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Abstract. We show that chosen plaintext attacks (CPA) security is
equivalent to chosen ciphertext attacks (CCA) security for key-dependent
message (KDM) security. Concretely, we show how to construct a public-
key encryption (PKE) scheme that is KDM-CCA secure with respect to
all functions computable by circuits of a-priori bounded size, based only
on a PKE scheme that is KDM-CPA secure with respect to projection
functions. Our construction works for KDM security in the single user
setting.

Our main result is achieved by combining the following two steps. First,
we observe that by combining the results and techniques from the re-
cent works by Lombardi et al. (CRYPTO 2019), and by Kitagawa et al.
(CRYPTO 2019), we can construct a reusable designated-verifier non-
interactive zero-knowledge (DV-NIZK) argument system based on an
IND-CPA secure PKE scheme and a secret-key encryption (SKE) scheme
satisfying one-time KDM security with respect to projection functions.
This observation leads to the first reusable DV-NIZK argument system
under the learning-parity-with-noise (LPN) assumption. Then, as the
second and main technical step, we show a generic construction of a
KDM-CCA secure PKE scheme using an IND-CPA secure PKE scheme,
a reusable DV-NIZK argument system, and an SKE scheme satisfying
one-time KDM security with respect to projection functions. Since the
classical Naor-Yung paradigm (STOC 1990) with a DV-NIZK argument
system does not work for proving KDM security, we propose a new con-
struction methodology to achieve this generic construction.

Moreover, we show how to extend our generic construction and achieve
KDM-CCA security in the multi-user setting, by additionally requiring
the underlying SKE scheme in our generic construction to satisfy a weak
form of KDM security against related-key attacks (RKA-KDM security)
instead of one-time KDM security. From this extension, we obtain the
first KDM-CCA secure PKE schemes in the multi-user setting under the
CDH or LPN assumption.

Keywords: public-key encryption, key-dependent message security, cho-
sen ciphertext security, designated-verifier non-interactive zero-knowledge
argument.
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1 Introduction

1.1 Background

The most basic security notion for public-key encryption (PKE) is indistinguisha-
bility against chosen plaintext attacks (IND-CPA security) [?]. Intuitively, IND-
CPA security guarantees that an adversary can obtain no information about a
message from its encryption, except for its length. However, in practice, PKE
schemes should satisfy the stronger notion of indistinguishability against chosen
ciphertext attacks (IND-CCA security) [?,?]. IND-CCA security implies non-
malleability [?,?], and provides security guarantees against active adversaries [?].

Since IND-CCA security is stronger than IND-CPA security, the existence
of IND-CCA secure PKE implies that of IND-CPA secure one. However, the
implication of the opposite direction is not known. While a partial negative
result was shown by Gertner, Malkin, and Myers [?], the question whether an
IND-CCA secure PKE scheme can be constructed from an IND-CPA secure one
has still been standing as a major open question in cryptography from both the
theoretical and practical points of view.

In the literature, a number of efforts have been made for (implicitly or explic-
itly) tackling the problem. Among them, we highlight the two very recent works
that make solid progress. Koppula and Waters [?] showed that an IND-CCA
secure PKE scheme can be constructed from an IND-CPA secure one by using a
pseudorandom generator (PRG) satisfying a special security notion. This addi-
tional primitive is called a hinting PRG. Subsequently, Kitagawa, Matsuda, and
Tanaka [?] showed that a transformation from an IND-CPA secure PKE scheme
to an IND-CCA secure one is also possible by using a secret-key encryption
(SKE) scheme satisfying one-time key-dependent message security [?] instead of
a hinting PRG.

We further study the question of CPA security vs CCA security. Many previ-
ous works focusing on this question sought an additional assumption that bridges
IND-CPA security and IND-CCA security. In this work, we tackle the question
from a somewhat different angle. Concretely, we aim at finding a security no-
tion under which CPA security and CCA security are equivalent. As far as we
know, such an equivalence is not known for any security notion for PKE schemes
(e.g., leakage resilience, key-dependent message security, and selective opening
security). Finding such a security notion is an important question in the theo-
retical study of public-key cryptography. Moreover, we believe that clarifying for
what types of notions CPA security and CCA security are equivalent potentially
gives us new insights for the major open question on the equivalence between
IND-CPA security and IND-CCA security.

