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Abstract. Homomorphic encryption (HE) is often viewed as impracti-
cal, both in communication and computation. Here we provide an addi-
tively homomorphic encryption scheme based on (ring) LWE with nearly
optimal rate (1 − ε for any ε > 0). Moreover, we describe how to com-
press many Gentry-Sahai-Waters (GSW) ciphertexts (e.g., ciphertexts
that may have come from a homomorphic evaluation) into (fewer) high-
rate ciphertexts.
Using our high-rate HE scheme, we are able for the first time to de-
scribe a single-server private information retrieval (PIR) scheme with
sufficiently low computational overhead so as to be practical for large
databases. Single-server PIR inherently requires the server to perform at
least one bit operation per database bit, and we describe a rate-(4/9)
scheme with computation which is not so much worse than this inher-
ent lower bound. In fact it is probably less than whole-database AES
encryption – specifically about 2.3 mod-q multiplication per database
byte, where q is about 50 to 60 bits. Asymptotically, the computational
overhead of our PIR scheme is Õ(log log λ + log log logN), where λ is
the security parameter and N is the number of database files, which are
assumed to be sufficiently large.

1 Introduction

How bandwidth efficient can (fully) homomorphic encryption ((F)HE) be? While
it is easy to encrypt messages with almost no loss in bandwidth, the same is
generally not true for homomorphic encryption: Evaluated ciphertexts in con-
temporary HE schemes tend to be significantly larger than the plaintext that
they encrypt, at least by a significant constant factor and often much more.

Beyond the fundamental theoretical interest in the bandwidth limits of FHE,
a homomorphic scheme with high rate has several applications. Perhaps the most
obvious is for private information retrieval (PIR), where bandwidth is of the
essence. While HE can clearly be used to implement PIR, even the best PIR im-
plementation so far (such as [1, 3]) are still quite far from being able to support
large databases, mostly because the large expansion factor of contemporary HE
schemes. Another application can be found in the work of Badrinarayanan et al.
[6], who showed that compressible (additive) homomorphic encryption with rate
better than 1/2 can be used for a high-rate oblivious transfer, which in turn can
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be used for various purposes in the context of secure computation. Alas, prior
to our work the only instantiation of high rate homomorphic encryption was the
Damg̊ard-Jurik cryptosystem [14], which however is (a) only additively homo-
morphic, (b) rather expensive, and (c) insecure against quantum computers.

In this work we remedy this situation, devising the first compressible fully
homomorphic encryption scheme, and showing how to use it to get efficient PIR.
Namely, we describe an (F)HE scheme whose evaluated ciphertexts can be pub-
licly compressed until they are roughly the same size as the plaintext that they
encrypt. Our compressible scheme can take “bloated” evaluated ciphertexts of
the GSW cryptosystem [17], and cram them into high-rate matrix-encrypting
matrix-ciphertexts. The ratio of the aggregate plaintext size to the aggregate
ciphertext size can be 1 − ε for any ε (assuming the aggregate plaintext is suf-
ficiently large, proportional to 1/ε3). The compressed ciphertexts are no longer
GSW ciphertexts. However, they still have sufficient structure to allow additive
homomorphism, and multiplication by encryption of small scalars, all while re-
maining compressed.1 Just like GSW, the security of our scheme is based on
the learning with errors assumption [31] or its ring variant [26]. (Also circular
security assumption to get fully homomorphic encryption.)

We note that a compressible fully homomorphic encryption easily yields an
end-to-end rate-efficient FHE: Freshly encrypted ciphertexts are immediately
compressed during encryption,2 then “decompressed” using bootstrapping before
any processing, and finally compressed again before decryption. The resulting
scheme has compressed ciphertexts at any time, which are only temporarily
expanded while they are being processed.

1.1 Applications to PIR

We describe many optimizations to the basic scheme, yielding a single-server
private information retrieval scheme with low communication overhead, while
at the same time being computationally efficient. Asymptotically, the computa-
tional overhead is Õ(log log λ+ log log logN), where λ is the security parameter
and N is the number of database files, which are assumed to be sufficiently large.

While we did not implement our PIR scheme, we explain in detail why we
estimate that it should be not only theoretically efficient but also practically
fast. Specifically, we can get a rate 4/9 single-server PIR scheme,3 in which the
server’s amortized work is only 2.3 single-precision modular multiplications for
every byte in the database. For a comparison point, the trivial PIR solution of
sending the entire database will have to at least encrypt the whole database (for
communication security), hence incurring a cost of an AES block encryption per

1 Of course, these operations increase the noisiness of the ciphertexts somewhat.
2 One could even use hybrid encryption, where fresh ciphertexts are generated using,

e.g., AES-CTR, and the AES key is send along encrypted under the FHE.
3 The rate can be made arbitrarily close to one without affecting the asymptotic effi-

ciency, but the concrete parameters of this solution are not appealing. See discussion
at the end of section 5.
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16 database bytes, which is surely more work than what our scheme does. Thus,
contra Sion-Carbunar [33], PIR is finally more efficient than the trivial solution
not only in terms of communication, but also in terms of computation.

Those accustomed to thinking of (R)LWE-based homomorphic encryption as
impractical may find the low computational overhead of our PIR scheme hard
to believe. However, RLWE-based HE – in particular, the GSW scheme with
our adaptations – really shines in the PIR setting for a few reasons. First, the
noise in GSW ciphertexts grows only additively with the degree when the mes-
sages multiplied from the left are in {0, 1}. (The receiver’s GSW ciphertexts will
encrypt the bits of its target index.) Second, even though we obviously need
to do Ω(N) ciphertext operations for a database with N files, we can ensure
that the noise grows only proportionally to logN (so its bit size only grows
with log logN). The small noise growth allows our PIR scheme to use a small
RLWE modulus q = Õ(logN + λ) that in practice is not much larger than one
would use in a basic RLWE-based PKE scheme. Third, we can exploit the recur-
sive/hierarchical nature of the classic approach to single-server PIR [23, 35] to
hide the more expensive steps of RLWE-based homomorphic evaluation, namely
polynomial FFTs (and less importantly, CRT lifting). In the classical hierarchi-
cal approach to PIR, the computationally dominant step is the first step, where
we project the effective database size from N = N1 × · · · ×Nd down to N/N1.
To maximize the efficiency of this first step, we can preprocess the polynomials
of the database so that they are already in evaluation representation, thereby
avoiding polynomial FFTs and allowing each (log q)-bit block of the database to
be “absorbed” into an encrypted query using a small constant number of mod-q
multiplications.4 Therefore, the computational overhead of the first step boils
down to just the overhead of multiplying integers modulo q, where this over-
head is Õ(log log q), where (again) q is quite small. After the first step of PIR,
GSW-esque homomorphic evaluation requires converting between coefficient and
evaluation representation of polynomials, but this will not significantly impact
the overhead of our PIR scheme, as the effective database is already much smaller
(at most N/N1), where we will take N1 = Θ̃(logN + λ).

1.2 Related Work

Ciphertext compression. Ciphertext compression has always had obvious ap-
peal in the public-key setting (and even sometimes in the symmetric key context,
e.g., [22]). In the context of (F)HE, one can view “ciphertext packing” [30, 34, 9,
8], where each ciphertext encrypts not one but an array of plaintext elements, as
a form of compression. Other prior works included a “post-evaluation” ciphertext
compression techniques, such as the work of van Dijk et al. [36] for integer-based
HE, and the work of Hohenberger et al. for attribute-based encryption [18].
However, the rate achieved there is still low, and in fact no scheme prior to our
work was able to break the rate-1/2 barrier. (Hence for example no LWE-based

4 In the first step, the server generates N1 ciphertexts from the client’s logN1 cipher-
texts, which includes FFTs, but their amortized cost is insignificant when N1 � N .
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scheme could be used for the high-rate OT application of Badrinarayanan et al.
[6].)

The only prior cryptosystem with homomorphic properties that we know of
with rate better than 1/2 is due to Damg̊ard and Jurik [14]. They described an
extension of the Paillier cryptosystem [29] that allows rate-(1− o(1)) encryption
with additive homomorphism: In particular, a mod-Ns plaintext can be en-
crypted inside a mod-Ns+1 ciphertext for an RSA modulus N and an arbitrary
exponent s ≥ 1.

Finally, a concurrent work by Döttling et al. [15] and follow-up work by
Brakerski et al. [7] also achieves compressible variants of HE/FHE. The former
work achieves only weaker homomorphism but under a wide variety of hardness
assumptions, while the latter achieves FHE under LWE. The constructions in
those works are more general than ours, but they are unlikely to yield practical
schemes for applications such as PIR.

