
A Unified and Composable Take on Ratcheting

Daniel Jost[0000−0002−6562−9665], Ueli Maurer, and Marta Mularczyk?

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.
{dajost , maurer , mumarta }@inf.ethz.ch

Abstract. Ratcheting, an umbrella term for certain techniques for achiev-
ing secure messaging with strong guarantees, has spurred much interest
in the cryptographic community, with several novel protocols proposed
as of lately. Most of them are composed from several sub-protocols, often
sharing similar ideas across different protocols. Thus, one could hope to
reuse the sub-protocols to build new protocols achieving different security,
efficiency, and usability trade-offs. This is especially desirable in view of
the community’s current aim for group messaging, which has a signif-
icantly larger design space. However, the underlying ideas are usually
not made explicit, but rather implicitly encoded in a (fairly complex)
security game, primarily targeted at the overall security proof. This not
only hinders modular protocol design, but also makes the suitability of a
protocol for a particular application difficult to assess.
In this work we demonstrate that ratcheting components can be modeled
in a composable framework, allowing for their reuse in a modular fashion.
To this end, we first propose an extension of the Constructive Cryptogra-
phy framework by so-called global event histories, to allow for a clean
modularization even if the component modules are not fully independent
but actually subtly intertwined, as in most ratcheting protocols. Second,
we model a unified, flexibly instantiable type of strong security statement
for secure messaging within that framework. Third, we show that one can
phrase strong guarantees for a number of sub-protocols from the existing
literature in this model with only minor modifications, slightly stronger
assumptions, and reasonably intuitive formalizations.
When expressing existing protocols’ guarantees in a simulation-based
framework, one has to address the so-called commitment problem. We
do so by reflecting the removal of access to certain oracles under specific
conditions, appearing in game-based security definitions, in the real world
of our composable statements. We also propose a novel non-committing
protocol for settings where the number of messages a party can send
before receiving a reply is bounded.

1 Introduction

1.1 Secure Messaging and Ratcheting

Secure-messaging (SM) protocols attempt to provide strong security guarantees
to two parties that communicate over an asynchronous network. Apart from
? Research supported by the Zurich Information Security and Privacy Center (ZISC).

mailto:dajost@inf.ethz.ch
mailto:maurer@inf.ethz.ch
mailto:mumarta@inf.ethz.ch

protecting confidentiality and integrity of messages, the desired properties include
forward secrecy and healing from a state or randomness exposure. The latter
properties are addressed by the so-called ratcheting protocols, by having the
parties continuously update their secret keys.

The term ratcheting on its own does not carry any formal meaning; rather, it
is an umbrella term for a number of different guarantees, somehow related to the
concept of updating keys. One notable example of ratcheting is the widely-used
Signal protocol [21] with its double-ratchet algorithm, formally analyzed in [7 , 1].
Furthermore, there exist protocols with much stronger guarantees, but that
require the messages to be delivered in order [24 , 9 , 8 , 10]. Protocols with the
stronger guarantee of immediate out-of-order decryption have been proposed in
[1]. While the majority of the literature considers secure communication, some
works view ratcheting as a property of key exchange instead [2 , 24].

A number of proposed protocols pursue similar goals, but each achieves a
slightly different trade-off between security, efficiency and usability. Moreover,
each construction comes with its own—usually fairly complex—security game,
intermediate abstractions, and primitives. This renders them hard to compare
and hinders achieving new trade-offs that would result from combining ideas from
different protocols. This motivates the goal of this work, which is to facilitate a
systematic, modular and composable analysis of secure-messaging protocols.

1.2 Composable Security

While a game-based systematization of secure messaging could certainly address
some of the aforementioned concerns, composable frameworks, such as [4 , 23 , 18 ,
14], provide some distinct advantages.

First, security under (universal) composition is a stronger notion: the guar-
antees are provided even if a protocol is executed in an arbitrary environment,
alongside other protocols. So far, no SM protocol provably achieves this (in
fact, even the weaker notion of security under parallel self composition has not
been analyzed). Moreover, composable frameworks facilitate modularity. One can
define components with clean abstraction boundaries (e.g., a secure channel) and
use their idealized versions in a higher-level protocol (and its proof). The overall
security of the composed protocol follows from the composition theorem. This
stands in contrast with game-based definitions, where security of the components
and the overall protocol is expressed by a number of games, and one has to show
that winning the security game for the overall protocol implies, via reductions,
winning one security game for a component. Finally, guarantees expressed in
a composable framework usually have more evident semantics, obtained from
directly considering how a protocol is used, rather than a hypothetical interaction
of an adversary with a simplified game that encodes excluded attacks.

Unfortunately, secure messaging does not render itself easily to a modular,
composable analysis. One reason for this is the difficulty in drawing the right
abstraction boundaries. Roughly, the guarantees for a channel heavily depend
on other components in the system, for example, we may want to say that the
confidentiality of a message is protected only if some memory contents do not

2

leak. This problem also appears in the analysis of some protocols from different
contexts (e.g. TLS [12]), which often violate the rules of modularity.

Furthermore, we encounter the so-called “commitment problem” of simulation-
based security definitions. Intuitively, the natural composable guarantees are too
strong and provide additional security that seems to carry little significance in
practice, and that can only be achieved with (stronger) setup assumptions and
at an efficiency loss. To address this problem, a number of approaches have been
proposed — none of them, however, being able to fully satisfactorily formalize
the weaker guarantees achieved by regular schemes. First, the notion of non-
information oracles [6] has been proposed that essentially embeds a game-base
definition in a composable abstraction module. Second, a line of work considers
stronger, i.e., super-polynomial, simulators [22 , 25 , 3]. Protocols in those models,
however, still have to rely on additional setup and special primitives.

1.3 Contributions

This paper makes both conceptual and technical contributions. Conceptual contri-
butions to composable security frameworks are the notion of global event histories
as well as a modeling technique for circumventing the so-called commitment prob-
lem. Technical contributions include the modeling of ratcheting (sub-)protocols
in a composable framework as well as a novel protocol that achieves adaptive
security, i.e., the strongest form of composable security, under certain restrictions.

Global event histories. Composable frameworks are based around the idea of inde-
pendent modules (e.g. channels, keys, or memory resources) that are constructed
by one protocol and then used by another protocol in the next construction step.
However, in many settings, in particular as they occur in modeling ratcheting
protocols, these components are subtly correlated which seems to violate mod-
ularity. For example, a channel (one module) can become insecure when a key
(another, apparently independent module) is leaked to the adversary.

We address this problem by two conceptual ideas. First, we parameterize
resources by several (discrete) parameters—which can be thought of as a switch
with two or more positions—which can downgrade the security of a resource,
e.g. switch a channel from non-leakable (i.e. confidential) to leakable. Second,
we introduce the notion of global event histories defined for the entire real (or
ideal) world, where a history is a list of events having happened at a module (e.g.
a message being input by Alice or a message having leaked to the adversary).
A key idea is now that the switch settings of the modules can be defined by
predicates (or, more generally, multi-valued functions) of the global event history.
This allows us to draw meaningful abstraction boundaries for secure messaging,
but we believe that the concept of event histories is of independent interest and
may enable modular analyses for settings where this was previously difficult.

Formally, we use the Constructive Cryptography (CC) framework [18 , 15],
and in particular a slight modification of its standard instantiation to model the
event history. Since the composition theorem of CC is proved on an abstract
level, we do not need to re-prove it.

3

Expressing the guarantees provided by ratcheting. Our goal is to capture the
guarantees provided by ratcheting (sub-)protocols in a general fashion to make
them reusable in different protocols or contexts. This is in contrast to existing
game-based definitions, which usually formalize exactly what is required by the
next sub-protocol for the overall protocol’s security proof to go through.

This goal is achieved by considering parameterized resources as described
above and modeling the goal of a (sub-)protocol as improving a certain parameter
while leaving the other parameters unchanged, independently of what they are.
One can think of a protocol improving certain switch positions (e.g. making a
channel confidential), independently of the other switch positions.

In this paper, we consider three ratcheting sub-protocols. We start with a
simple authentication protocol in the unidirectional setting which constantly
updates keys. As a more involved example, we consider the use of hierarchical
identity-based encryption to provide confidentiality. As a third example, we
analyze continuous key agreement, a notion introduced by Alwen et al. [1] to
abstract the asymmetric ratcheting layer of Signal. On the way, we discover cases
where the existing game-based notions are insufficient to prove the stronger, more
modular, statements that don’t fix the properties (i.e., the switch positions) of
the assumed network, but where they can be achieved by simple modifications.

Solutions to the commitment problem. When modeling ratcheting protocols, we
encounter the so-called commitment problem: the simulator would have to output
a simulated value (e.g. a ciphertext) which at a later stage must be compatible
with another value (e.g. a leaked key) not initially known to him. Since this is
generally impossible, we address this problem in two alternative ways.

On one hand, we propose a technique that allows to transform many standard
SM protocols into protocols that achieve full composable security, at the expense
of an efficiency lost, as well as being restricted to only sending a bounded number
of messages before receiving a reply from the other party. We apply this technique
to the HIBE protocol mentioned above and construct its fully composable version.