Based on the above motivation, in this work, we study the equivalence of
CPA security and CCA security for key-dependent message (KDM) security [?].
Informally, KDM security guarantees that an encryption scheme can securely
encrypt messages that depend on its own secret key. We can see some connec-
tions between IND-CCA security and KDM-CPA security from several previous
results [?,?,?], and thus KDM security can be considered as one of the best can-
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didates for which CPA security and CCA security could be shown equivalent.
Moreover, KDM security is important and interesting enough to be studied in
its own right since it has found a number of applications in both theoretical
and practical studies in cryptography, e.g., anonymous credentials [?], formal
methods [?], hard-disc encryption [?], fully homomorphic encryption [?], non-
interactive zero-knowledge proofs [?,?], and homomorphic secret-sharing [?].

1.2 Our Results

As noted above, we study the equivalence between CPA security and CCA se-
curity for KDM security. Then, we obtain the following main theorem.

Theorem 1 (Informal). Assume that there exists a KDM-CPA secure PKE
scheme. Then, there exists a KDM-CCA secure PKE scheme.

We show this theorem for KDM-CPA security and KDM-CCA security in the
single user setting. The underlying scheme needs to be KDM-CPA secure with
respect to functions called projection functions (P-KDM-CPA secure). The fam-
ily of projection functions is one of the simplest classes of functions, and KDM
security with respect to this function class has been widely studied [?,?,?,?,?].
The resulting scheme is KDM-CCA secure with respect to all functions com-
putable by circuits of a-priori bounded size. The achieved security notion is the
CCA-analogue of the notion called bounded KDM security by Barak, Haitner,
Hofheinz, and Ishai [?].

We obtain Theorem ?? by combining the following two steps.

Reusable DV-NIZK Based on One-Time KDM Secure SKE. A designated-verifier
non-interactive zero-knowledge (DV-NIZK) argument system is a relaxation of a
standard NIZK argument system in the common reference string model (CRS-
NIZK, for short), and allows a verifier to have its own public/secret key pair;
The public key is used to generate a proof non-interactively, which can be veri-
fied by using the corresponding secret key. A DV-NIZK argument system is said
to be reusable if its soundness (resp. zero-knowledge property) is maintained
even if an adversary can make multiple verification (resp. proving) queries. It
was recently shown by Lombardi, Quach, Rothblum, Wichs, and Wu [?] that a
reusable DV-NIZK argument system can be constructed from the combination
of an IND-CPA secure PKE scheme and a hinting PRG introduced by Koppula
and Waters [?].

As the first step for Theorem ??, we observe that we can construct a reusable
DV-NIZK argument system based on an IND-CPA secure PKE scheme and an
SKE scheme that is one-time KDM secure with respect to projection functions
(one-time P-KDM secure), by combining the results and techniques from the
recent works by Lombardi et al. [?] and Kitagawa et al. [?].

In fact, this is somewhat obvious from the results [?,?] and not our main
contribution. However, this observation leads to the following interesting impli-
cations. A one-time P-KDM secure SKE scheme can be constructed based on
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the polynomial hardness of the constant-noise learning-parity-with-noise (LPN)
assumption [?]. Moreover, we can construct an IND-CPA secure PKE scheme
based on the polynomial hardness of the low-noise LPN assumption [?] or the
sub-exponential hardness of the constant-noise LPN assumption [?]. Thus, com-
bined together, our observation leads to the first reusable DV-NIZK argument
system based on either the polynomial hardness of the low-noise LPN assump-
tion or the sub-exponential hardness of the constant-noise LPN assumption.

We note that the exact same observation (i.e. a reusable DV-NIZK argument
system based on IND-CPA secure PKE and one-time P-KDM secure SKE, and
the LPN-based instantiation) was very recently made independently and con-
currently by Lombardi et al. [?].