Private information retrieval. Private information retrieval (PIR) [12] lets
a client obtain the N -th bit (or file) from a database while keeping its target
index i ∈ [N ] hidden from the server(s). To rule out a trivial protocol where
the server transmits the entire database to the client, it is required that the
total communication is sublinear in N . Chor et al. provided constructions with
multiple servers, and later Kushilevitz and Ostrovsky [23] showed that PIR is
possible even with a single server under computational assumptions.

Kiayias et al. [21] (see also [25]) gave the first single-server PIR scheme
with rate (1 − o(1)), based on Damg̊ard-Jurik [14]. However, Damg̊ard-Jurik is
computationally too expensive to be used in practice for large-scale PIR [33,
28], at a minimum, PIR using Damg̊ard-Jurik requires the server to compute a
mod-N multiplication per bit of the database, where N has 2048 or more bits.
The papers [21, 25] expressly call for an underlying encryption scheme to replace
Damg̊ard-Jurik to make their rate-optimal PIR schemes computationally less
expensive.

In terms of computation, the state-of-the-art PIR scheme is XPIR by Aguilar-
Melchor et al. [1], with further optimizations in the SealPIR work of Angel et al.
[3]. This scheme is based on RLWE and features many clever optimizations, but
Angel et al. commented that even with their optimizations “supporting large
databases remains out of reach.” Concretely, the SealPIR results from [3, Fig. 9]
indicate server workload of a few hundred cycles per database byte, for a rate of
roughly 1/1000. In contrast, our construction yields rate close to 1/2, and the
server work-load is roughly 2.3 single-precision modular multiplication per byte
(this should be less than 20 cycles).

Organization. Some background information regarding LWE and the GSW
scheme is provided in section 2. In section 3 we define compressible HE, in
section 4 we describe our compresisble (F)HE scheme, and in section 5, we
describe our PIR scheme.
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2 Background on Gadget Matrices, LWE, PVW and
GSW

Gadget Matrices. Many lattice cryptosystems (including GSW [17]) use a
rectangular gadget matrix [27], G ∈ Rn×mq to add redundancy. For a matrix C
of dimension n × c we denote by G−1(C) a matrix of dimension m × c with
small coefficients such that G · (G−1(C)) = C (mod q). Below we also use the
convention that G−1(C) is always a full rank matrix over the rationals5. In
particular we denote by G−1(0) a matrix M with small entries and full rank over
the rationals, such that G ·M = 0 (mod q) (so clearly M does not have full rank
modulo q). Often G is set to be In1 ⊗g where g is the vector (1, 2, . . . , 2blog qc) –
that is, m = n1dlog qe and G’s rows consists of shifts of the vector g. In this case,
one can efficiently find a suitable G−1(C) that has coefficients in {0, 1}. More
generally with g = (1, B, . . . , BblogB qc), G−1(C) has coefficients in [±B/2].

(Ring) Learning With Errors (LWE). Security of many lattice cryptosys-
tems is based on the hardness of the decision (ring) learning with errors (R)LWE
problem [31, 26]. LWE uses the ring of integers R = Z, while RLWE typically
uses the ring of integers R of a cyclotomic field. A “yes” instance of the (R)LWE
problem for modulus q, dimension k, and noise distribution χ over R consists of
many uniform ai ∈ Rkq together with the values bi := 〈s,ai〉+ ei ∈ Rq where s
is a fixed secret vector and ei ← χ. In a “no” instance, both the ai’s and bi’s
are uniform. The decision (R)LWE assumption is that the two distributions are
computationally indistinguishable – i.e., that “yes” instances are pseudorandom.
Typically, χ is such that ‖ei‖∞ < α for some size bound α with probability over-
whelming in the security parameter λ. The security parameter also lower bounds
the ring size and/or the dimension k,and the ratio α/q.

LWE with Matrix Secrets. An LWE instance may (more generally) be as-
sociated to a secret matrix S′, and one can prove via a hybrid argument that
breaking the matrix version of LWE is as hard as breaking conventional LWE. In
this version, a “yes” instance consists of a uniform matrix A and B = S′A+E.
Let us give dimensions to these matrices: S′ is n0 × k, A is k ×m, B and E are
n0 × m. (See Figure 2 for an illustration of these matrices.) Set n1 = n0 + k.
Set S = [S′|I] ∈ Rn0×n1

q and P to be the matrix with −A on top of B. Then
SP = E mod q. The LWE assumption (matrix version) says that this P is pseu-
dorandom.

Regev and PVW Encryption. Recall that in the Regev cryptosystem, a bit
σ ∈ {0, 1} is encrypted relative to a secret-key vector s ∈ Zn+1

q (with 1 in the
last coordinate), as a vector c ∈ Zn+1

q such that 〈s, c〉 = dq/2c · σ + e (mod q),
with |e| < q/4. More generally the plaintext space can be extended to Rp for
some p < q, where a scalar σ ∈ Rp is encrypted as a vector c ∈ Rn+1

q such that
〈s, c〉 = dq/pc · σ + e (mod q), with ‖e‖∞ < q/2p. (There is also a public key in
this cryptosystem and an encryption procedure, but thoese are not relevant to
our construction.)

5 More generally, if the matrices are defined over some ring R then we require full
rank over the field of fractions for that ring.
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Peikert et al. described in [30] a batched variant of this cryptosystem (called
PVW), where the plaintext is a vector σ ∈ Rkp , the secret key is a matrix

S = (S′|I) ∈ Rn×(n+k)q and the encryption of σ is a vector c ∈ Rn+kq such that
S · c = dq/pc · σ + e with ‖e‖∞ < q/2p. For notational purposes, it will be
convenient to use a “matrix variant” of PVW, simply encrypting many vectors
and putting them in a matrix. Here the plaintext is a matrix Σ ∈ Rk×mp (for

some m), and the encryption of Σ is a matrix C ∈ R(n+k)×m
q such that SC =

dq/pc ·Σ +E with ‖E‖∞ < q/2p.
The Regev and PVW cryptosystems are additively homomorphic, supporting

addition and multiplication by small scalars, as long as the noise remains small

enough. The information rate of the PVW cryptosystem is |q||p| ·
k

n+k , which can

be made very close to one if we use k � n and q ≈ p1+ε. Indeed this forms the
basis for one variant of our compressible (F)HE construction.

GSW Encryption with Matrix Secret Keys. We use (a slight variant of)
the GSW cryptsystem of Gentry et al. [17], based on LWE with matrix secret as
above. Namely the secret key is a matrix S and the public key is a pseudorandom
matrix P such that SP = E mod q for a low-norm noise matrix E.

The plaintext space of GSW are (small) scalars. To encrypt σ ∈ Rq under
GSW, the encrypter chooses a random m × m matrix X whose entries have
small norm, and outputs C = σ ·G+P ·X ∈ Rn1×m

q (operations modulo q). To
decrypt, one computes

S · C = σ · S ·G+ S · P ·X = σ · S ·G+ E′ (mod q), (1)

where E′ = E · X has small norm. Assuming E′ has coefficients bounded by
an appropriate β, then E′ · G−1(0) will have entries too small to wrap modulo
q, allowing the decrypter to recover E′ (since G−1(0) is invertible) and hence
recover σ · S · G. As S · G has rank n0 (in fact it contains In0

as a submatrix),
the decrypter can obtain σ.

Matrix GSW? We can attempt to use the same GSW invariant (1) to encrypt
matrices, where a ciphertext matrix C GSW-encrypts a plaintext matrix M if
S · C = M · S · G + E (mod q) for a small noise matrix E. The exact same
decryption procedure as above works also in this case, allowing the decrypter to
recover E, then M · S ·G, and then M .

However, the encryption procedure above does not work for matrices in gen-
eral, it is unclear how to obtain such a GSW-encryption C of M when M is not
a scalar matrix (i.e., of the form σ · I). If we want to set C = M ′ ·G+ P ·X as
before, we need M ′ to satisfy S ·M ′ = M · S, and finding such an M ′ seems to
require knowing S. (For a scalar matrix M = σ · I, M ′ is just the scalar matrix
with the same scalar, but in a larger dimension.) Hiromasa et al. [20] show how
to obtain a version of GSW that encrypts non-scalar matrices, assuming LWE
and a circular security assumption. In our context, our GSW ciphertexts only
encrypt scalars so we rely just on LWE without circular encryptions.