On the other hand, we can retain composable statements of regular protocols
by restricting the adversary’s capabilities in the real Roughly, we observe that
game-based definitions do not encounter the commitment problem, because they
disable certain sequences of oracle calls. For example, if the adversary calls the
challenge oracle to obtain a ciphertext, she cannot immediately call the expose
oracle that returns the secret key, since this would allow her to trivially win.
We give a composable semantic to such conditions by making some real-world
components secure by assumption after certain sequences of events. For example,
after a message is sent, the memory storing the secret key becomes secure.

1.4 Outline

In Section 3 we extend Constructive Cryptography to include the global event
history. Based on this, in Section 4 , we introduce a simple and generic type of
security statement for SM protocols. (In the full version [11] we extend it to
encompass ratcheting as a key-exchange primitive.) In Section 5 , we demonstrate

4

how the security guarantees of ratcheting components can be phrased in this
model. In Section 6 , we introduce a novel non-committing ratcheting protocol
that achieves full simulation-based security for a bounded number of messages.

2 Preliminaries: Constructive Cryptography

2.1 The Real-World / Ideal-World Paradigm

Many security definitions, and in particular most composable security frameworks
[4 , 23 , 18 , 14], are based on the real-world/ideal-world paradigm. The real world
models the use of a protocol, whereas the ideal world formalizes the security
guarantees that this protocol is supposed to achieve.

The security statement then affirms that the real word is “just-as-good” as the
ideal world, meaning that for all parties, no matter whether honest or adversarial,
it does not make a difference whether they live in the real or ideal world. Hence,
if the honest parties are content with the guarantees they get in the ideal world,
they can safely execute the protocol in the real world instead.

2.2 Resources

In each composable framework there is some notion of a module that exports
a well-defined interface in a black-box manner to the rest of the world. In the
UC framework such a module is called a functionality. In the Constructive
Cryptography (CC) framework [18 , 15] such a module is called a resource. One
of the main differences is that in CC a world consists entirely of resources and
the environment (called a distinguisher). So while UC distinguishes between the
real world, where the parties can only send messages to each other, and a hybrid
world, where they additionally access some ideal functionalities, in CC everything,
including communication, is a resource. For example, a security statement about
two parties using authenticated encryption to transmit a message is phrased
as a real world containing two resources—an insecure channel and a shared
key—which are then used by the protocol to construct the ideal world consisting
of a secure channel. See Figure 1 for a description of the real-world resources.

A resource is a reactive system that allows interaction at one or several
interfaces, i.e. upon providing an input at one of the interfaces, the system
provides an output. In this work, we only consider systems where the output
is produced at the same interface the input was given. Formally, resources are
modeled as random systems [16], where the interface address is encoded as part
of the inputs. However, a reader unfamiliar with CC may simply think of a
resource with n interfaces as n oracles that share a joint state. Note that there is
no formal notion of a party in constructive cryptography; they only give meaning
to the construction statements, by thinking of each interface being controlled by
some party. Since in this work we make statements about messaging between two
honest parties, called Alice and Bob, in the presence of a global adversary, called
Eve, we usually label the interfaces accordingly, indicating how the assignment
of interfaces to parties should be understood.

5

Resource InsecCh

Initialization
mA,mB ← ⊥

Interface E
Input: leak
output mA

Input: (inject,m)
mB ← m
output ok

Interface A
Input: (send,m)
assume only called once
mA ← m
output ok

Interface B
Input: receive
output mB

Resource Key

Initialization
k � K

Interface i, i ∈ {A, B}
Input: fetch
output k

Fig. 1: The assumed real-world resources of the authenticated-encryption example:
an insecure channel and a shared key. The insecure channel exports three interface
A, B, and E, understood to be controlled by the respective parties Alice, Bob, and
Eve, whereas the key resource only exports two interfaces.

A set of resources can be composed into a single one. The interface set of
the composed resource corresponds to the union of the ones from the composed
resources. Returning to our example of authenticated encryption, in the real world
we have both an insecure channel InsecCh and a key Key, where the former has
three interfaces and the latter two. The composed resource, denoted [InsecCh,Key],
is a resource with five interfaces, each of them addressed by a tuple consisting of
the resource’s name and the interface’s original name.

We describe our resources using pseudo-code (c.f. Figure 1). The following
conventions are followed: each resource has an initialization procedure initializing
all the persistent variables (all other variables are understood to be volatile).
Formally this initialization is called upon invoking any arbitrary interface for the
first time. Each interface exposes one or more capabilities, each of them described
by a keyword (e.g. send in case of a channel), and the (potential empty) list of
arguments (e.g., m). Furthermore, we use the assume command, which should
be understood as a shortcut for explicitly tracking the respective condition and
returning an error symbol ⊥ in case the condition is violated. In Figure 1 , the
keyword assume is used the specify that the channel is single-use.

2.3 Converters

The protocol execution in CC is modeled by converters, each of which expresses
the local computation executed by one party. (The name converter derives from
the property that a converter attached to a resource converts it into another
“ideal” one.) A converter expects to be connected to a given set of interfaces
at the “inside”, and emulates a certain set of interfaces at the “outside”. Upon
an input at one of the emulated interfaces, the converter is allowed to make a
bounded number of oracle queries to the inside interfaces (recall that a resource
always returns at the same interface it was queried), before returning a value at

6

A B

E

F

Rprot1 prot2
A B

E

F

S

sim

Fig. 2: Execution of the protocol in the real world by Alice and Bob (left) and
the ideal world with the simulator attached to Eve’s interface (right). The free
interface on the top is accessed directly by the environment in both worlds.

the same emulated interface. For a converter prot and a resource R, we denote
by R′ := prot{I1,...,In}R the resource obtained from connecting the converter to
the subset {I1, . . . , In} of the interfaces. The resource R′ no longer exposes those
interfaces to the world, but the ones emulated by prot instead. We usually omit
specifying the set {I1, . . . , In} and just write for instance protAR, denoting that
it is connected to all of Alice’s interfaces.

2.4 The Construction Notion

Security is then defined following the real-world/ideal-world paradigm, stating
that in every environment the real world should behave the same way as the ideal
one. The real world, as depicted in Figure 2 , thereby consists of the assumed
resource R to which the converters are attached, each to a subset of the respective
party’s interfaces. The ideal world, on the other hand, consists of the constructed
resource S with a simulator (which is a converter) attached to Eve’s interfaces.

Behaving the same way is formalized using the notion of a distinguisher,
that can make oracle queries to the resource’s interfaces and then outputs a
bit, indicating whether it believes to interact with the real or ideal world. More
formally, in the special case of two honest parties Alice and Bob and a global
adversary Eve, the goal of a distinguisher D is to distinguish the real world
protA

1 protB
2 R from the ideal world simE S. The advantage of D is defined as

∆D(protA
1 protB

2 R, simE S
)

:= Pr
[
D(simE S) = 1

]
− Pr

[
D(protA

1 protB
2 R) = 1

]
.

Let ε denote a function mapping distinguishers to values in [−1, 1]. Then, the
protocol (prot1, prot2), when attached to A and B, is said to construct S from R
within ε, and with respect to sim attached to E, if

∀D : ∆D(protA
1 protB

2 R, simE S
)
≤ ε(D).

Note that we require the sets of interfaces controlled by Alice, Bob, and Eve,
respectively, to be pairwise disjoint. They however do not have to completely
partition the set of interfaces. The remaining interfaces are called free interfaces
to which the distinguisher has direct access in both worlds.

7

For simplicity, in this work we consider an asymptotic setting only (although
we usually do not make the asymptotics explicit) where all resources and con-
verters are assumed to be efficiently implementable. We then write

protA
1 protB

2 R ≈ simE S,

if ∆D(protA
1 protB

2 R, simE S
)
is negligible for every efficient distinguisher D, and

simply say that (prot1, prot2) constructs S from R if there exists an efficient
simulator sim achieving this.

Note that the notion of construction is analogous to the notion of secure
realization in the UC framework. In contrast to UC, however, the set of all
resource instances within a construction statement is fixed. The distinguisher
does not instantiate resources or protocols, or assign session identifiers. Dynamic
availability properties of resources can obviously still be modeled as part of the
resources themselves, though.

2.5 Composition

The notion of construction is composable, which intuitively means that if a
protocol (prot1, prot2) constructs S from R, and another protocol (prot′1, prot′2)
constructs T from S, then the combined protocol constructs T from R. This
is known as sequential composition. Additionally, if (prot1, prot2) constructs
[S1, . . . ,Si] from [R1, . . . ,Rj], for some i and j, then for every set of (efficiently
implementable) resources {T1, . . . ,Tn} it also holds that (prot1, prot2) constructs
[S1, . . . ,Si,T1, . . . ,Tn] from [R1, . . . ,Rj ,T1, . . . ,Tn], where the interfaces of the
additional resources T1, . . . ,Tn are treated as free in the construction. This
property is known as parallel composition.

Both properties are proven in [18 , 19] for a more abstract notion of resources
being “just-as-good”, of which the here introduced indistinguishability notion is
a special case. Together, the two properties form the equivalent to the universal
composability property of the UC framework.