Generic Construction of KDM-CCA Secure PKE Using Reusable DV-NIZK.
Then, as the second and main technical step for Theorem ??, we show a generic
construction of KDM-CCA secure PKE based on the following five building
blocks: an IND-CPA secure PKE scheme, an IND-CCA secure PKE scheme, a
one-time P-KDM secure SKE scheme, a garbling scheme, and a reusable DV-
NIZK argument system.

In the first step above, we show how to construct a reusable DV-NIZK ar-
gument system from an IND-CPA secure PKE scheme and a one-time P-KDM
secure SKE scheme. Also, IND-CCA secure PKE can be constructed from the
same building blocks [?]. Moreover, a garbling scheme can be constructed from
one-way functions [?], which is in turn implied by other building blocks. There-
fore, through our generic construction, we can construct a KDM-CCA secure
PKE scheme based on an IND-CPA secure PKE scheme and a one-time P-
KDM secure SKE scheme. Since both of the underlying primitives are implied
by P-KDM-CPA secure PKE, we obtain Theorem ??.

We highlight that our construction can “amplify” KDM security in terms
of not only the class of functions (from projection functions to circuits of a-
priori bounded size) but also the number of KDM-encryption queries allowed for
an adversary. Specifically, among the building blocks, the only “KDM-secure”
component is the one-time P-KDM secure SKE scheme, while our construc-
tion achieves the standard many-time KDM-CCA security. For more details, see
Section ??.

One might think that if we can use a reusable DV-NIZK argument system,
a KDM-CPA secure PKE scheme can easily be transformed into a KDM-CCA
secure one by the Naor-Yung paradigm [?]. In fact, if the goal is to achieve
an IND-CCA secure PKE scheme, then it is possible to replace a CRS-NIZK
argument system in the Naor-Yung paradigm with a reusable DV-NIZK argu-
ment system. Furthermore, Camenisch, Chandran, and Shoup [?] showed that (a
slight variant of) the Naor-Yung paradigm with a CRS-NIZK argument system
can be used to transform a KDM-CPA secure PKE scheme into a KDM-CCA
secure one. Unfortunately, however, things are not so easy if we aim at achiev-
ing KDM-CCA security using a reusable DV-NIZK argument system via the
Naor-Yung paradigm (or its existing variants). The main cause of difficulty is
that if we apply the standard Naor-Yung paradigm using a DV-NIZK argument
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system, the secret verification key of the DV-NIZK argument system is included
in the secret key of the resulting scheme, and a circularity involving a DV-NIZK
argument system occurs in the KDM-CCA security game. Our main technical
contribution is circumventing this difficulty. We will detail the difficulty as well
as our techniques in Section ??.

KDM-CCA Security in the Multi-User Setting Based on New Assumptions. Al-
though our main focus in this work is on showing that KDM-CPA security
and KDM-CCA security are equivalent, through the above results, we obtain
the first KDM-CCA secure PKE schemes based on the computational Diffie-
Hellman (CDH) assumption and the LPN assumption, since KDM-CPA secure
PKE schemes can be constructed under these assumptions [?,?,?]. These schemes
satisfy only KDM-CCA security in the single user setting, since so does our
generic construction, as noted earlier.

We then show how to extend our generic construction and achieve a PKE
scheme satisfying KDM-CCA security in the multi-user setting under the CDH
and LPN assumptions. This is done by requiring the underlying SKE scheme
in our generic construction to satisfy a variant of KDM security against related-
key attacks (RKA-KDM security) [?], instead of one-time KDM security. (We
also require a mild property that a secret key is a uniformly distributed ran-
dom string.) An SKE scheme satisfying our definition of RKA-KDM security
can be constructed based on the (polynomial hardness of) constant-noise LPN
assumption [?]. Moreover, we show how to construct an SKE scheme satisfying
our RKA-KDM security notion based on hash encryption [?,?], which in turn
can be based on the CDH assumption. This construction is an extension of a
KDM-CPA secure PKE scheme based on batch encryption proposed by Braker-
ski, Lombardi, Segev, and Vaikuntanathan [?].