Homomorphic Operations in GSW. Suppose we have C1 and C2 that GSW-
encrypt M1 and M2 respectively (scalar matrices or otherwise). Then clearly
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C1 + C2 GSW-encrypts M1 + M2, provided that the sum of errors remains β-
bounded. For multiplication, set C× = C1 ·G−1(C2) mod q. We have:

S · C× = (M1 · S ·G+ E1) ·G−1(C2) = M1 ·M2 · S ·G+M1 · E2 + E1 ·G−1(C2).

Thus, C× GSW-encrypts M1 ·M2 provided that the new error E′ = M1 · E2 +
E1 ·G−1(C2) remains β-bounded. In the new error, the term E1 ·G−1(C2) is only
slightly larger than the original error E1, since G−1(C2) has small coefficients.
To keep the term M1 ·E2 small, there are two strategies. First, if M1 corresponds
to a small scalar – e.g., 0 or 1 – then this term is as small as the original error
inside C2. Second, if E2 = 0, then this term does not even appear. For example,
if we want to homomorphically multiply-by-constant σ2 ∈ Rq, we can just set
C2 = σ2 ·G (without any P ·X), and compute C× as above. The plaintext inside
C1 will be multiplied by σ2, and the new error will not depend on either σ1 or
σ2, which therefore can be arbitrary in Rq.

3 Defining Compressible (F)HE

Compressible (F)HE is defined similarly to standard (F)HE, except that decryp-
tion is broken into first compression and then “compressed decryption.” Here we
present the definition just for the simple case of 1-hop fully homomorphic en-
cryption for bits, but the same type of definition applies equally to multiple hops,
different plaintext spaces, and/or partially homomorphic. (See [19] for detailed
treatment of all these variations.)

Definition 1. A compressible fully homomorphic encryption scheme consists of
five procedures, (KeyGen,Encrypt,Evaluate,Compress,Decrypt):

– (s, pk) ← KeyGen(1λ). Takes the security parameter λ and outputs a se-
cret/public key-pair.

– c ← Encrypt(pk, b). Given the public key and a plaintext bit, outputs a low-
rate ciphertext.

– c′ ← Evaluate(pk, Π, c). Takes a public key pk, a circuit Π, a vector of low-
rate ciphertexts c = 〈c1, . . . , ct〉, one for every input bit of Π, and outputs
another vector of low-rate ciphertexts c′, one for every output bit of Π.

– c∗ ← Compress(pk, c′). Takes a public key pk and a vector of low-rate ci-
phertexts c = 〈c1, . . . , ct〉, and outputs one or more compressed ciphertexts
c∗ = 〈c∗1, . . . , c∗s〉.

– b ← Decrypt(s, c∗). On secret key and a compressed ciphertext, outputs a
string of plaintext bits.

We extend Decrypt to a vector of compressed ciphertexts by decrypting each
one separately. The scheme is correct if for every circuit Π and plaintext bits
b = (b1, . . . , bt) ∈ {0, 1}t, one for every input bit of Π,

Pr

[
(s, pk)← KeyGen(1λ), c← Encrypt(pk, b), c′ ← Evaluate(pk, Π, c)

: Π(b) is a prefix of Decrypt(s,Compress(pk, c′))

]
= 1.

(2)
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S'
A

B
x +=

P
(pseudorandom)

k

k
m

n0

n0

m

n1

S' IS =
n0

n1

E
(small)n0

m

B

-A

=

(mod q)

so S x P = E (mod q)

H
(nearly square)

n0
n2

x
F = H-1(0)
(somewhat 

small)

n2

n2

=  0 (mod q)

M
n0

0

n1

m

n0

P x
R

(small)

m

m or n2

R*
(pseudorandom)= (mod q)

·G ∈ Zq
n1 x m is a “very redundant” scalar, C= G +R* mod q is  a GSW ctxt

M* = M’ x H ∈ Zq
n1 x n2 “somewhat redundant” matrix,  C*=M*+R* mod q compressed ctxt

n1

m or n2

k n0

k

n0

M’

k

=

so S x M’ = M

Fig. 1. An illustration of the matrices in our construction. For some small ε > 0 we
have n1 = n0 +k ≈ n2 = n0(1 + ε/2) and m = n1 log q. So, n0 ≈ 2k/ε. Also, for correct
decryption of ciphertexts with error E using gadget matrix H we require ‖E‖∞ < qε/2.
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(We allow prefix since the output of Decrypt could be longer than the output
length of Π.)

The scheme has rate α = α(λ) ∈ (0, 1) if for every circuit Π with sufficiently
long output, plaintext bits b = (b1, . . . , bt) ∈ {0, 1}t, and low rate ciphertexts
c′ ← Evaluate(pk, Π,Encrypt(pk, b)) as in eq. (2) we have

|Compress(pk, c′)| · α ≤ |Π(b)|.

(We note that a similar approach can be used also when talking about com-
pression of fresh ciphertexts.)

4 Constructing Compressible (F)HE

On a high level, our compressible scheme combines two cryptosystems: One is
a low-rate (uncompressed) FHE scheme, which is a slight variant of GSW, and
the other is a new high-rate (compressed) additively-homomorphic scheme for
matrices, somewhat similar to the matrix homomorphic encryption of Hiromasa
et al. [20]. What makes our scheme compressible is that these two cryptosystems
“play nice,” in the sense that they share the same secret key and we can pack
many GSW ciphertexts in a single compressed ciphertext.

The low-rate scheme is the GSW variant from section 2 that uses matrix
LWE secrets. The secret key is a matrix of the form S = [S′|I], and the public
key is a pseudorandom matrix P satisfying S × P = E (mod q), with q the
LWE modulus and E a low norm matrix. This low-rate cryptosystem encrypts
small scalars (often just bits σ ∈ {0, 1}), the ciphertext is a matrix C, and the
decryption invariant is SC = σSG+E (mod q), with G the gadget matrix and
E a low-norm matrix.

For the high-rate scheme we describe two variants, both featuring matrices
for keys, plaintexts, and ciphertexts. One variant of the high-rate scheme is the
PVW batched encryption scheme [30] (in its matrix notations), and another
variant uses a new type of “nearly square” gadget matrix. Both variants have
the same asymptotic efficiency, but using the gadget matrix seems to yield better
concrete parameters, at least for our PIR application. The PVW-based variant
is easier to describe, so we begin with it.

4.1 Compressible HE with PVW-Like Scheme

We now elaborate on the different procedures that comprise our compressible
homomorphic encryption scheme.

Key Generation. To generate a secret/public key pair we choose two uniformly
random matrices S′ ∈ Rn0×k

q and A ∈ Rk×mq and a small matrix E ← χn0×m,
and compute the pseudorandom matrix B := S′ ×A+ E ∈ Rn0×m

q .
The secret key is the matrix S = [S′|In0

] ∈ Rn0×n1
q and the public key is

P =
[−A
B

]
∈ Rn1×m

q , and we have S × P = S′ × (−A) + I ×B = E (mod q).
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Encryption and Evaluation. Encryption and decryption of small scalars and
evaluation of circuit on them is done exactly as in the GSW scheme. Namely a
scalar σ ∈ R is encrypted by choosing a matrix X ∈ Rm×m with small entries,
then outputting the ciphertext C := σG+ PX (mod q). These low-rate cipher-
texts satisfy the GSW invariant, namely SC = σSG+ E (mod q) with E � q.
These being GSW ciphertexts, encryption provides semantic security under the
decision LWE hardness assumption [17].

Evaluation is the same as in GSW, with addition implemented by just adding
the ciphertext matrices modulo q and multiplication implemented as C× :=
C1 × G−1(C2) mod q. Showing that these operations maintain the decryption
invariant (as long as the encrypted scalars are small) is done exactly as in GSW.

Compression. The crux of our construction is a compression technique that
lets us pack pack many GSW bit encryptions into a single high-rate PVW ci-
phertext. Let p < q be the plaintext and ciphertext moduli of PVW and denote
f = dq/pc. (The ciphertext modulus q is the same one that was used for the
GSW encryption.) Also denote ` = blog pc, and consider ` ·n20 GSW ciphertexts,
Cu,v,w ∈ Zn1×m

q , u, v ∈ [n0], w ∈ [`], each encrypting a bit σi,j,k ∈ {0, 1}. Namely
we have S×Cu,v,w = σu,v,w ·SG+Eu,v,w (mod q) for low norm matrices Eu,v,w.

We want to pack all these ciphertexts into a single compressed PVW ci-
phertext, namely a matrix C ∈ Zn1×n0

q such that SC = f · Z + E′ (mod q)
where Z ∈ Zn0×n0

p is a plaintext matrix whose bit representation contains all
the σu,v,w’s (and E′ is a noise matrix with entries of magnitude less than f/2).