3 Constructive Cryptography with Events

In this section we generalize the Constructive Cryptography framework to allow
for better modularization. More specifically, we introduce another instantiation
of resources and the “just-as-good” notion, thereby inheriting the composition
theorem of CC that is proven on a more abstract level.

Motivation. Recall that SM protocols are difficult to modularize, because the
guarantees for a given message depend on the dynamically changing state of other
components in the system, such as whether the state leaked or the adversary
tampered with a previous message. In traditional CC, where the abstraction
boundary of a resource is just the input-output behavior, properly accounting for
those dependencies would essentially force us to model the whole SM application

8

as monolithic resource. In this section, we therefore extend the notions of resources
and construction to relax the abstraction boundary in a clean and well-controlled
manner, which will allow for such dependencies between different resources. More
concretely, we introduce a global event history. Each resource is then allowed to
trigger events from a predefined set (e.g. indicating that a party’s state leaked),
on which the behavior of other resources can then depend. The event history is
visible to the environment, the resources, and the simulator.1

The global event history. We model events as a generalization of monotone
binary outputs (MBO) introduced by Maurer et al. [17]. Roughly, an MBO of a
resource is an additional output that can change from 0 to 1 but not back. This
can be interpreted as a single event, which happens when the MBO changes to 1.
We generalize this to many events by the means of a global event history.

Definition 1. Let N be a name set. The global event history E is a list of
elements of N without duplicates.

For n ∈ N , we use En as a short-hand notation to denote that n is in the
list E, and say that the event happened. Analogously, we use ¬En to denote the
complementary case. Furthermore, we denote by E +← En, the act of appending n
to the list E, if ¬En, and leaving the list unchanged otherwise.

We also introduce the natural happened-before relation on the events.

Definition 2. For n1, n2 ∈ N , we say that the event n1 precedes the event n2
in the event history E, denoted En1

≺ En2
, if either

– both events happened, i.e, En1
and En2

, and n1 is in the history before n2,
– or only n1 happened so far.

Note that saying that En1
≺ En2

is true if so far only the former one has happened
best matches the type of statement we usually want to make: for instance, if we
express the condition that a message is secure if the key has been securely erased
before the memory was leaked, then we do not need to insist that the memory
actually leaked.

Event-aware systems. We consider resources, converters and distinguishers
that can (1) read the global event history, and (2) append to the event history
from a fixed subset of N . That is, the global event history is an additional
component (of both the real and ideal world) that models event-awareness in
an abstract manner, rather than formalizing them as outputs that need to be
explicitly passed between components.

As a convention, we use as event-name pairs (id, label), where label is a
descriptive keyword (e.g., leaked), and id identifies the resource triggering the
1 From a conceptual point of view, this global event history is somewhat reminiscent
of the “directory” ITI used in the recent version (as of December 2018) of UC [4] to
keep track of which parties are corrupted.

9

event, and we use the notation E label
id . Simulators and distinguishers can trigger

events with arbitrary id’s (looking forward, e.g. a simulator will have to trigger
real-world events that do not occur in the ideal world). Still, we require that they
do not trigger events that can be triggered by any resources they are connected
to (such that, for example, a memory-leaked event really means that it did leak).

Definition 3. A simulator is compatible if it only triggers events that cannot
be triggered by the resource it is attached to. For two resources R and S, a
distinguisher D is compatible if it only triggers events that cannot be triggered
by neither R nor S.

Converters implementing protocols, on the other hand, do not depend on the
event history, since an event is something that might be observable, rather than
something that is guaranteed to be observable by the honest parties.

Construction notion. Intuitively, in the context of events, a real-world resource
R is “just-as-good” as S if these resources look the same to distinguishers DE
with read-and-write access to the global event history E . This implies that the
sequences of events must be the same in the real and in the ideal world. However,
for convenience, we slightly relax this rule and introduce event renaming. For
example, if a memory is used to store a key, then the memory-read event in the
real world would have in the ideal world a better name key-received. Hence, we
use both names to denote the same event (one can think of them as aliases).
Moreover, we also allow for multiple aliases for a more fine-grained consideration
of events in the ideal world, for instance by separating a message-received event
into a successful and unsuccessful one.

We make this renaming explicit in the construction statements by defining a
surjection τ that maps events triggered by the ideal-world resource to their real-
world counterparts. (Note that in the case of duplicates caused by τ , τ(E) only
contains the first occurrence.) When referring to real-world events for specifying
ideal-world guarantees, we will sometimes use Ẽ := τ(E) as a shorthand notation.

We can now define the construction notion for two resources with events.

Definition 4. We say that (prot1, prot2) constructs S from R under the event-
renaming τ , denoted

protA
1 protB

2 R ≈̂τ simE S,
if there exists an efficient simulator sim, such that τ only renames events triggered
by simE S, and for all efficient event-aware distinguishers DE , compatible for
protA

1 protB
2 and simE S the following advantage is negligible.

∆DE (
protA

1 protB
2 R, simE S

)
:= Pr

[
Dτ(E)(simE S) = 1

]
− Pr

[
DE(protA

1 protB
2 R) = 1

]
We stress that this construction notion satisfies the axioms of the more

abstract layer on which the composition theorem of CC is proven [18 , 19], and
thus composes as well.

10

4 Composable Guarantees for Secure Messaging

In this section we introduce the unified type of construction statement—in CC
with events—that we make about SM protocols and components thereof.

4.1 The Approach

We opt for the natural choice of an application-centric approach, where the security
of a cryptographic scheme or primitive is defined as the construction it achieves
when used in a particular application. While this approach provides readily
understandable and clean security statements, the resulting definitions often
turn out to be overly specific. For instance, the statement about an encryption
scheme might hard-code a particular assumed authentic communication network,
implying that it cannot be directly combined with an authentication scheme
achieving slightly different guarantees.

Avoiding such overly specific statements is crucial for a modular treatment of
ratcheting protocols, as each sub-protocol of the prior literature achieves slightly
different guarantees. We address this problem by making parameterized con-
struction statements, where the assumed real-world resources are parameterized
by several “switches” determining their security guarantees. Formally, such a
“switch” is represented by a function of the global event history E (among others),
that dynamically defines the behavior of the resource at a given moment in time.
For instance, a leakage function L may specify to which extent a channel leaks
depending on the set of events that happened so far. The goal of a protocol is then
expressed as improving certain parameters while leaving the others unchanged,
independently of what they were in the beginning. That is, our construction
statements will be of the type that a protocol constructs a communication network
with certain (stronger) guarantees, assuming a network with certain (weaker)
guarantees, where the real-world guarantees are treated as a parameter instead
of hard-coding them.

Note that in the context of ratcheting protocols, making such parameterized
statement about components—without a-priori assuming any guarantees about
the real-world—is mostly not an issue. This is due to the fact that the protocols
anyway have to be designed for the setting where the state and randomness could
leak at any time, temporarily nullifying all guarantees that the component might
try to assume from the underlying sub-protocols.

4.2 Our Channel Model

We now introduce our model of two-party communication networks. It allows us
to express flexible security guarantees, but also various usability restrictions or
guarantees, such as whether messages can be received out of order or not.

Many single-message channels. We choose to model the communication network
between Alice and Bob as the parallel composition of many unidirectional single-
message communication channels. Besides being simpler to describe, it allows

11

to have simpler construction steps which only consider a subset of the channels.
On the flip side, it results in a world with an arbitrary but bounded number
of messages, as the set of resources is static in CC. This is, however, without
loss of generality as long as the protocols do not take advantage of this upper
bound. Finally, observe that this decision results in a network where messages
have implicit (unprotected) sequence numbers, as for instance achieved by TCP.

The single-message channel. We model channels with authenticated data. Since
we will use the same type of channel both in the real and ideal world, the channel
must hit the right trade-off between giving enough power to the simulator but not
too much power to the real-world adversary. On a high level, the channel interfaces
and their capabilities are as follows. See Figure 3 for the formal definition.

– The sender S can issue the command (send,m, ad). Whether she is allowed
to do so is determined by the can-send predicate S. (This predicate will
mainly be used to describe situations in which the sender does not have the
necessary keys yet.) A successful sending operation triggers the event E sent.
The sender can also query whether the channel is available for transmission.

– The adversary E can then potentially learn m through the read command.
Whether she is allowed to do so is determined by the can-leak function L,
which outputs either false (the adversary is not allowed to read m), true
(reading is allowed but triggers a leaked event E leaked), or silent (reading is
allowed). Moreover, she is always allowed to learn the length of m and the
(non-confidential) associated data ad.

– The adversary decides when receiving becomes possible, i.e., the message in
principle is delivered. Once this happens, the receiver R can try to fetch the
message. This has two possible outcomes: either he receives a message and
an according received event is triggered, or he receives ⊥ and an error event
(indexed by an error code from Errors) is triggered. Which case happens is
determined by the delivery function D, which takes into account the event
history and on whether the message that R tries to fetch is the same as the
one input by S (or an injected value from the adversary). The latter condition
is denoted by the flag same. The flag same is also exposed as part of the
received or error event E received(same) or Eerror(err,same), respectively.