Due to the space constraint, we omit the construction of an RKA-KDM secure
SKE scheme using a hash encryption scheme from the proceedings version. For
the construction, see the full version.

1.3 Related Work

Generic Constructions for KDM-CCA Secure PKE. To the best of our knowl-
edge, the only existing generic methods for constructing KDM-CCA secure PKE,
are the works by Camenisch, Chandran, and Shoup [?], by Galindo, Herrantz,
and Villar [?], and by Kitagawa and Tanaka [?]. Camenisch et al. [?] showed
how to construct a KDM-CCA secure PKE scheme from a KDM-CPA secure
PKE scheme, an IND-CCA secure PKE scheme, and a CRS-NIZK proof (or ar-
gument) system. (We will touch it in Section ??.) Galindo et al. [?] showed how
to construct a KDM-CCA secure PKE scheme from an identity-based encryp-
tion scheme which satisfies so-called master-key-dependent message security, via
the transformation by Canetti, Halevi, and Katz [?]. However, the only known
instantiation of Galindo et al.’s method can achieve security against adversaries
that make an a-priori bounded number of master-key-KDM-encryption queries,
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which is translated to KDM-CCA security against adversaries that make an a-
priori bounded number of KDM-encryption queries. Kitagawa and Tanaka [?]
showed how to construct a KDM-CCA secure PKE scheme based on a hash
proof system [?] satisfying some homomorphic property. It is not obvious how
to modify the methods of [?,?] to achieve a generic construction of a KDM-CCA
secure PKE scheme starting from a KDM-CPA secure one.

2 Technical Overview

In this section, we provide a technical overview of our main results. As mentioned
in the introduction and will be detailed in Section ??, we can observe from
the previous results [?,?] that a reusable DV-NIZK argument system can be
constructed based on the combination of an IND-CPA secure PKE scheme and
a one-time KDM secure SKE scheme. Thus, in this overview, we mainly focus
on the generic construction of a PKE scheme that is KDM-CCA secure in the
single user setting using a reusable DV-NIZK argument system. (From here on,
we drop “reusable”.) We also briefly explain how to extend it into the multi-user
setting by using RKA-KDM secure SKE. We start with why we cannot achieve
such a generic construction by using the standard Naor-Yung paradigm [?].

2.1 Naor-Yung Paradigm with DV-NIZK Fails for KDM

Camenisch, Chandran, and Shoup [?] showed that the Naor-Yung paradigm with
a CRS-NIZK argument system goes through for KDM security. We first review
their construction, and then explain the problems that arise when replacing the
underlying CRS-NIZK argument system with a DV-NIZK argument system.

KDM-CCA PKE by Camenisch et al. [?]. The construction uses a KDM-CPA
secure PKE scheme PKE, an IND-CCA secure PKE scheme PKE′, and a CRS-
NIZK argument system NIZK.3 Using these building blocks, we construct PKENY

as follows. A public key of PKENY consists of (pk, pkcca, crs), where pk and pkcca
are public keys of PKE and PKE′, respectively, and crs is a CRS of NIZK. The cor-
responding secret key is sk corresponding to pk. The secret key skcca correspond-
ing to pkcca is discarded and used only in the security proof. When encrypting a
message m, PKENY generates a ciphertext of the form(

ct = Encpk(m), ctcca = Enc′pkcca(m), π
)
,

where Enc and Enc′ denote the encryption algorithms of PKE and PKE′, re-
spectively, and π is a proof of NIZK proving that ct and ctcca encrypt the same
message, generated by using m and random coins used to generate ct and ctcca
as a witness. When decrypting the ciphertext, we first check whether the proof
π is accepted or not. If π is accepted, we decrypt ct by using sk, and recover m.

3 In their actual construction, a one-time signature scheme is also used. We ignore it
in this overview for simplicity, since the problem we explain below is unrelated to it.
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Camenisch et al. showed that PKENY is KDM-CCA secure for a function class
F with respect to which the underlying PKE scheme PKE satisfies KDM-CPA
security.4

Circularity Involving DV-NIZK. We now explain why the above construction
technique by Camenisch et al. does not work if we use a DV-NIZK argument
system instead of a CRS-NIZK argument system.