Denote by Tu,v the square n0 × n0 singleton matrix with 1 in entry (u, v)
and 0 elsewhere, namely Tu,v = eu⊗ev (where eu, ev are the dimension-n0 unit
vectors with 1 in positions u, v, respectively). Also denote by T ′u,v the padded

version of Tu,v with k zero rows on top, T ′u,v =
[

0
eu⊗ev

]
∈ Zn1×n0

q . We compress

the Cu,v,w’s by computing

C∗ :=
∑
u,v,w

Cu,v,w ×G−1(f · 2w · T ′u,v) (mod q). (3)

Since T ′u,v are n1×n0 matrices, then G−1(f · 2w ·T ′u,v) are m×n0 matrices, and
since the Cu,v,w’s are n1 ×m matrices then C∗ ∈ Zn1×n0

q , as needed. Next, for

every u, v denote zuv =
∑`
w=0 2wσu,v,w ∈ [p], and we observe that

S × C∗ =
∑
u,v,w

S × Cu,v,w ×G−1(f · 2w · T ′u,v)

=
∑
u,v,w

(σu,v,wS G+ Eu,v,w)×G−1(f · 2w · T ′u,v)

=
∑
u,v,w

f · 2w · σu,v,wS T ′u,v +

E′︷ ︸︸ ︷∑
u,v,w

Eu,v,w ×G−1(f · 2w · Tu,v)

= f ·
∑
u,v

zu,vS T ′u,v + E′
(∗)
= f ·

Z︷ ︸︸ ︷∑
u,v

zu,vTu,v +E′, (4)
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where Z = [zu,v] ∈ [p]n0×n0 . (The equality (∗) holds since S = [S′|I] and T ′ =[
0
T

]
and therefore ST ′ = S′ × 0 + I × T = T .)

Compressed decryption. Compressed ciphertexts are just regular PVW ci-
phertexts, hence we use the PVW decryption procedure. Given the compressed
ciphertext C∗ ∈ Zn1×n0

q , we compute X := SC = f · Z + E′ (mod q) using the
secret key S. As long as ‖E‖∞ < f/2, we can complete decryption by rounding
to the nearest multiple of f , setting Z := dZ/fc. Once we have the matrix Z, we
can read off the σu,v,w’s which are the bits in the binary expansion of the zu,v’s.

Lemma 1. The scheme above is a compressible (F)HE cryptosystem with rate

α = |p|
|q| ·

n0

n1
. ut

Setting the Parameters It remains to show how to set the various parameters
– including the matrix dimensions n0, n1 and the moduli p, q – as a function of
the security parameter k. If we use a somewhat-homomorphic variant of GSW
without bootstrapping, then the noise magnitude in evaluated ciphertexts would
depend on the functions that we want to compute. One such concrete example
(with fully specified constants) is provided in Section 5 for our PIR application.
Here we provide an asymptotic analysis of the parameters when using GSW as a
fully-homomorphic scheme with bootstrapping. Namely we would like to evaluate
an arbitrary function with long output on encrypted data (using the GSW FHE
scheme), then pack the resulting encrypted bits in compressed ciphertexts that
remain decryptable.

We want to ensure that compressed ciphertexts have rate of 1 − ε for some
small ε of our choosing. To this end, it is sufficient to set n0 > 2k/ε and q =
p1+ε/2. This gives n1 = n0 + k ≤ n0(1 + ε/2) and |q| = |p|(1 + ε/2), and hence

n0
n1
· |p|
|q|
≥
( 1

1 + ε/2

)2
> (1− ε/2)2 > 1− ε,

as needed.
Using q = p1−ε/2 means that to be able to decrypt we must keep the noise

below q/2p = pε/2/2. Following [17, 11], when using GSW with fresh-ciphertext
noise of size α and ciphertext matrices of dimension n1 × m, we can perform
arbitrary computation and then bootstrap the result, and the noise after boot-
strapping is bounded below αm2. From equation (4) we have a set of n20 log p
error matrices Eu,v,w, all satisfying ‖Eu,v,w‖∞ < αm2. The error term after
compression is therefore

∑
u,v,w Eu,v,wG

−1(something), and its size is bounded

by n20 log p · αm2 ·m = αm3n20 log p.
It is enough, therefore, that this last expression is smaller than pε/2/2, i.e.,

we have the correctness constraint pε/2/2 > αm3n20 log p. Setting the fresh-
encryption noise as some polynomial in the security parameter, the last con-
straint becomes pε/2 > poly(k) log p. This is satisfied by some p = kΘ(1/ε), and
therefore also q = p1+ε/2 = kΘ(1/ε).

We conclude that to get a correct scheme with rate 1 − ε, we can use LWE
with noise poly(k) and modulus q = kΘ(1/ε). Hence the security of the scheme
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relies on the hardness of LWE with gap kΘ(1/ε), and in particular if ε is a constant
then we rely on LWE with polynomial gap.

We note that there are many techniques that can be applied to slow the
growth of the noise. Many of those techniques (for example modulus switching)
are described in section 5 in the context of our PIR application. While they do
not change the asymptotic behavior — we will always need q = kΘ(1/ε) — they
can drastically improve the constant in the exponent.

Theorem 1. For any ε = ε(λ) > 0, there exists a rate-(1 − ε) compressible
FHE scheme as per definition 1 with semantic security under the decision-LWE
assumption with gap poly(λ)1/ε. ut

More Procedures In addition to the basic compressible HE interfaces, our
scheme also supports several other operations that come in handy in applications
such as PIR.

Encryption and additive homomorphism of compressed ciphertexts.
Since this variant uses PVW for compressed ciphertexts, then we can use the
encryption and additive homomorphism of the PVW cryptosystem.

Multiplying compressed ciphertexts by GSW ciphertexts. When p di-
vides q, we can also multiply a compressed ciphertext C ′ ∈ Zn1×n0

q encrypting
M ∈ Zn0×n0

p by a GSW ciphertext C ∈ Zn1×m
q encrypting a small scalar σ,

to get a compressed ciphertext C ′′ that encrypting the matrix σM mod p. This
is done by setting C ′′ := C × G−1(C ′) mod q (and note that C ′ ∈ Zn1×n0

q so
G−1(C ′) ∈ Zm×n0

q ). For correctness, recall that we have SC = σSG + E and
SC ′ = q/p ·M + E′ over Zq, hence

S × C ′′ = S C G−1(C ′) = σSC ′ +

E′′︷ ︸︸ ︷
E G−1(C ′) (5)

= σ(q/p ·M + E′) + E′′ = q/p · (σM mod p) +

E∗︷ ︸︸ ︷
σE′ + E′′ (mod q).

This is a valid compressed encryption of σM mod p as long as the noise E∗ =
σE′ + E G−1(C ′) is still smaller than p/2.

Multiplying GSW ciphertexts by plaintext matrices. The same technique
that lets us right-multiply GSW ciphertexts by compressed ones, also lets us
right-multiply them by plaintext matrices. Indeed if M ∈ Zn0×n0

p is a plaintext

matrix and M ’ is its padded version M ′ =
[

0
M

]
∈ Zn1×n0

p , then the somewhat
redundant matrix M∗ = q/p ·M ′ can be considered a noiseless ciphertext (note
that S×M∗ = q/p ·M) and can therefore be multiplied by a GSW ciphertext as
above. The only difference is that in this case we can even use a GSW ciphertext
encrypting a large scalar: The “noiseless ciphertext” M∗ has E′ = 0, hence the
term σE′ from above does not appear in the resulting noise term, no matter how
large σ is.

4.2 High-Rate Additive HE Using Nearly Square Gadget Matrix

We now turn to the other variant of our scheme. Here we encrypt plaintext ma-
trices modulo q using ciphertext matrix modulo the same q, with dimensions
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that are only slightly larger than the plaintext matrix. A new technical ingre-
dient in that scheme is a new gadget matrix (described in section 4.4), that
we call H: Just like the G gadget matrix from [27], our H adds redundancy to
the ciphertext, and it has a “public trapdoor” that enables removing the noise
upon decryption. The difference is that H is a nearly square matrix, hence comes
with almost no expansion, enabling high-rate ciphertexts. Of course, an almost
rectangular H cannot have a trapdoor of high quality, so we make do with a
low-quality trapdoor that can only remove a small amount of noise.