– When the adversary decides that receiving is possible, she has two options:
schedule the delivery of (m′, ad′) (command deliver), or force an error
err ∈ Errors to be triggered (command error). In the first case, she can also
request to just forward the sender’s message (if one exists), using m′ = fwd.
Moreover, for technical reasons2

 , she can also insist that once the receiver
fetches the message, same = false is used even if the messages match. In
case the adversary forces an error err and the outcome of receiving would
anyway be a (different) error, the existing error can either be overwritten

2 The simulator might need this capability, e.g., if two (abstracted away) ciphertexts
decrypt to the same message. Note that providing additional capabilities to the
adversary in the real world only strengthens the statement and directly implies the
construction where this capability is removed.

12

Resource Chid,S→R
L,I,S,R,Errors

Parameters:
– Identity id (optionally), and interfaces S (sender) and R (receiver)
– Set of Errors that can occur
– Functions L(E) ∈ {true, false, silent} (can leak), S(E) ∈ {true, false} (can send),

R(E) ∈ {true, false} (can receive) and D(E, same) ∈ Errors ∪ {msg} (delivery outcome)

Events: Esent, E leaked, E received(same) and Eerror(err,same) for same ∈ {true, false} and err ∈ Errors

Initialization
mS, adS,mR, adR, cmd, same ← ⊥

Interface S
Input: (send,m, ad) ∈ M×AD
assume cmd = ⊥
if ¬S(E) then output ⊥
(mS, adS)← (m, ad)
E +← Esent

output ok

Input: isAvailable
output S(E)

Interface R
Input: receive
assume only called once
if ¬R(E) ∨ cmd = ⊥ then

output ⊥

// same messages (no injection)?
if same = check then

same ← ((mR, adR) = (mS, adS))

// the outcome: an error or the message
out ← D(E, same)
if cmd = dlv ∧ out = msg then
E +← E received(same)

output (mR, adR)
else if cmd = (err, err,Overw)

∧(out = msg∨out ∈ Overw) then
E +← Eerror(err,same)

output ⊥
else
E +← Eerror(out,same)

output ⊥

Input: isAvailable
output R(E) ∧ cmd 6= ⊥

Interface E
Input: read
if L(E) = false then output ⊥
else if L(E) = true then E +← E leaked

output (mS, adS)

Input: readLength
output (|mS|, adS)

Input: (deliver,m, ad, same′)
∈ (M∪{fwd})×AD×{check, false}

assume cmd = ⊥

// handle forwarding request
if m = fwd then

if mS = ⊥ then output ⊥
else m← mS

// store for receiving
(mR, adR, same)← (m, ad, same′)
cmd ← dlv
output ok

Input: (error, err,Overw,m, ad, same′)
∈ Errors× 2Errors ×M×AD

× {true, false, check}
assume cmd = ⊥

// (m, ad) only to determine same
if same′ = check then

(mR, adR)← (m, ad)

// store for receiving
same ← same′

cmd ← (err, err,Overw)
output ok

Fig. 3: The single-message channel.

13

or preserved. She can control this by specifying a set Overw of errors that
should be overwritten.

A note on confidentiality. In our channel, the E received(same) and Eerror(err,same)

events indicate whether the message that Eve injected was the same as the sender’s.
Since we assume that those events are in principal observable by everybody,
including the adversary, those events can partially breach confidentiality if the
communication is not properly authenticated.

However, those events are crucial to phrase the post-impersonation guarantees
of certain ratcheting protocols. In fact, in those protocols Eve could usually inject
her own message (after exposing the sender’s state), observe whether it causes
the communication to break down, and thereby deducing whether the sender
wanted to send the same message afterwards. Our events simply reflect this.

4.3 Additional Resources: Memory and Randomness

An integral part of secure messaging protocols is the assumption that the parties’
state, and sometimes also randomness, can leak to the adversary. In Constructive
Cryptography everything that can be accessible by multiple parties, here the
honest party and Eve, must be modeled as a resource. As a consequence, all of our
converters will be stateless and deterministic. (Stateless means that the converter
cannot keep state between two separate invocations at the emulated interfaces.)
The statements will contain explicit memory and randomness resources instead.

We consider two types of memory resources: (1) an insecure memory IMemid,U,
and (2) a potentially secure memory Memid,U. The main differences are that the
latter one can be securely erased at any time, is parameterized in a can-leak
predicate L, and triggers a leaked event E leaked

Mem(id,U) once the content actually
leaks to the adversary. Since each event can only occur once, we thus model
it as a write-once memory. Rewritable secure memory can then be modeled as
the parallel composition of many write-once memory cells,3 where each can be
leaked independently4

 . Analogously, the randomness resource is parameterized
by a predicate L as well. If allowed, the randomness can leak (triggering E leaked

Rnd(id))
to the adversary at the moment it is used by the honest party—modeling that
it is sampled fresh at this point and is not stored. See the full version [11] for a
formal definition of both resources.

5 Unifying Ratcheting: Two Examples

In this section, we get acquainted with how the security guarantees of ratcheting
protocols can be phrased within our model. To this end, we model the guarantees
of two components of actual ratcheting protocols.
3 The memory requirement of a protocol is not determined by the number of such
write-once memories, but rather by the maximal number of them in use at any time.

4 Technically this leads to more fine-grained statements compared to prior work where
it was usually assumed that either the entire state leaks or not. Nevertheless, it does
not appear to incur additional significant complications.

14

As a first example, we consider a simple authentication scheme that appears
in [9 , 8 , 10]. Using this example, we demonstrate how our framework allows for
a fine-grained modularization, with the overall security then directly following
from composition. As a second example, we consider the use of hierarchical
identity-based encryption, as in [24 , 9]. In this example, we explore a way to
work around the so-called commitment issue of composable security.

5.1 A Simple Authentication Scheme

We first consider a simple unidirectional authentication protocol, which is designed
with the strong guarantees of secure messaging in mind: the authentication
guarantees should not only be forward secure but also heal after a state or
randomness exposure of either party. Slight variations of this protocol have been
used in [10] (without the hash) and [8] (using signcryption). Essentially the same
idea also appeared in [9], where, however, a stronger signature primitive with
updatable keys is considered, leading to the protocol being formalized in the
bidirectional setting.

The protocol. In the protocol, whenever the sender wants to send a message,
a fresh signing and verification key pair is sampled. The fresh verification key is
then signed together with the message—using the prior signing key— and the
message, the verification key and the signature are transmitted. Finally, the old
signing key is securely erased and the fresh one stored instead. The receiver, on
the other hand verifies a received message with the previous verification key and
stores the new one. The scheme is depicted in Figure 4 .

Recall that we aim to make a strong construction statement that considers
how the scheme enhances any preexisting security guarantees, including confiden-
tiality. Usually preserving confidentiality is not a goal that is considered for an
authentication protocol, moreover, it is known that the authenticate-then-encrypt
approach used in old versions of TLS is not generally secure [13]. Nevertheless,
we show that the scheme actually achieves this at the cost of assuming unique
signatures instead of unforgeable ones (analogous to [9]), and with a minor
modification: with each message, the sender also transmits a hash of the previous
verification key. Such a hash is also present in the protocol from [9], and allows
the receiver to check whether he is using the correct verification key.

The guarantees. Clearly, the protocol achieves authenticity if neither party’s
state is exposed. Moreover, Bob’s state only consists of public information. If
Alice’s state gets exposed, then Eve obtains her current signing key that she can
use to impersonate Alice towards Bob at this point in time. However, this key is
useless to tamper with previous messages, even if they have not been delivered
yet (forward security). More importantly, if, for some reason, Alice’s next message
containing a fresh verification key still is delivered without modification, then
the signing key obtained by the adversary becomes useless thereby achieving the
healing property. Hence, the adversary can inject the i-th message if and only if

15

Alice Bob

sk0, vk0 vk0
m1, h1, vk1, σ1

sk1, vk1

vk1(sk2, vk2)← Sig.KeyGen
h2 ← hash(vk1)

σ2 ← Sign(sk1, (m2, h2, vk2))

m2, h2, vk2, σ2 hash(vk1) ?= h2
Verify(vk1, (m2, h2, vk2))

sk2, vk2
vk2

Fig. 4: The simple scheme for unidirectional authentication.

Alice’s state between the (i− 1)-st and i-th message got exposed, or there has
already been a successful injection before.

Expressing the scheme’s security guarantees in a game-based manner turned
out to be surprisingly involved compared to the scheme’s simplicity and how easy
it seems to intuitively describe its guarantees. Notably, to show its security, in [10]
the abstraction of a key-updating signature scheme, as well as its corresponding
correctness and security games, have been introduced. This raises a couple of
questions: can’t we do simpler? What is the right security statement to make
about this quite simple protocol, and what happens if the channel already provides
certain authenticity or confidentiality guarantees? In the following, we try to
answer these questions.