If we use a DV-NIZK argument system DVNIZK instead of NIZK as a building
block of PKENY, then we need a secret key skdv of DVNIZK to verify a proof
contained in a ciphertext when decrypting the ciphertext. Thus, we have to
include skdv into the secret key of PKENY.

In this case, an encryption of a message of the form f(sk∥skdv) is given to
an adversary in the KDM-CCA security game, where f is a function chosen by
the adversary as a KDM-encryption query. Then, there is a circularity problem
involving not only encryption schemes but also DVNIZK, since when encrypting
a message f(sk∥skdv), a proof of DVNIZK is generated to guarantee that encryp-
tions of its own secret key skdv are well-formed. Even if such a circularity exists,
we can use the zero-knowledge property of DVNIZK in the security proof since
a reduction algorithm attacking the zero-knowledge property is given a secret
verification key skdv and thus can handle such a circularity. However, we cannot
use its soundness property in the security proof unless we solve the circular-
ity, because a secret verification key skdv is not directly given to an adversary
attacking the soundness of DVNIZK.

Due to this circularity problem involving a DV-NIZK argument system, it
seems difficult to achieve a KDM-CCA secure PKE scheme using a DV-NIZK
variant of the Naor-Yung paradigm.

2.2 How to Solve the Circularity Problem Involving DV-NIZK?

The circularity problem involving a DV-NIZK argument system of PKENY occurs
because in the security game, a message depending on skdv is encrypted by
encryption schemes the validity of whose ciphertexts is proved by the DV-NIZK
argument system. In order to solve this circularity problem, we have to design
a scheme so that it has an indirection that a message is not directly encrypted
by encryption schemes related to a DV-NIZK argument system.

The most standard way to add such an indirection to encryption schemes
would be to use the hybrid encryption methodology. However, it is difficult to
use the hybrid encryption methodology to construct a KDM-CCA secure scheme,
since it leads to a dead-lock in the sense that the key encapsulation mechanism
and data encapsulation mechanism could encrypt each other’s secret key in the
presence of key-dependent messages.

Thus, we use a different technique. We use a garbling scheme [?] to realize
the indirection that a message is not directly encrypted by encryption schemes

4 We note that in this construction, NIZK need not satisfy the simulation soundness
property [?], and we can complete the proof based on the ordinary soundness (and
zero-knowledge) property of NIZK.
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related to a DV-NIZK argument system.5 Concretely, when encrypting a message
m, we first garble a circuit into which m is hardwired. Then, we encrypt each
of the labels generated together with the garbled circuit by a PKE scheme, and
then generate a proof proving that the encryptions of the labels are well-formed
by using a DV-NIZK argument system.

In order to realize the above idea using a garbling scheme, we use a one-time
KDM secure SKE scheme at the key generation to encrypt (and add to a public
key) secret key components of the building block PKE schemes. With the help
of a one-time KDM secure SKE scheme, a garbling scheme makes it possible to
simulate an encryption of the secret key without directly using the secret key
itself, and we can prove the (multi-time) KDM security of the resulting scheme,
which has the indirection.

Below, we first show the KDM-CPA variant of our construction without using
a DV-NIZK argument system. Then, we show how to extend it into a KDM-CCA
secure one.

2.3 KDM-CPA Variant of Our Construction

In the following, we show how to construct a KDM-CPA secure PKE scheme
PKE∗

kdm from a garbling scheme, a one-time KDM secure SKE scheme SKE, and
IND-CPA secure PKE schemes PKE and PKE′.