The slight increase in dimensions from plaintext to ciphertext in this high-
rate scheme comes in two steps. First, as in the previous variant we must pad
plaintext matrices M with some additional zero rows, setting M ′ =

[
0
M

]
so as to

get SM ′ = M . Second, we add redundancy to M ′ by multiplying it on the right
by our gadget matrix H, to enable removing a small amount of noise during
decryption. The decryption invariant for compressed ciphertexts is

S × C = M ×H + E (mod q),

with S = (S′|I) the secret key, C the ciphertext, M the plaintext matrix and E
a small-norm noise matrix.

To get a high-rate compressed ciphertexts, we must ensure that the increase
in dimensions from plaintext to ciphertext is as small as possible. With n0 × n0
plaintext matrices M , we need to add as many zero rows as the dimension of the
LWE secret (which we denote by k). Denoting n1 = n0+k, the padded matrix M ′

has dimension n1 × n0. We further add redundancy by multiplying on the right
with a somewhat rectangular gadget matrix H of dimension n0 × n2. The final
dimension of the ciphertext is n1 × n2, so the information rate of compressed
ciphertexts is n20/(n1n2). As we show in section 4.3, we can orchestrate the
various parameters so that we can get n20/(n1n2) = 1− ε for any desired ε > 0,
using a modulus q of size kΘ(1/ε). Hence we can get any constant ε > 0 assuming
the hardness of LWE with polynomial gap, or polynomially small ε if we assume
hardness of LWE with subexponential gap.

The rest of this section is organized as follows: We now describe on the
different procedures that comprise this variant, then discuss parameters and
additional procedures, and finally in section 4.4 we describe the construction of
the gadget matrix H.

Key Generation, encryption, and evaluation. These are identical to the
procedures in the variant from section 4.1, using GSW with matrix secret keys.
The low-rate ciphertexts satisfy the GSW invariant as GSW, SC = σSG + E
(mod q) with E � q, and provides semantic security under the decision LWE
hardness assumption [17].

Compression. Compression is similar to the previous variant, but instead of
G−1(f ·2w ·T ′u,v) as in eq. (3) we use G−1(2w ·T ′u,v×H). Recall that we denote by
Tu,v the square n0 × n0 singleton matrix with 1 in entry (u, v) and 0 elsewhere,
and T ′u,v is a padded version of Tu,v with k zero rows on top

Denote ` = blog qc, and consider ` · n20 GSW ciphertexts, Cu,v,w ∈ Zn1×m
q ,

u, v ∈ [n0], w ∈ [`], each encrypting a bit σi,j,k ∈ {0, 1}, we pack these GSW bit
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encryptions into a single compressed ciphertext by computing

C∗ =
∑
u,v,w

Cu,v,w ×G−1(2w · T ′u,v ×H) mod q,

We first note that T ′u,v ×H are n1 × n2 matrices, hence G−1(2w · T ′u,v ×H) are
m×n2 matrices, and since the Cu,v,w’s are n1×m matrices then C∗ ∈ Zn1×n2

q , as

needed. Next, for every u, v denote zuv =
∑`
w=0 2wσu,v,w ∈ [q], and we observe

that

S × C∗ =
∑
u,v,w

S × Cu,v,w ×G−1(2w · T ′u,v ×H)

=
∑
u,v,w

(σu,v,wS G+ Eu,v,w)×G−1(2w · T ′u,v ×H)

=
∑
u,v,w

2wσu,v,wS T ′u,vH +

E′︷ ︸︸ ︷∑
u,v,w

Eu,v,w ×G−1(2w · Tu,v ×H)

=
∑
u,v

zu,vS T ′u,vH + E′
(∗)
=
( Z︷ ︸︸ ︷∑
u,v

zu,vTu,v
)
×H + E′, (6)

where Z = [zu,v] ∈ [q]n0×n0 . (The equality (∗) holds since S = [S′|I] and T ′ =[
0
T

]
and therefore ST ′ = S′ × 0 + I × T = T .)

Compressed decryption. Compressed ciphertexts in this scheme are matrices
C ∈ Zn1×n2

q , encrypting plaintext matrices M ∈ Zn0×n0
q . To decrypt we compute

X := S C = M H +E (mod q) using the secret key S. This is where we use the
redundancy introduced by H, as long as ‖E‖∞ is small enough, we can complete
decryption by using the trapdoor F = H−1(0) to recover and then eliminate the
small noise E, hence obtaining the matrix M . This recovers the matrix Z, and
then we can read off the σu,v,w’s which are the bits in the binary expansion of
the zu,v’s.

Lemma 2. The scheme above is a compressible FHE scheme with rate α =
n20/n1n2. ut

More procedures. It is easy to see that the current construction supports the
same additional procedures as the variant from section 4.1. Namely we have
direct encryption and additive homomorphism of compressed ciphertexts, mul-
tiplication of compressed ciphertexts by GSW ciphertexts that encrypts small
constants, and multiplication of GSW ciphertexts (encrypting arbitrary con-
stants) by plaintext mod-q matrices.

4.3 Setting the Parameters

It remains to show how to set the various parameters — the dimensions n0, n1, n2
and the modulus q — as a function of the security parameter k. As above, we
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only provide here an asymptotic analysis of the parameters when using GSW as
a fully-homomorphic scheme with bootstrapping.

Again from [17, 11], if we use fresh-ciphertext noise of size poly(k) then also
after bootstrapping we still have the noise magnitude bounded below poly(k).
After compression as per Eqn. (6), the noise term is a sum of n20 log q matrices
Eu,v,w, all of magnitude bounded by poly(k), hence it has magnitude below
poly(k) · log q. We therefore need the nearly-square gadget matrix H to add
enough redundancy to correct that noise.

On the other hand, to get an information rate of 1− ε (for some small ε) we
need n20/(n1n2) ≥ 1 − ε, which we can get by setting n1, n2 ≤ n0/(1 − ε

2 ). As
we explain in section 4.4 below, a nearly-square matrix H with n2 = n0/(1− ε

2 )

can only correct noise of magnitude below β = bqε/2/2c. Hence we get the

correctness constraint qε/2

2 > poly(k) log q (essentially the same as for the variant

from section 4.1 above), which is satisfied by some q = kΘ(1/ε).

4.4 A Nearly Square Gadget Matrix

We now turn to describing the new technical component that we use in the
second variant above, namely the “nearly square” gadget matrix. Consider first
why the usual Micciancio-Peikert gadget matrix [27] G ∈ Zn1×m

q which is used
GSW cannot give us high rate. An encryption of M ∈ Rn0×n0

q has the form
C = M ′ ·G+ P ·X (for some some M ′ that includes M), so the rate can be at
most n0/m simply because C has m/n0 times as many columns as M . This rate
is less than 1/ log q for the usual G.

The rate can be improved by using a “lower-quality” gadget matrix. For
example G = I⊗g where g = (1, B, . . . , BblogB qc) for large-ish B, where G−1(C)
still have coefficients of magnitude at most B/2. But this can at best yield a rate-
1/2 scheme (for B =

√
q), simply because a non-trivial g must have dimension

at least 2. Achieve rate close to 1 requires that we use a gadget matrix with
almost the same numbers of rows and columns.

The crucial property of the gadget matrix that enables decryption, is that
there exists a known “public trapdoor” matrix F = G−1(0) ∈ Rm×m such that:

1. F has small entries (� q)
2. G · F = 0 mod q
3. F is full-rank over R (but of course not over Rq, as it is the kernel of G).

Given such an F , it is known how to compute G−1(C) for any ciphertext C ∈
Rn1×m
q , such that the entries in G−1(C) are not much larger than the coefficients

of F , cf. [16].
In our setting, we want our new gadget matrix (that we call H rather than

G to avoid confusion) to have almost full rank modulo q (so that it is “nearly
square”), hence we want F = H−1(0) to have very low rank modulo q. Once we
have a low-norm matrix F with full rank over R but very low rank modulo q,
we simply set H as a basis of the mod-q kernel of F .
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Suppose for simplicity that q = pt−1 for some integers p, t. We can generate
a matrix F ′ with “somewhat small” coefficients that has full rank over the reals
but rank one modulo q as:

F ′ :=


1 p p2 pt−1

pt−1 1 p · · · pt−2
pt−2 pt−1 1 pt−3

...
. . .