The construction statement. First, note that we consider the authentication
of messages directly, and do not introduce an intermediate signature notion.
Secondly, we consider authenticating the i-th message only, and to this end
consider the (i− 1)-st message where the fresh verification key is transmitted (we
do not authenticate this message here) and the i-th message that is then signed
under the corresponding signing key. Authenticating the (i− 1)-st message, and
all others, is then taken care of by iteratively applying the protocol, with the
overall security directly implied by the composition theorem. This leads to the
following real world resources

Rauth
i :=

[
Chi−1,A→B,Chi,A→B,Randkgi,A,Memski,A, IMemvki,B

]
, (1)

where besides the two channels the sender also has a memory to store the new
signing key, and the receiver a (insecure) memory to store the verification key.
Furthermore, the sender also has an explicit randomness resource available (note
that we only need key-generation randomness, since unique signatures are deter-
ministic). The corresponding protocol converters (sigi, vrfi) that are connected to
Alice’s and Bob’s interfaces of Rauth

i , respectively, simply implement the previously
described protocol. A formal description of those protocol converters can be found
in the full version [11].

16

The goal of the protocol is then phrased as constructing the following ideal-
world resource

Sauth
i :=

[
Chi−1,A→B,Chi,A→B

]
, (2)

in which the channels can also trigger an error sig-err, indicating that the signature
verification failed, in addition to the errors from the real-world counterparts.

The authentication guarantees for the i-th channel can then be expressed
via the following delivery-function, which guarantees that an injection attempt
(¬same) when the key is not known will causes a signature-verification error
sig-err, and preserves preexisting authenticity (recall that Ẽ := τ(E) denotes the
real-world’s event history):

D
Sauth

i

Ch(i,A→B)(E , same) :=

err if DRauth

i

Ch(i,A→B)(Ẽ , same) = err ∧ err 6= msg

msg else if same ∨ E sk-known
i

sig-err else
(3)

where in a slight abuse of notation, we define a composed event E sk-known
i , which

is triggered as soon as it is not excluded that the signing key corresponding to
Bob’s verification key is known to Eve:

E sk-known
i := E injected

Ch(i−1,A→B) ∨ E
leaked
Rnd(kgi,A) ∨

(
E sent

Ch(i−1,A→B) ≺ E
leaked
Mem(ski,A) ≺ E

sent
Ch(i,A→B)

)
.

On the flip side, the scheme limits the availability of the channels to be
sequential. While sending messages in order is natural for Alice, the protocol
restricts Bob to receive them in order as well. We can express this using the
following predicates.

S
Sauth

i

Ch(i,A→B)(E) := S
Rauth

i

Ch(i,A→B)(Ẽ) ∧ E sent
Ch(i−1,A→B), (4)

R
Sauth

i

Ch(i,A→B)(E) := R
Rauth

i

Ch(i,A→B)(Ẽ) ∧ E received
Ch(i−1,A→B). (5)

Note that our model simply forces us to make this restriction explicit, whereas
this is often just hard-coded in games.5

All other parameters and predicates are preserved, e.g. L
Sauth

i

Ch(i,A→B)(E) :=

L
Rauth

i

Ch(i,A→B)(Ẽ). The security of the protocol can then be phrased as constructing
the ideal world Sauth

i from the real world Rauth
i , as summarized in the following

theorem.

Theorem 1. Let Rauth
i be as in (1), and let Sauth

i be as in (2), with the guarantees
and restrictions as described in (3), (4), and (5), respectively, and all others
guarantees unchanged from Rauth

i . Moreover, let τ map the event Eerror(sig-err,same)
Ch(i,A→B)

to E received(same)
Ch(i,A→B) . Then there exists an efficient simulator sim such that

sigA
i vrfB

i Rauth
i ≈̂τ simE Sauth

i ,

5 Actually, many recently proposed secure-messaging protocols do have this restriction,
which might limit their usability as pointed out by [1].

17

if the underlying signature scheme is unforgeable with unique signatures, and the
hash function is collision resistant.

Proof. The proof is found in the full version [11]. Note that compared to a normal
signature-scheme proof it is quite involved, which is the main price we pay for
our much stronger statement.

Extending to many messages. So far, we only considered a world where Alice
sends two messages, of which the second is authenticated. In a realistic setting,
Alice can of course send many messages where all of them should be authenticated.
In this section, we see how the composition theorem of Constructive Cryptography
can be applied to directly get the desired result.

In particular, we start with a sequence of possibly unauthenticated channels
Chi,A→B for i ∈ [n], where the authentication of Ch0,A→B can be seen as a setup
assumption (it is standard to assume that Alice and Bob initially share a signing-
verification key pair). Then, we iteratively apply the construction for two channels
to Ch0,A→B and Ch1,A→B, then to Ch1,A→B and Ch2,A→B, etc. (c.f. Figure 5). The
composition theorem of CC guarantees that the composed protocol constructs
the ideal world.

Corollary 1. Let Rauth and Sauth denote the following real and ideal worlds

Rauth :=
[{

Chi,A→B}
i∈{0,...,n},

{
Memski,A, IMemvki,B

}
i∈[n]

]
,

and

Sauth :=
[{

Chi,A→B}
i∈{0,...,n}

]
,

respectively. Then, there exists an efficient simulator sim such that

(sig1, . . . , sign)A (vrf1, . . . , vrfn)B Rauth ≈ simESauth,

where for each i ∈ [n], ISauth

Ch(i,A→B), SSauth

Ch(i,A→B), and RSauth

Ch(i,A→B) are defined as in
(3), (4), and (5), respectively.

5.2 Confidentiality from HIBE

In the following we discuss a protocol from [9] that uses hierarchical identity-based
encryption (HIBE) to add confidentiality to a sequence of channels. The protocol
was designed for a challenging setting, where we do not assume authentication
(as is usually done when talking about encryption). The reason is that in secure
messaging authentication cannot be guaranteed when the sender’s state is exposed.
This situation fits perfectly to our framework.

The protocol is described in the so-called sesqui-directional setting, introduced
in [24], meaning that the messages from both directions are considered, but only
the guarantees of one of the directions are under concern—here from Alice to
Bob. The bidirectional guarantees then follow directly from composition.

18

Ch0,A→B

Memsk1,A Memvk1,B

Ch1,A→B

Memsk2,A Memvk2,B

Ch2,A→B

sig1 vrf1

sig2 vrf2

Fig. 5: The first two steps constructing a sequence of authenticated channels: (1)
The protocol (sig1, vrf1) constructs a hybrid world, where the resources in the
dashed box are replaced by two channels Ch0,A→B and Ch1,A→B, where Ch1,A→B

is authenticated as long as Ch0,A→B is. (2) (sig2, vrf2) constructs the ideal world,
where Ch1,A→B and Ch2,A→B are authenticated as long as Ch0,A→B is.

Hierarchical identity-based encryption. A HIBE scheme consists of the
following four algorithms:

– A setup generation algorithm (mpk,msk)← HIBE.Setup(1κ; r), generating
the root master public and secret keys, i.e. sk() = msk.

– A key-generation algorithm skid‖idn
← HIBE.Kgen(skid, idn), where (id ‖

idn) := (id1, . . . , idn−1, idn) for an identity vector id = (id1, . . . , idn−1).
– An encryption algorithm c← HIBE.Enc(mpk, id,m; r).
– A decryption algorithm m← HIBE.Dec(skid, c).

We require the HIBE scheme to be IND-CCA secure with certain additional
properties that are not guaranteed by IND-CCA itself, but that most schemes
do provide (see the full version [11] for details).

The protocol overview. On a high level, the protocol proceeds in epochs,
where in each epoch Bob sends one message to Alice, and then Alice sends
a sequence of messages to Bob. In particular, Bob’s message contains a fresh
HIBE public key mpk. For simplicity, consider the first epoch, as depicted in
Figure 6 . When Alice sends her i-th message, she encrypts it with mpk, using
as the identity (the hashes of) all ciphertexts she sent before. Whenever Bob
receives a ciphertext ci, he decrypts it, derives the secret key for the new identity
(with ci appended) and erases the old key.

In the next epoch, Bob sends a new public key mpk′, and we repeat. One
subtle issue is how to run the epochs together. Note that, for example, Bob may
send a number of public keys without receiving a response, in which case he has

19

Alice Bob

sk()
c1←HIBE.Enc(mpk,(),m1) c1

(c1)
m1←HIBE.Dec(sk(),c1)

sk(c1)←HIBE.Kgen(sk(),c1)

sk(c1)
c2←HIBE.Enc(mpk,(c1),m2) c2

m2←HIBE.Dec(sk(c1),c2)

sk(c1,c2)←HIBE.Kgen(sk(c1),c2)

sk(c1,c2)

(c1, c2)

Fig. 6: The first epoch of the sesquidirectional HIBE protocol.

to store secret keys from a number of epochs. A fresh secret key is stored for
the empty identity, and when Bob receives a ciphertext, he updates all currently
stored secret keys. This means that Alice uses for encryption of the i-th message
a truncated transcript (cr, . . . , ci−1). In order for her to compute it, Bob sends
with each public key the index r of the last message he received.