Construction Using Garbled Circuits. The key generation algorithm generates
a key pair (PK,SK) of PKE∗

kdm as follows. It first generates a secret key s =
(s1, . . . , sℓs) ∈ {0, 1}ℓs of SKE. Next, it generates a key pair (pk′, sk′) of PKE′ and
2ℓs key pairs (pkj,α, skj,α)j∈[ℓs],α∈{0,1} of PKE. Then, it encrypts ℓs+1 secret keys

sk′ and (skj,sj )j∈[ℓs] into ctske by SKE under the key s. The public-key PK consists
of 2ℓs + 1 public keys pk′ and (pkj,α)j∈[ℓs],α∈{0,1}, and ctske. The corresponding
secret key SK is just s. Namely, PK and SK are of the form

PK =
(
(pkj,α)j∈[ℓs],α∈{0,1}, pk′, ctske = Es(sk

′, (skj,sj )j∈[ℓs])
)

and SK = s,

respectively, where Es(·) denotes the encryption algorithm of SKE using the
key s.

When encrypting a message m under PK, PKE∗
kdm first garbles a constant

circuit Q that has m hardwired and outputs it for any input of length ℓs.
6 This

results in a single garbled circuit Q̃ and 2ℓs labels (labj,α)j∈[ℓs],α∈{0,1}. Then,
the encryption algorithm encrypts “0-labels” labj,0 into ctj,α by pkj,α for every

5 The following explanations assume that the reader is familiar with a garbling scheme.
See Section ?? for its formal definition.

6 In the actual construction, we use a garbled circuit and labels that are generated
by the simulator of the garbling scheme, instead of those generated by garbling a
constant circuit. This makes the security proof simpler. We ignore this treatment
here for the simplicity of the explanation.
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j ∈ [ℓs] and α ∈ {0, 1}. It finally encrypts Q̃ and those encrypted labels (ctj,α)j,α
using pk′. The resulting ciphertext CT is of the form

CT = Enc′pk′
(
Q̃, (ctj,0 = Encpkj,0(labj,0), ctj,1 = Encpkj,1(labj,0))j∈[ℓs]

)
,

where Enc and Enc′ are the encryption algorithms of PKE and PKE′, respectively.
We stress that for every j ∈ [n], the same label labj,0 is encrypted under both
pkj,0 and pkj,1.

When decrypting the ciphertext CT using the secret key SK = s, we first
retrieve the secret keys sk′ and (skj,sj )j∈[ℓs] from ctske contained in PK. Then,

using sk′, we recover Q̃ and (ctj,α)j∈[ℓs],α∈{0,1}. Moreover, we recover the “0-
label” labj,0 from ctj,sj using skj,sj for every j ∈ [ℓs]. Finally, we evaluate the

recovered garbled circuit Q̃ with these ℓs “0-labels” by the evaluation algorithm
of the garbling scheme. This results in m, since given 0ℓs , Q outputs m.

Overview of the Security Proof of PKE∗
kdm. We explain how we prove the KDM-

CPA security in the single user setting of PKE∗
kdm. Specifically, we explain that no

adversary A can guess the challenge bit b with probability significantly greater
than 1/2 given an encryption of fb(SK) = fb(s), when A queries two functions
(f0, f1) as a KDM-encryption query.7

In this construction, the secret keys of PKE corresponding to s, namely
(skj,sj )j∈[ℓs], are encrypted in ctske, but the rest of the secret keys (skj,1⊕sj )j∈[ℓs]

are hidden from A’s view. Thus, in the security proof, we can always use the
IND-CPA security of PKE under the public keys (pkj,1⊕sj )j∈[ℓs]. By combining
the IND-CPA security of PKE under these keys with the security of the gar-
bling scheme, we can change the security game so that the encryption of fb(s)
given to A can be simulated without using s, without being noticed by A. Con-
cretely, in the modified security game, an encryption of fb(s) is generated as

follows. We first generate Q̃ and (labj,α)j∈[ℓs],α∈{0,1} by garbling a circuit com-
puting fb, instead of a constant circuit Q in which fb(s) is hardwired. Then,
we encrypt labj,α into ctj,α by pkj,α for every j ∈ [ℓs] and α ∈ {0, 1}. Fi-

nally, we encrypt Q̃ and those encrypted labels (ctj,α)j,α using pk′, and obtain

CT = Encpk′(Q̃, (ctj,0, ctj,1)j∈[ℓs]). We see that we now do not need s to gen-
erate CT. The explanation so far in fact works even when A makes multiple
KDM-encryption queries.