...
p p2 p3 · · · 1


Notice that the entries of F ′ have size at most (q + 1)/p ≈ q1−1/t and moreover
for every vector v we have

‖vF ′‖∞ ≤ ‖v‖∞ ·(1+p+ . . .+pt−1) = ‖v‖∞ ·(pt−1)/(p−1) = ‖v‖∞ · q
p−1 . (7)

We can use this F ′ to generate a matrix F with rank r · t over the reals but
rank r modulo q (for any r), by tensoring F ′ with the r × r identity matrix,
F := F ′ ⊗ Ir. This yields the exact same bounds as above on the l∞ norms.
Our gadget matrix H is an r(t− 1)× rt matrix whose rows span the null space
of F modulo q (any such matrix will do). For our scheme below we will set
n0 = r(t− 1) and n2 = rt = n0(1 + 1

t−1 ).
In the decryption of compressed ciphertexts below, we use the “somewhat

smallness” of F = H−1(0). Specifically, given a matrix Z = MH + E (mod q)
with ‖E‖∞ ≤ p−1

2 , we first multiply it by F modulo q to get ZF = (MH+E)F =
EF (mod q) (since HF = 0 (mod q)). But

‖EF‖∞ ≤ ‖E‖∞ ·
q

p− 1
≤ p− 1

2
· q

p− 1
= q/2,

and therefore (ZF mod q) = EF over the integers. Now we use the fact that
F has full rank over the reals, and recover E := (ZF mod q) × F−1. Then we
compute Z − E = MH (mod q), and since H has rank n0 modulo q we can
recover M from MH. It follows that to ensure correctness when decrypting
compressed ciphertexts, it is sufficient to use a bound β ≤ p−1

2 = bq1/tc/2 on
the size of the noise in compressed ciphertexts.

The restriction q = pt − 1 is not really necessary; many variants are possi-
ble. The following rather crude approach works for any q that we are likely to
encounter. Consider the lattice L of multiples of the vector u = (1, a, · · · , at−1)
modulo q, where a = dq1/te. Let the rows of F ′ be the L-vectors ci · u mod q
for i ∈ [t], where ci = dq/aie. Clearly F ′ has rank 1 modulo q. (We omit a
proof that F ′ is full rank over the integers.) We claim that all entries of F ′ are
small. Consider the j-th coefficient of ci · u mod q, which is dq/aie · aj mod q
for i ∈ [t], j ∈ {0, . . . , t − 1}. If i > j, then dq/aie · aj is bounded in magni-
tude by q/ai−j + aj ≤ q/a + at−1 ≤ 2at−1. For the j ≥ i case, observe that
dq/aie ·ai is an integer in [q, q+ai], and therefore is at most ai modulo q. There-
fore dq/aie · aj mod q is at most aj ≤ at−1 modulo q. As long as q ≥ tt, we have
that at−1 ≤ (q1/t · (1 + 1/t))t−1 < q(t−1)/t · e – that is, ‖F ′‖∞ is nearly as small
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as it was when we used q = pt − 1. As we saw above, q anyway needs to exceed
βt where β is a bound on the noise of ciphertexts, so the condition that q > tt

will likely already be met.

5 Application to Fast Private Information Retrieval

Can we construct a single-server PIR scheme that is essentially optimal both in
terms of communication and computation? With our compressible FHE scheme,
we can achieve communication rate arbitrarily close to 1. Here, we describe a PIR
which is not only bandwidth efficient but should also outperform whole-database
AES encryption computationally.6

5.1 Toward an Optimized PIR Scheme

Our starting point is the basic hierarchical PIR, where the N database entries
are arranged in a hypercube of dimensions N = N1 × · · · ×ND and the scheme
uses degree-D homomorphism:

– The client’s index i ∈ [N ] is represented in mixed radix of basis N1, . . . , ND,

namely as (i1, . . . , iD) such that i =
∑D
j=1 ij ·

∏D
k=j+1Nk. The client’s mes-

sage is processed to obtain an encrypted unary representation of all the ij ’s.
Namely, for each dimension j we get a dimension-Nj vector of encrypted
bits, in which the ij ’th bit is one and all the others are zero.

– Processing the first dimension, we multiply each hyper-row u ∈ [N1] by the
u’th encrypted bit from the first vector, which zeros out all but the i1’st
hyper-row. We then add all the resulting encrypted hyper-rows, thus getting
a smaller hypercube of dimension N/N1 = N2 × . . . ND, consisting only the
i1’st hyper-row of the database.

– We proceed in a similar manner to fold the other dimensions, one at a time,
until we are left with a zero-dimension hypercube consisting only the selected
entry i.

We note that the first step, reducing database size from N to N/N1, is typically
the most expensive since it processes the most data. On the other hand, that
step only requires ciphertext-by-plaintext multiplications (vs. the ciphertext-
by-ciphertext multiplications that are needed in the following steps), so it can
sometimes be optimized better than the other steps.

Below we describe the sequence of derivations and optimizations to get our
final construction, resulting in a high rate PIR scheme which is also computa-
tionally efficient. The construction features a tradeoff between bandwidth and
computation (and below we describe a variant with rate 4/9).

The main reason for this tradeoff is that the rate of our scheme is n0

n1
· n0

n2
,

where the secret key matrix S has dimension n0 × n1 and the gadget matrix H

6 The “should” is since we did not implement this construction. Implementing it and
measuring its performance may be an interesting topic for future work.
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has dimension n0 × n2. Since n0, n1, n2 are integers, we need n0 to be large
if we want n0/n1 and n0/n2 to be close to one. Recalling that the plaintext
matrices M have dimension n0 × n0, a large n0 means that the plaintext is of
high dimension. Hence multiplying GSW-ciphertexts C by plaintext matrices M
takes more multiplications per entry (e.g., using a cubic matrix multiplication
algorithm). A second aggravating factor is that as H becomes closer to square,
we can handle smaller noise/modulus ratio. Hence we need the products C ×M
to be carried over a larger modulus (so we can later mod-switch it down to
reduce the noise), again getting more multiplies per plaintext byte.7

Using Our GSW-Compatible Compressible HE Scheme. An advantage
of GSW over other FHE schemes is its exceptionally slow noise growth during
homomorphic multiplication when the left multiplicand is in {0, 1}. Although
GSW normally operates on encrypted bits, GSW’s advantage remains when the
right multiplicand is a ciphertext of our compressible FHE scheme. So, these
schemes are perfect for PIR, where the left multiplicands are bits of the client’s
query, and the rightmost multiplicands are blocks of the database.

Using Ring-LWE. As usual with LWE schemes, we can improve performance
by switching to the ring (or module) variant, where the LWE secret has low
dimension over a large extension field. Instead of having to manipulate large
matrices, these variants manipulate low-dimension matrices over the same large
extension field, which take less bits to describe and can be multiplied faster (using
FFTs). To get comparable security, if the basic LWE scheme needs LWE secrets
of dimension k, the new scheme will have dimension-k′ secrets over an extension
field of degree d, such that k′d ≥ k. (For ring-LWE we have k′ = 1 and d = k.)
The various matrices in the scheme consist of extension-field elements, and their
dimensions are n′i = ni/d and m′ = m/d (instead of ni,m, respectively). Below
we use the notation n′i and m′ to emphasize the smaller values in the RLWE
context.

Saving on FFTs. One of our most important optimizations is pre-processing
the database to minimize the number of FFTs during processing. Our scheme
needs to switch between CRT representation of ring elements (which is needed
for arithmetic operations) and representation in the decoding basis (as needed for
applications of G−1(·)). While converting between the two can be done in quasi-
linear time using FFTs, it is still by far the most expensive operations used in
the implementation. (For our typical sizes, converting an element between these
representations is perhaps 10-20 times slower than multiplying two elements
represented in the CRT basis.)

As in the XPIR work [1], we can drastically reduce the number of FFTs by
pre-processing the database, putting it all in CRT representation. This way, we
only need to compute FFTs when we process the client’s message to get the
encrypted unary representation of the ij ’s (which is independent of the size of

7 The tradeoffs become harder to describe cleanly when optimizing concrete perfor-
mance as we do here. For example, a 65-bit modular multiplication is as expensive
in software as a 120-bit one.
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entries in the database), and then again after we fold the first dimension (so it is
only applied to compressed ciphertexts encrypting the N/N1 database entries).

If we set N1 large enough relative to the FFT overhead, then the FFTs after
folding the first dimension will be amortized and become insignificant. On the
other hand we need to set it small enough (relative to N/N1 and the length-L
of the entries) so the initial FFTs (of which we have about n′1 ·m′ ·N1) will also
be insignificant.

In the description below we illustrate the various parameters with N1 = 28,
which seems to offer a good tradeoff. For the other Ni’s, there is (almost) no
reason to make them large, so we use N2 = N3 = · · · = ND = 4. We note that for
the construction below there is (almost) no limit on how many such small Ni’s
we can use. Below we illustrate the construction for a database with N = 220

entries, but it can handle much larger databases. (The same parameters work

upto at least N = 22
20

entries.)