Security intuition. Intuitively, this use of HIBE allows to achieve three goals.
The first is healing, achieved by exchanging fresh keys, as in most secure-messaging
schemes. The second is forward secrecy: exposing the secret key after the i-th
message is received does not affect the confidentiality of messages m1, . . . ,mi−1.
This holds, since Bob updated all the secret keys with the identity ci in the
meantime. Healing and forward secrecy could also be achieved by a forward-secure
PKE scheme. The last goal is the so-called post-impersonation security: an active
injection destroys the decryption keys, so that its leakage exposes no messages.
For this we need the hierarchy of identities. Roughly, injecting a message c′i
causes Bob to update his key to sk(cr,...,c′

i
). This key gives no information about

messages encrypted by Alice, since those will be for another identity (cr, . . . , ci).

The construction statement. To formalize these guarantees as a construction
statement, we first have to describe the real world in which the protocol is executed.
It consists of n channels from Alice to Bob (which the protocol protects) and n
channels in the opposite direction on which the master public keys are transmitted.
Moreover, Alice has memories to store the public keys and the transcript, and
randomness resources for the encryption. Bob, on the other hand, has memories
to store the secret keys and randomness resources for the key generation:

Rhibe :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n], IMempk,A,
{

Randkgj ,B
}
j∈[n],{

Memtri,A, Randenci,A
}
i∈[n],

{
Memsk(j,i),B

}
j∈[n],i∈[n+1]}

]
, (6)

where the index i indicates that the resource is related to transmitting the i-th
message from Alice to Bob, and the index j indicates the j-th epoch. A formal

20

description of the pair of converters implementing the protocol (hibe-enc, hibe-dec)
can be found in the full version [11].

The goal of the protocol is to enhance the confidentiality of the channels.
Thus, the same set of channels is present in the ideal world, while the memory
and randomness resources are used up:

Shibe :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n]

]
. (7)

Moreover, the ideal channels can trigger an additional error dec-err, indicating
that decryption failed (this error event corresponds to the real-world delivery
event when the adversary injects an invalid ciphertext).

We now proceed to formalize the confidentiality guarantees of Shibe by defining
in which situations the i-th message might be known to the adversary:
The randomness leaked: If the encryption randomness leaked to the adversary,

i.e., E leaked
Rnd(enci,A), then no PKE scheme can provide (full) confidentiality.

The master public key was set by Eve: If Alice encrypts using a master public
key (potentially) set by Eve, Eve can trivially decrypt. That is, if Alice used
the j-th master public key and E injected

Ch(j,B→A).
The secret key leaked: Assume Alice sent the i-th message during the j-th epoch,

and let sk(j,i) denote the secret key that Bob uses to decrypt that message.
If Eve learned sk(j,i), the message is obviously not confidential, which either
happens if the randomness used to generate the master secret key leaked or
a key that allows to compute sk(j,i) leaked from Bob’s memory:

E sk-leaked
i,j := E leaked

Rnd(kgj ,B)

∨ ∃k ∈ [rj , i] :
(
E leaked

Mem(sk(j,k),B) ∧ ∀` ∈ [rj , k] : ¬E injected
Ch(`,A→B)

)
,

where rj denotes the first message Bob received after sending the j-th public
key (rj is determined by the sent and received events in E). Note that the
last condition explicitly encodes the post-impersonation guarantee, meaning
that sk(j,k) is only useful as long as Eve did not destroy it by injecting her
own ciphertext. Forward-secrecy and healing, on the other hand, are encoded
implicitly by the order in which those events can happen in the real world.
We can make them more explicit by observing

E sk-leaked
i,j ⇐⇒ E sent

Ch(j,B→A) ≺ E
sk-leaked
i,j ≺ E received

Ch(i,A→B),

where the former condition denotes healing and the latter forward-secrecy.
In summary, we can define the following event denoting that the i-th message is
insecure

Eexposed
i := E leaked

Rnd(enci,A) ∨ E
injected
Ch(ji,B→A) ∨ E

sk-leaked
i,ji

,

where ji denotes the epoch in which the i-th message has been sent (which is
computable from the order of events in E), leading to

LShibe

Ch(i,A→B)(E) :=
{

silent if Eexposed
i

false otherwise.
(8)

21

Notice that the above can-leak function fully overwrites any real-world guarantees,
and silences the leaked events. This is because in the protocol Alice stores
the communication transcript. As a consequence, when her memory leaks, the
ciphertext leaks as well, even if the assumed channel was in fact confidential.
Moreover, this leakage does not correspond to the channel leaked event.

Analogous to the authentication scheme of the previous section, the HIBE
scheme also limits the availability of the channels to be sequential, due to the
hash-transcript used as identities. Moreover, Alice can obviously only encrypt
using master public keys she received the public key. This could be made formal
using the can-send and can-receive predicates S and R, respectively.

Working around the commitment problem. As described so far, the real
and ideal world hibe-encAhibe-decBRhibe and simEShibe, respectively, are easily
distinguishable for any simulator sim. The issue is the so-called commitment
problem of simulation based cryptography: if the distinguisher chooses to first
see a ciphertext and then leak the corresponding decryption key, this cannot
be simulated, since the simulator first has to output a fake ciphertext, before
getting to know the message, and then explain it by outputting a corresponding
decryption key. For normal PKE, and especially HIBE, schemes this is impossible.

One solution would be to consider static memory corruptions, where the set
of states that can be leaked to the adversary is a parameter of the construction
statement. Such a static guarantee is however weaker than the existing game-
based definitions and, thus, thwarts our goal of developing a unified model
to express the guarantees obtained by existing protocols. We thus opt for the
alternative solution to strengthen the real world analogous to how the games
disable certain oracles to prevent trivial impossibilities. To this end, we disallow
the adversary from obtaining the secret key sk(j,i) if this would allow to trivially
identify a fake ciphertext. That is, we assume

LRhibe

Mem(sk(j,i),B)(E) := ¬∃k > i :
(
Ecommitted
k,j ≺ Eexposed

k

)
, (9)

where Ecommitted
i,j denotes the event that the simulator commits on the i-th cipher-

text, and that it was encrypted under mpkj . More concretely, this happens if the
distinguisher
– explicitly asked for the ciphertext;
– requested a hash-transcript that depends on the ciphertext;
– requested a secret key for which the identity depends on the ciphertext;
– actively injected a ciphertext that got decrypted under a secret key whose

identity depends on the ciphertext under consideration,
leading to the following definition

Ecommitted
i,j := (ji = j) ∧

(
E leaked

Ch(i,A→B) ∨ E
leaked
Mem(tri,A) ∨

(
¬E injected

Ch(i,A→B)

∧ ∃k ≥ i :
(
E leaked

Mem(sk(j,k)) ∨ E
injected
Ch(k,A→B)

)))
,

where again ji denotes the epoch in which the i-th message has been sent.

22

While the construction statement loses its evident executional semantics mak-
ing those restrictions of the real world—it is no longer apparent what guarantees
one gets when executing the protocol in the actual world where the memory
leakage is obviously not restricted like this—it is analogous to game-based notions
where the adversary has to choose beforehand whether a message is a challenge
(and then prevents leaking the corresponding randomness or secret keys), or
is an insecure message just to advance the state. Phrasing it in a composable
framework, however, still has the advantage of modularity and reusability, that
is, each subprotocol can be proven secure independently and the overall security
directly following from the composition theorem.

Summary and analysis. The HIBE-based scheme achieves the so far described
construction, with one exception: to provide more power to the simulator and
make the construction statement provable, we need to silence the real-world
channels’ leaked events after the message is exposed, i.e, LRhibe

Ch(i,A→B) is arbitrary,
except that if Eexposed

i , it no longer evaluates to true.6

Observe that while having to silence the leakage event in the real world limits
reusability, the statement for instance is still generic enough to be composed with
the authentication scheme from the previous section: if the real world is restricted
like this (in the end, those events are just a mean to phrase dependencies and
carry no real semantics), then the signature scheme, which preserves the can-leak
predicate, and afterwards the HIBE scheme can be applied.

Overall, we have the following theorem, proven in the full version [11].

Theorem 2. Let Rhibe be as in (6) with the restrictions to work around the
commitment-problem from (9) and the restriction described above, and let Shibe

be as in (7) with the confidentiality guarantees from (8), and in-order sending
and receiving. Let τ map the event Eerror(dec-err,same)

Ch(i,A→B) to E received(same)
Ch(i,A→B) . Then there

exists an efficient simulator sim, such that

hibe-encA hibe-decB Rhibe ≈̂τ simE Shibe,

if the HIBE scheme is IND-CCA secure with our additional assumptions.

6 Adaptive Security

All protocols considered so far, and most of the ones in the literature, only achieve
a weakened construction statement, where, due to the commitment problem, we
assume that certain sequences of events cannot occur in the real world. Intuitively,
this means that the adversary is somewhat static: for example, when she decides to
see the contents of a channel (the ciphertext, in the real world), at the same time
she decides that she will not look at the contents of certain memory (the secret
key). While this is exactly what the standard game-based definitions guarantee,
when expressed in a composable framework, it seems rather unsatisfactory.
6 This doesn’t affect Ecommitted

i,j , that only considers leakage events before Eexposed
i .