After the above change, a ciphertext CT given to A does not have any infor-
mation of s, and thus we can use the one-time KDM security of SKE. Although
the message (sk′, (skj,sj )j∈[ℓs]) encrypted in ctske depends on the secret key s,
by relying on the one-time KDM security of SKE, we can further change the

7 Usually, KDM security requires that an encryption of f(SK) be indistinguishable
from that of some constant message such as 0|f(·)| instead of requiring encryptions
of f0(SK) and f1(SK) be indistinguishable, where f , f0, and f1 are functions chosen
by adversaries. However, these definitions are equivalent if a function class with
respect to which we consider KDM security contains constant functions, which is
the case in this paper.
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security game so that ctske is generated as an encryption of some constant mes-
sage such as the all-zero string. Then, since sk′ is now hidden from A’s view, we
can argue that A’s advantage in the final game is essentially 1/2 based on the
IND-CPA security of PKE′. This completes the proof for the KDM-CPA security
of PKE∗

kdm.

Features of PKE∗
kdm. This KDM-CPA secure construction PKE∗

kdm has some nice
properties. First, all of the building blocks are implied by KDM-CPA secure
PKE. (Recall that a garbling scheme can be realized from one-way functions [?].)
Moreover, through this construction, we can transform a one-time KDM-CPA
secure scheme into a (multi-time) KDM-CPA secure PKE scheme. Also, the
resulting scheme satisfies KDM-CPA security with respect to all functions com-
putable by circuits of a-priori bounded size even though the underlying KDM-
CPA secure scheme needs to satisfy a much weaker form of KDM-CPA security.
Concretely, the underlying scheme needs to be only KDM-CPA secure with re-
spect to projection functions, since the encrypted message (sk′, (skj,sj )j∈[ℓs]) can
be seen as an output of a function g(x1, . . . , xℓs) = (sk′, (skj,xj

)j∈[ℓs]), which can

be described as a projection function of an input x = (x1, . . . , xℓs) ∈ {0, 1}ℓs
that has (sk′, (skj,α)j∈[ℓs],α∈{0,1}) hardwired. From these facts, in the single user
setting, the construction PKE∗

kdm in fact improves the previous amplification
methods for KDM-CPA secure schemes [?,?,?]. In addition, most importantly,
PKE∗

kdm can be easily extended into a KDM-CCA secure one by using a DV-NIZK
argument system.

2.4 KDM-CCA Secure PKE Using DV-NIZK

We extend PKE∗
kdm into a KDM-CCA secure PKE scheme PKEkdm by the fol-

lowing two steps.
First, we use a DV-NIZK argument system DVNIZK for proving that en-

crypted labels are well-formed. Concretely, we use it in the following manner.
When generating a key pair (PK,SK) of PKEkdm, we additionally generate a key
pair (pkdv, skdv) of DVNIZK, and add pkdv to PK. Moreover, we encrypt skdv into
ctske together with (sk′, (skj,sj )j∈[ℓs]) by using s. Namely, PK is of the form

PK =
(
(pkj,α)j∈[ℓs],α∈{0,1}, pk′, pkdv, ctske = Es(sk

′, skdv, (skj,sj )j∈[ℓs])
)
.

The secret key SK is still only s = (s1, . . . , sℓs) ∈ {0, 1}ℓs . When encrypting a

message m, we first generate Q̃ and (ctj,0, ctj,1)j∈[ℓs] in the same way as PKE∗
kdm.

Then, using pkdv, we generate a proof π of DVNIZK proving that ctj,0 and ctj,1
encrypt the same message for every j ∈ [ℓs], by using labj,0 and random coins
used to generate ctj,0 and ctj,1 as a witness.

