linear algebraic analogues of the graph isomorphism problem
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