23

Hence, in this section, we consider SM schemes that tolerate a fully adaptive
adversary, i.e, allow to “explain” ciphertexts whenever needed due to leakage
of secret keys. In particular, we present a technique that, given an SM protocol
that suffers from the commitment problem, allows to construct an adaptive
SM (ASM) protocol with almost the same guarantees, but that achieves fully
adaptive security. This comes at the cost of efficiency and being able to send
only a fixed number of messages without interaction. Applied to protocols with
optimal security [9 , 24], our technique enables even stronger guarantees.7 As an
example, we apply it to the HIBE protocol from Section 5.2 .

Note that while the technique we use is essentially a general compiler that
“removes” the commitment problem, formally phrasing such a theorem would be
rather cumbersome for at least two reasons. First, there is not just one game-
based defintion of an SM scheme that could be lifted and, second, we require the
specific simulation technique encoded in most game-based definitions, in contrast
to the existential simulator of our constructive SM statements.

6.1 Overview

Receiver non-committing encryption. The technical tool we use to construct
adaptively-secure secure-messaging (ASM) schemes with optimal security is so-
called receiver non-committing encryption (RNCE), introduced by Canetti et al.
[5]. Intuitively, in RNCE schemes, key generation outputs an additional trapdoor
z, ignored by honest parties and used by the simulator. Then, there are two ways
to generate a ciphertext: (1) an “honest” ciphertext is computed in the standard
way c← RNCE.E(pk,m) (so, as in any encryption scheme, it is a commitment to
the message), (2) a “fake” ciphertext is computed (by the simulator) without the
message, but with the secret key sk and the trapdoor z as c̃← RNCE.F(pk, sk, z).
Given a fake ciphertext c̃ and any message m, one can compute a secret key
s̃k ← RNCE.R(pk, sk, z, c̃,m) that explains the message-ciphertext pair (such
that RNCE.D(s̃k, c̃) = m). Moreover, the distributions (c, sk) (as in the real
world) and (c̃, s̃k) (as in the simulation) are indistinguishable. This allows to
explain a single ciphertext per public key.

The scheme. At a high level, the authors of [5] use RNCE to construct non-
committing forward-secure public-key encryption by encrypting with a standard
forward-secure public-key scheme RNCE ciphertexts instead of messages. We
generalize this idea (and the simulation technique) to SM protocols. In particular,
we can construct an ASM scheme by taking a standard SM scheme that suffers
from the commitment problem and sending, instead of messages, their RNCE
encryptions, where each message is encrypted with a different public key. When
a message is received, the secret key is immediately deleted. (For the moment,
assume that whenever Alice sends a message, an RNCE key pair is “magically”
7 In game-based definitions, one can think of the “corrupt” oracle not being silenced even
if the challenge has been issued, but instead outputting the secret state corresponding
to the challenge bit 0.

24

generated — Alice uses the public key, and the secret key immediately appears
stored in Bob’s state.) This way, the modified scheme inherits all guarantees of
the original SM scheme. Furthermore, it can be simulated in the adaptive setting,
as we will see below.

Let us now address the problem of how the RNCE keys are distributed. One
trivial solution would be to include ` key pairs as part of the setup: the parties
send their ` public keys at the beginning over an authenticated channel. First, this
way we can send only ` messages overall. But even worse, the RNCE keys do not
heal: when the receiver is corrupted for the first time, the simulator can explain
all messages sent so far, but it also has to commit to all RNCE secret keys. Hence,
adaptive security is never restored. To deal with this, we use the technique used
in all SM schemes: we send with each message an update, consisting of ` fresh
RNCE public keys. In particular, Alice (Bob will proceed analogously) stores
some public keys previously received from Bob. When she sends the i-th message,
she RNCE-encrypts it with one of the unused public keys, generates ` new key
pairs, stores the secret keys, and sends the RNCE ciphertext, the ` public keys
and i to Bob over the channel constructed by an SM scheme. Bob stores the
greatest index i he has seen so far. Whenever he sees a messsage with a greater
i, he ignores all RNCE public keys he has and replaces them by the ` newly
received ones. Unlike in the first trivial solution, in the above protocol adaptive
security is restored as fast as possible: with the first new message delivered from
the other party.

Simulation. We give an intuition of how the above protocol can be simulated.
Assume that the SM scheme has the standard simulator, as hard-coded in most
game-based definitions. In particular, he executes the protocol, and when a
memory is exposed, he shows to the distinguisher the real state. For ciphertexts
corresponding to confidential messages it shows encryptions of 0’s, while for
non-confidential ones it shows encryptions of the actual message.

In the adaptive setting, the real and the ideal world are easily distinguishable
for that simulator. This is because when a message is sent as confidential, and later
the memory is exposed, the distinguisher sees in the ideal world the encryption
of 0’s. However, we can fix this with our new scheme: the new simulator encrypts,
instead of 0’s, a fake RNCE ciphertext to generate a ciphertext corresponding to a
confidential message. When a memory is corrupted, he receives the message (which,
of course, can no longer be confidential) and computes the fake RNCE secret key
according to the fake ciphertext. RNCE guarantees that this is indistinguishable
from the real world, where we have honest ciphertext and an honest key.

A note on efficiency. First, observe that using a symmetric non-committing
encryption scheme, such as the one-time pad, instead of RNCE would not work.
This is because in many SM schemes corrupting the sender has no effect on
confidentiality, implying that upon such a corruption, the simulator needs to
output a key of the symmetric non-committing scheme without knowing the
messages (which trivially breaks against a distinguisher knowing the message).

25

Moreover, while our construction of using nested encryption appears to be
redundant, it can be observed that using RNCE only would not suffice. This
is because SM schemes can provide certain advanced confidentiality guarantees
not achieved by RNCE alone. For example, the optimal schemes such as [9 , 24]
provide so-called post-impersonation guarantees: once the adversary injects a
message to Bob (after corrupting Alice) and then corrupts Bob, all messages sent
by Alice afterwards are confidential.

Limitations. Our protocol requires a fixed upper bound on the number of messages
a party can send without interaction (in particular, after ` messages it needs a
new set of public keys from the partner). Unfortunately, overcoming this seems
unlikely with our approach. This is due to the impossibility result by Nielsen [20].
It essentially says that a non-committing non-interactive public-key encryption
scheme requires that the length of a secret key is at least the overall length of all
messages encrypted. This means that we would need non-committing encryption,
where the public and secret keys are updated, in other words, a non-committing
equivalent of HIBE. To the best of our knowledge, this does not exist yet.8

6.2 The Construction: Combining RNCE with HIBE

Recall that the HIBE protocol from Section 5.2 is designed for the sesqui-
directional setting, where it protects the confidentiality of messages sent by Alice.
In the protocol, Bob sends to Alice HIBE master public keys, which results in
epochs. In epoch j, Alice uses the j-th master public key to encrypt her messages
with the transcript as identity. In this section we consider the analogous setting
for the ASM protocol, consisting of RNCE composed with HIBE. That is, Bob
sends ` RNCE keys alongside the HIBE keys, and Alice uses them to additionally
encrypt her messages.

Hence, for the ASM construction we need in the real world the additional
randomness Randrenci,A for RNCE-encrypting the i-th message and Randrkgj ,B

for generating the j-th set of ` keys, compared to the real world from the HIBE
protocol. Moreover, we have memories Memrsk(j,k),B for storing the k-th RNCE
secret key, generated in epoch j, and insecure (rewritable) memories IMemrpk,A

for storing the set of RNCE public keys. Overall, the real-world resources are as
follows.

Rad-hibe :=
[
Rhibe,

{
Randrenci,A

}
i∈[n],

{
Randrkgj ,B

}
j∈[n], IMemrpk,A,{

Memrsk(j,k),B
}
j∈[n],k∈[`]

]
, (10)

where Rhibe should be understood as the same set of resources as in Section 5.2 .
The restrictions on those set of resources are dropped, on the other hand, since we
8 Note that the impossibility of [20] also rules out a solution where Alice RNCE-
encrypts for Bob a new RNCE secret key, used for the next message — this secret
key would leave no space for the message.

26

no longer need work around the commitment problem. This implies, however, that
we have to directly consider security of the overall compiled protocol, instead of
using the construction statement for HIBE and composition.9 A formal description
of the converters rnce-enc and rnce-dec implementing the RNCE protocol on top
of the HIBE protocol is given in Figure 7 .

In the ideal world, we have the same 2n channels: Sad-hibe := Shibe. Most
properties of the constructed channels are the same as in the HIBE construction.
In fact, our adaptive protocol only affects (1) availability — only ` messages can
be sent without interaction, and (2) confidentiality — we need to account for
the additional randomness and memory resources. Recall that the epoch ji in
which message i is sent by Alice is determined by the sent and received events.
With this, the restriction (1) can be expressed with the can-send and can-receive
predicate in a straightforward way.