Client-side encryption. In the context of a PIR scheme, the encrypter is the
client who has the decryption key. Hence it can create ciphertexts using the
secret key, by choosing a fresh pseudorandom public key Pi for each ciphertext
and setting Ci := σiG+ Pi mod q. This results in ciphertexts of slightly smaller
noise, namely just the low-norm Ei’s (as opposed to E × Xi that we get from
public-key encrypted ciphertexts).

Since our PIR construction uses small dimensions N2 = N3 = · · · = 4, we
have the client directly sending the encrypted unary vectors for these dimensions.
Namely for each j = 2, 3, . . . the client sends four ciphertexts Cj,0, . . . , Cj,3 such
that Cj,ij encrypts one and the others encrypt zero.

For the first dimension we have a large N1 = 28, however, so the client sends
encryptions of the bits of i1 and we use the GSW homomorphism to compute
the encrypted unary vector for this dimension. Overall the client therefore sends
logN1 + (N2 + N3 + · · ·ND) encrypted bits, in our illustrated sizes this comes
up to 8 + 4× 6 = 32 encrypted bits.

Multiple G matrices. The accumulated noise in our scheme has many terms of
the form E×G−1(something), but not all of them are created equal. In particular,
when folding the first (large) dimension N1, the GSW ciphertexts are evaluated
and the noise in them is itself a sum of such. When we multiply these GSW ci-
phertexts by the plaintext matrix we get E×G−1(something)×G−1(something′),
which is larger. For the other (small) dimensions, on the other hand, we multi-
ply by fresh ciphertexts so we get much smaller noise. This imbalance leads to
wasted resources.

Moreover, the multiplication by G−1(something) during the initial processing
of the client’s bits are only applied to a small amounts of data. But the multi-
plication between the GSW matrices and the plaintext data touches all the data
in the database. Hence the latter are much more expensive, and we would like
to reduce the dimension of the matrices involved as much as we can.

For all of these reasons, it is better to use different G matrices in different
parts of the computation. In particular we use very wide-and-short G matrices
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(with smaller norm of G−1(0)) when we initially process the client’s bits, and
more-square/higher-norm G matrices later on.

Modulus switching. Even with a careful balance of the G matrices, we cannot
make the noise as small as we want it to be for our compressed scheme. We
therefore use the modulus-switching technique from [10, 9]. Namely we perform
the computation relative to a large modulus Q, then switch to a smaller modulus
q before sending the final result to the client, scaling the noise roughly by q/Q.

This lets us be more tolerant to noise, which improves many of the param-
eters. For example by using Q ≈ q2.5 we can even replace the G matrix for the
actual data by the identity matrix. Even if it means using LWE secret of twice
the dimension and having to write numbers that are more than twice as large,
it would still save a large constant factor. Moreover it lets us use a more square
matrix H (e.g. 2× 3) thereby getting a higher rate.

We note that using modulus switching requires that we choose the secret key
from the error distribution rather than uniformly. (Also, in the way we implement
it, for some of the bits σ we encrypt the scalar q′ · σ rather than σ itself, where
Q = q′ · q.)

5.2 The Detailed PIR Scheme

Our construction is staged in the cyclotomic ring of index 213 and dimension 212,
i.e., R = Z[X]/(X212 + 1). The ciphertext modulus of the fresh GSW ciphertext
is a composite Q = q · q′, with q ≈ 246 and q′ ≈ 260 (both with primitive 212’th
roots of unity so it is easy to perform FFTs modulo q, q′). Below we denote the
rings modulo these three moduli by RQ, Rq, Rq′ .

We use ring-LWE over RQ, in particular our LWE secret is a scalar in RQ,
chosen from the error distribution [4]. (Consulting Table 1 from [2], using this
cyclotomic ring with a modulus Q of size up to 111 bits yields security level of
128 bits.)

For the various matrices in our construction we use dimensions k′ = 1, n′0 = 2,
and n′1 = n′2 = 3, and the plaintext elements are taken from Rq. Hence we get a
rate of ( 2

3 )2 ≈ 0.44. While processing, however, most ciphertexts will be modulo
the larger Q = q · q′, it is only before we send to the clients that we mod-switch
them down to q. We use the construction from section 4.4 with a 2-by-3 matrix
H.

We split a size-N database into a hypercube of dimensions N = 256 × 4 ×
4 × . . . × 4. A client wishing to retrieve an entry i ∈ [N ] first represents i as
(i1, i2, . . . , iD), with ii ∈ [256] and ij ∈ [4] for all j > 1. Let σ1,0, . . . σ1,7 be the
bits of i1, the client then encrypts the scalars q′ · σ1,0 and σ1,1, . . . , σ1,7 in GSW
ciphertexts (modulo Q). For j = 2, . . . , D the client uses GSW ciphertexts to
encrypt the bits of the unit vector eij which is 1 in position ij and zero elsewhere.
We use three different gadget matrices for these GSW ciphertexts:

– For the LSB of i1 (which will be the rightmost bit to be multiplied using
GSW) we eliminate that gadget matrixG altogether and just use the identity,
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but we also multiply the bit σ1,0 by q′. Namely we have C1,0 ∈ R
n′1×n

′
1

Q such

that SC1,0 = σ1,0q
′S + E ∈ Rn

′
0×n

′
1

Q .

– For the other bits of i1 we use a wide and short G1 ∈ Zn′1×m′1 , where m′1 =
n′1dlog4Qe = 3 · 53 = 159. Each bit σ1,t is encrypted by C1,t ∈ Rn

′
1×m

′
1 such

that SC1,t = σ1,tSG1 + E (mod Q).
– For the bits encoding the unary representation of the other ij ’s (j > 1),

we use a somewhat rectangular (3-by-6) matrix G2 ∈ Zn′1×m′2 , where m′2 =
n′1dlog253(Q)e = 3 · 2 = 6.

The client sends all these ciphertexts to the server. The encryption of the bits of
i1 consists of 9 elements for encrypting the LSB and 7 · 3 · 159 = 3381 elements
for encrypting the other seven bits. For each of the other indexes ij we use
4 ·3 ·6 = 72 elements to encrypt the unary representation of ij . In our numerical
example with N = 220 database entries we have 6 more ij ’s, so the number of
ring elements that the client sends is 9 + 3381 + 6 · 72 = 3822. Each element
takes 106 · 212 bits to specify, hence the total number of bits sent by the client
is 106 · 212 · 3822 ≈ 230.6 (a bulky 198MB).

For applications where the client query size is a concern, we can tweak the
parameter, e.g. giving up a factor of 2 in the rate, and getting a 2-4× improve-
ment in the client query size. A future-work direction is to try and port the
query-expansion technique in the SealPIR work [3] in our setting, if applicable
it would yield a very significant reduction in the client query size.8

The server pre-processes its database by breaking each entry into 2-by-2
plaintext matrices over Rq (recall q ≈ 246). Hence each matrix holds 2 · 2 · 46 ·
212 ≈ 219.5 bits (92KB). The server encodes each entry in these matrices in CRT
representation modulo Q.9 Below we let L be the number of matrices that it
takes to encode a single database entry. (A single JPEG picture will have L ≈ 4,
while a 4GB movie will be encoded in about 44K matrices).

Given the client’s ciphertext, the server uses GSW evaluation to compute
the GSW encryption of the unit vector ei1 for the first dimension (this can be
done using less than N1 = 256 GSW multiplications). For r = 1, 2, . . . , 256 the
server multiplies the r’th ciphertext in this vector by all the plaintext matrices
of all the entries in the r’th hyperrow of the hypercube, and adds everything
across the first hypercube dimension. The result is a single encrypted hyperrow
(of dimensions N2 × · · · × ND), each entry of which consists of L compressed
ciphertexts.

The server next continues to fold the small dimensions one after the other.
For each size-4 dimension it multiplies the four GSW-encrypted bits by all the
compressed ciphertexts in the four hyper-columns, respectively, then adds the
results across the current dimension, resulting in a 4-fold reduction in the number

8 Using the SealPIR optimization requires a key-switching mechanism for GSW, which
is not straightforward.

9 While the entries in the plaintext matrices are small (in [±245]), their CRT repre-
sentation modulo Q is not. Hence this representation entails a 106/46 ≈ 2.3 blowup
in storage requirement at the server.
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of ciphertexts. This continues until the server is left with just a single entry of
L compressed ciphertexts modulo Q.