Let us now focus on confidentiality. Recall that in the HIBE protocol, the
can-leak predicate was defined using the event Eexposed

i , denoting that the i-th
message sent by Alice is inherently insecure. We modify this event to account for
the additional resources used by RNCE. Specifically, the message is exposed if
the RNCE-encryption randomness leaks: E leaked

Rnd(renci,A), or if the RNCE secret key
leaks. The latter happens if Bob’s key-generation randomness leaks: E leaked

Rnd(rkgji
,B),

or if the secret key memory leaks: E leaked
Mem(rsk(ji,ki),B), where the i-th message was

the ki-th one sent in its epoch. Overall, this leads to the following composed
event:

Eexposed-ad
i := Eexposed

i ∨ E leaked
Rnd(renci,A) ∨ E

leaked
Rnd(rkgji

,B) ∨ E
leaked
Mem(rsk(ji,ki),B).

The leakage function LSad-hibe

Ch(A→B) is then defined analogously to that of the HIBE
construction silent in case of Eexposed-ad

i , and false otherwise. We stress that
the need to include these additional cases only arises from our fine-grained
modeling of memory and randomness. In reality, it makes sense to consider only
one memory storing the whole secret state, only one randomness for RNCE and
HIBE encryption, and so on. In such a model, the confidentiality of our adaptively
secure scheme and the non-adaptive one would coincide.

The security of our composed protocol is summarized in the following theorem.
The proof can be found in the full version [11].

Theorem 3. Let Rad-hibe be as in (10), and let Sad-hibe be as in above with the
described confidentiality guarantees, in-order sending and receiving, and the
restriction to ` messages per epoch. If the HIBE scheme is IND-CCA secure with
our additional assumptions, then there exists an efficient simulator sim, such that

rnce-encAhibe-encA rnce-decBhibe-decB Rad-hibe ≈̂τ simE Sad-hibe,

where τ is the same event mapping as in Theorem 2 .
9 In general, the simulator for the SM scheme simply does not output the secret state
from the commitment-causing memories, and our ASM simulator cannot generate it
himself, since this would be inconsistent with the rest of the SM simulation.

27

Converter rnce-enc

Emulating Interface A of Chi,A→B, i ∈ [n]
Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Read and update the state
call (j, k, PK)← read at int. A of IMemrpk,A

call (write, (j, k + 1, PK))
at interface A of IMemrpk,A

// Encrypt end send
call r ← sample at int. A of Randrenci,A

c← RNCE.E(PK[k],m; r)
call s← (send, c, (ad, j, k))

at interface A of Chi,A→B

return s

Input: isAvailable
call av ← isAvailable at int. A of Chi,A→B

call (j, k,PK)← read at int. A of IMemrpk,A

return av ∧ (j, k,PK) 6= ⊥ ∧ k ≤ `

Emulating Interface A of Chj,B→A, j ∈ [n]
Input: read
assume only called once
call (m, (ad, PK))← (read)

at interface A of Chj,B→A

call (j′,_,_)← read at int. A of IMemrpk,A

// Update the state if the keys are newer
than the stored ones.
if j = 1 ∨ j′ < j then

call (write, (j, 1, PK))
at interface A of IMemrpk,A

return (m, ad)

Input: isAvailable
call av ← isAvailable at int. A of Chj,B→A

return av

Converter rnce-dec

Emulating Interface B of Chj,B→A, j ∈ [n]
Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Generate ` new key pairs
call r1, . . . , r` ← (sample)

at interface A of Randrkgj ,B

for k ∈ [`] do
(pkk, skk)← RNCE.G(rk)
call (write, skk)

at interface B of Memrsk(j,k),B

call s← (write,m, (ad, [pk1, . . . , pk`]))
at interface A of Chj,B→A

return s

Input: isAvailable
call av ← isAvailable at int. B of Chj,B→A

return av

Emulating Interface B of Chi,A→B, i ∈ [n]
Input: read

call (c, (ad, j, k))← (read)
at interface A of Chi,A→B

if (c, (ad, j, k)) = ⊥ then return ⊥

// Get the secret key and decrypt
call sk ← read at int. B of Memrsk(j,k),B

if sk 6= ⊥ then
m← RNCE.D(sk, c)
call erase at int. B of Memrsk(j,k),B

if m 6= ⊥ then return (m, ad)
else return ⊥

Input: isAvailable
call av ← isAvailable at int. B of Chi,B→A

return av

Fig. 7: The RNCE part of the adaptively-secure protocol in the sesqui-directional
setting.

28

References

[1] Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2019. Springer International Publishing, Berlin,
Heidelberg (2019)

[2] Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: The security of messaging. In: Advances in Cryptology
– CRYPTO 2017. pp. 619–650 (2017)

[3] Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concurrently
composable security with shielded super-polynomial simulators. In: Coron, J.S.,
Nielsen, J.B. (eds.) Advances in Cryptology – EUROCRYPT 2017. pp. 351–381.
Springer International Publishing, Cham (2017)

[4] Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: 42nd IEEE Symposium on Foundations of Computer Science – FOCS
2001. pp. 136–145. IEEE Computer Society (2001)

[5] Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005: 2nd Theory of Cryptography Conference.
Springer, Heidelberg, vol. 3378, pp. 150–168. Springer, Heidelberg (2005)

[6] Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) Advances in Cryptology – EUROCRYPT
2002. pp. 337–351. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

[7] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal Se-
curity Analysis of the Signal Messaging Protocol. 2nd IEEE European Symposium
on Security and Privacy, EuroS and P 2017 pp. 451–466 (2017)

[8] Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. Cryptology ePrint Archive, Report 2018/889 (2018), https:
//eprint.iacr.org/2018/889

[9] Jaeger, J., Stepanovs, I.: Optimal Channel Security Against Fine-Grained State
Compromise: The Safety of Messaging. In: Shacham, H., Boldyreva, A. (eds.)
Advances in Cryptology – CRYPTO 2018. pp. 33–62. Springer (2018)

[10] Jost, D., Maurer, U., Marta, M.: Efficient ratcheting: Almost-optimal guarantees
for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019. Springer International Publishing, Berlin, Heidelberg (2019)

[11] Jost, D., Maurer, U., Marta, M.: A unified and composable take on ratcheting.
Cryptology ePrint Archive, Report 2019/694 (2019), https://eprint.iacr.org/
2019/694

[12] Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (de-)constructing
tls 1.3. In: Biryukov, A., Goyal, V. (eds.) Progress in Cryptology – INDOCRYPT
2015. pp. 85–102. Springer International Publishing, Cham (2015)

[13] Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is ssl?). In: Kilian, J. (ed.) Advances in Cryptology —
CRYPTO 2001. pp. 310–331. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

[14] Kuesters, R., Tuengerthal, M., Rausch, D.: The iitm model: a simple and expressive
model for universal composability. Cryptology ePrint Archive, Report 2013/025
(2013), https://eprint.iacr.org/2013/025

[15] Maurer, U.: Constructive Cryptography–A New Paradigm for Security Definitions
and Proofs. In: Theory of Security and Applications – TOSCA 2011, pp. 33–56.
Springer Berlin Heidelberg (2011)

29

https://eprint.iacr.org/2018/889
https://eprint.iacr.org/2018/889
https://eprint.iacr.org/2019/694
https://eprint.iacr.org/2019/694
https://eprint.iacr.org/2013/025

[16] Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2002. pp. 110–132. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2002)

[17] Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. pp. 130–149. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

[18] Maurer, U., Renner, R.: Abstract cryptography. In: In Innovations in Computer
Science – ICS 2011, pp. 1–21. Tsinghua University (2011)

[19] Maurer, U., Renner, R.: From Indifferentiability to Constructive Cryptography
(and Back). In: Theory of Cryptography – TCC 2016, pp. 3–24. Springer Berlin
Heidelberg (2016)

[20] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) Advances in Cryptology –
CRYPTO. Lecture Notes in Computer Science, vol. 2442, pp. 111–126. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8

[21] Open Whisper Systems. Signal protocol library for java/android. GitHub repos-
itory (2017), https://github.com/WhisperSystems/libsignal-protocol-java ,
accessed: 2018-10-01

[22] Pass, R.: Simulation in quasi-polynomial time, and its application to protocol
composition. In: Biham, E. (ed.) Advances in Cryptology — EUROCRYPT 2003.
pp. 160–176. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

[23] Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and
its application to secure message transmission. In: Proceedings 2001 IEEE
Symposium on Security and Privacy – S&P 2001. pp. 184–200 (May 2001).
https://doi.org/10.1109/SECPRI.2001.924298

[24] Poettering, Bertram and Rösler, Paul: Towards Bidirectional Ratcheted Key Ex-
change. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO
2018. pp. 3–32. Springer International Publishing, Cham (2018)

[25] Prabhakaran, M., Sahai, A.: New notions of security: Achieving universal com-
posability without trusted setup. In: Proceedings of the Thirty-sixth Annual
ACM Symposium on Theory of Computing. pp. 242–251. STOC ’04, ACM,
New York, NY, USA (2004). https://doi.org/10.1145/1007352.1007394, http:
//doi.acm.org/10.1145/1007352.1007394

30

https://github. com/WhisperSystems/libsignal-protocol-java
http://doi.acm.org/10.1145/1007352.1007394
http://doi.acm.org/10.1145/1007352.1007394

	A Unified and Composable Take on Ratcheting