Finally the server performs modulus switching, replacing each ciphertext C
by C ′ = dC/q′c ∈ Rq, and sends the resulting ciphertexts to the client for
decryption. Note that the ciphertext C satisfied SC = q′MH + E (mod q′q).
Denoting the rounding error by Ξ, the new ciphertext has

SC ′ = S(C/q′ +Ξ) = MH + E/q′ + SΞ (mod q).

Since the key S was chosen from the error distribution and ‖Ξ‖∞ ≤ 1/2, then
the added noise is small and the result is a valid ciphertext. (See more details
below.)

Noise analysis. For the first dimension, we need to use GSW evaluation to
compute the encrypted unary vector, where each ciphertext in that vector is
a product of logN1 = 8 ciphertexts. Hence the noise of each these evaluated
ciphertexts has roughly the form

∑7
u=1Eu × G−11 (something) with Eu one of

the error matrices that were sampled during encryption. Once we multiply by
the plaintext matrices for the database to get the compressed encryption as in
Equation (5) and add all the ciphertexts across the N1-size dimension, we get a
noise term of the form

N1∑
v=1

( 7∑
u=1

Eu ×G−11 (somethingu)
)
× plaintextv.

(Note that on the right we just multiply by the plaintext matrix whose entries
are bounded below 245, but without any G−1.)10

The entries of the Eu’s can be chosen from a distribution of variance 8 (which
is good enough to avoid the Arora-Ge attacks [5]). The entries of G−1(·) are
in the range [±2] (because we have m1 = n1 log4(Q)), so multiplication by
G−11 (something) increases the variance by a factor of less than 22 ·m′1 ·212 < 221.4.
Similarly multiplying by a plaintext matrix (of entries in [±245]) increases the
variance by a factor of 22·45·n1·212 < 2103.6. The variance of each noise coordinate
is therefore bounded by 28·7·8·221.4·2103.6 < 28+3+3+21.4+103.6 = 2139. Since each
noise coordinate is a weighted sum of the entries of the Eu’s with similar weights,
it makes sense to treat it as a normal random variable. A good high probability
bound on the size of this error is (say) 16 standard deviations, corresponding
to probability erfc(16/

√
2) ≈ 2−189. Namely after folding the first dimension,

all the compressed ciphertexts have ‖noise‖∞ < 16 ·
√

2139 = 273.5 with high
probability.

10 Asymptotically, and disregarding our unconventional way of introducing the plain-
texts which optimizes concrete performance, the noise from this step grows linearly
with N1. If we set N1 = O(logN+λ) for security parameter λ, the noise from this and
the remaining steps will be bounded by O(logN +λ), and so q can be bounded by a
constant-degree polynomial of these quantities. Given that the complexity of mod-q
multiplication is log q · Õ(log log q), the asymptotic overhead of our PIR scheme will
be Õ(log log λ+ log log logN).
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As we continue to fold more dimensions, we again multiply the encrypted
unary vectors for those dimensions (which are GSW ciphertexts) by the results
of the previous dimension (which are compressed ciphertexts) using Equation (5),
this time using G2. We note that the GSW ciphertexts in these dimensions are
fresh, hence their noise terms are just the matrices E that were chosen during
encryption. Thus each of the Nj noise terms in this dimension is of the form
E ×G−12 (something) for one of these E matrices. Moreover, only one of the four
terms in each dimension has an encrypted bit σ = 1 while the other have σ = 0.
Hence the term σ · previousNoise appears only once in the resulting noise term
after folding the j’th dimension. Therefore folding each small dimension j ≥ 2
just adds four noise terms of the form E×G−1(something) to the noise from the
previous dimension.

Since G2 has m2 = n1 log253(Q), then each entry in G−12 is in the interval
[±252], and multiplying by G2 increases the variance by a factor of less than
(252)2 ·m′2 ·212 = 3 ·2117 (recall m′2 = 6). With 4(D−1) = 24 of these terms, the
variance of each coordinate in the added noise term is bounded by 24·8·3·2117 =
9 · 2123. We can therefore use the high-probability bound 16 ·

√
9 · 2123 < 267.1

on the size of the added noise due to all the small hypercube dimensions.

The analysis so far implies that prior to the modulus switching operation,
the noise is bounded in size below 273.5 + 267.1. The added noise term due to the
rounding error in modulus switching is S × Ξ, and the variance of each noise
coordinate in this expression is 8 · n′1 · 212/2 = 3 · 215. Hence we have a high

probability bound 16 ·
√

3 · 215 < 212.3 on the magnitude of this last noise term.
The total noise in the ciphertext returned to the client is therefore bounded by

‖noise‖∞ <
273.5 + 267.1

q′
+ 212.3 ≈ 213.5 + 27.1 + 212 ≈ 214.

Recalling that we use the nearly square gadget matrix H with p = 3
√
q ≈ 246/3,

the noise is indeed bounded below (p − 1)/2 as needed, hence the ciphertexts
returned to the client will be decrypted correctly with overwhelming probability.

Complexity analysis. The work of the server while processing the query con-
sists mostly of RQ multiplications and of FFTs. (The other operations such as
additions and applications of G−1() once we did the FFTs take almost no time
in comparison.)

With our cyclotomic ring of dimension 212, each FFT operation is about 10-20
times slower than a ring multiply operation in evaluation representation. But it is
easy to see that when N/N1 times the size L of database entries is large enough,
the number of multiplies dwarf the number of FFTs by a lot more than a 20×
factor. Indeed, FFTs are only preformed in the initial phase where we process the
bits of the index ii sent by the client (which are independent of L and of N/N1),
and after folding the first dimension (which only applies to N/N1 ≈ 0.25% of the
data). With our settings, the multiplication time should exceed the FFT time
once L ·N/N1 is more than a few thousands. With N/N1 = 4000 in our example,
even holding a single JPEG image in each entry already means that the FFT
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processing accounts for less than 50% of the overall time. And for movies where
L = 29K, the FFT time is entirely insignificant.

Let us then evaluate the time spent on multiplications, as a function of the
database size. For large L · N/N1, by far the largest number of multiplications
is performed when multiplying the GSW ciphertexts by the plaintext matri-
ces encoding the database, while folding the first hypercube dimension. These
multiplications have the form C ′ := C ×M ′H mod q′q with C ′ a ciphertext of
dimension n1×n1 and M ′H a redundant plaintext matrix of dimension n1×n2
(where n1 = n2 = 3). Using the näıve matrix-multiplication algorithm, we need
33 = 27 ring multiplications for each of these matrix multiplications, modulo the
double-sized modulus q′ · q. Each ring multiplication (for elements in CRT rep-
resentation) consists of 212 double-size modular integer multiplication, so each
such matrix multiplication takes a total of 2 ·27 ·212 ≈ 217.75 modular multiplica-
tions. For this work, we process a single plaintext matrix, containing about 216.5

bytes, so the amortized work is about 2.4 modular multiplication per database
byte. (Using Laderman’s method we can multiply 3-by-3 matrices with only 23
multiplications [24], so the amortized work is only 2 modular multiplications per
byte.) Taking into account the rest of the work should not change this number
in any significant way when L is large, these multiplications likely account for
at least 90% of the execution time.

Two (or even three) modular multiplication per byte should be faster than
AES encryption of the same data. For example software implementations of
AES without any hardware support are estimated at 25 cycles per byte or more
[32, 13]. Using the fact that we multiply the same GSW matrix by very many
plaintext matrices, we may be able to pre-process the modular multiplications,
which should make performance competitive even with AES implementations
that are built on hardware support in the CPU.

We conclude that for large databases, the approach that we outlined above
should be computationally faster than the näıve approach of sending the whole
database, even without considering the huge communication savings. We stress
that we achieved this speed while still providing great savings on bandwidth,
indeed the rate of this solution is 0.44. In other words, compared to the insecure
implementation where the client sends the index in the clear, we pay with only
2.25× in bandwidth for obtaining privacy.

Achieving higher rate. It is not hard to see that the rate can be made arbi-
trarily close to one without affecting the asymptotic efficiency. Just before the
server returns the answer, it can bootstrap it into another instance of compress-
ible FHE that has rate close to one. This solution is asymptotically cheap, since
this bootstrapping is only applied to a single entry. In terms of concrete perfor-
mance, bootstrapping is very costly so the asymptotic efficiency is only realized
for a very large database. Concretely, bootstrapping takes close to 230 cycles per
plaintext byte (vs. the procedure above that takes around 24 cycles per byte).
Hence the asymptotic efficiency is likely to take hold only for databases with at
least N = 230−4 = 64, 000, 000 entries.
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