Next, in order to make the entire part of the ciphertext non-malleable, we
require that PKE′ satisfy IND-CCA security instead of IND-CPA security, and
encrypt Q̃, the encrypted labels (ctj,0, ctj,1)j∈[ℓs], and the proof π, using pk′ of
PKE′. Therefore, the resulting ciphertext CT is of the form

CT = Enc′pk′
(
Q̃, (ctj,0 = Encpkj,0(labj,0), ctj,1 = Encpkj,1(labj,0))j∈[ℓs], π

)
.
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We perform the decryption of this ciphertext in the same way as before, except
that we additionally check whether π is accepted or not by using skdv retrieved
from ctske, and if it is not accepted, the ciphertext is rejected.

As mentioned earlier (and will be detailed in Section ??), by combining the
techniques from the two recent results [?,?], a DV-NIZK argument system can be
based on the same building blocks. Moreover, an IND-CCA secure PKE scheme
can also be based on the same building blocks [?]. Thus, similarly to PKE∗

kdm, all
the building blocks of PKEkdm can be based on the combination of an IND-CPA
secure PKE scheme and a one-time KDM secure SKE scheme, which are in turn
both implied by a KDM-CPA secure PKE scheme.

Overview of the Security Proof of PKEkdm. At first glance, the circularity involv-
ing DVNIZK occurs when encrypting a key-dependent message f(SK) = f(s) =
skdv by PKEkdm, where f is a function that, given s as input, retrieves skdv from
ctske by using s and outputs skdv. This is because DVNIZK is used to generate
a proof that proves ctj,0 and ctj,1 encrypt the same label, and the labels may
contain some information of the key-dependent message f(s) since it is gener-
ated by garbling a constant circuit Q into which f(s) is hardwired. However, due
to the indirection that skdv is not encrypted by encryption schemes the validity
of whose ciphertexts is proved by the DV-NIZK argument system, we can solve
the circularity and prove the KDM-CCA security of PKEkdm by adding some
modifications to the proof for the KDM-CPA security of PKE∗

kdm explained in
the previous section.

First of all, the zero-knowledge property of DVNIZK allows us to change the
security game so that we use the simulator for the zero-knowledge property to
generate the DV-NIZK key pair (pkdv, skdv) at the key generation, and we use the
simulator also for generating a fake proof π in a ciphertext when responding to
KDM-encryption queries. Then, similarly to what we do in the proof for PKE∗

kdm,
we can change the security game so that we do not need s for responding to
KDM-encryption queries by using the security of the garbling scheme and the
IND-CPA security of PKE under public keys (pkj,1⊕sj )j∈[ℓs]. However, differently

from the proof for the KDM-CPA security of PKE∗
kdm, we cannot use the one-

time KDM security of SKE immediately after this change. This is because we still
need s for responding to decryption queries. More specifically, when responding
to a decryption query, we have to decrypt the “sj-side” ciphertext ctj,sj of PKE
using skj,sj for every j ∈ [ℓs] to recover the labels of a garbled circuit.8 Thus,
before using the one-time KDM security of SKE, we change the security game
so that we do not need s to respond to decryption queries by relying on the
soundness of DVNIZK.

Concretely, we change the security game so that when responding to a de-
cryption query CT, we always decrypt the “0-side” ciphertext ctj,0 of PKE using
skj,0 for every j ∈ [ℓs]. Although we cannot justify this change based solely on

8 Strictly speaking, we also use s to retrieve (sk′, skdv, (skj,sj )j∈[ℓs]) from ctske. However,
we can omit this decryption process and use (sk′, skdv, (skj,sj )j∈[ℓs]) directly without
changing the view of an adversary, and thus we ignore this issue here.
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the soundness of DVNIZK, we can justify it by combining the soundness and
zero-knowledge property of DVNIZK, the one-time KDM security of SKE, and
the IND-CCA security of PKE′ using a deferred analysis technique. This tech-
nique of justifying changes for decryption queries using the deferred analysis
originates in the context of expanding the message space of IND-CCA secure
PKE schemes [?], and was already shown to be useful in the context of KDM-
CCA security [?,?]. In fact, the indirection explained so far makes it possible to
use the deferred analysis technique.

Once we change how decryption queries are answered in this way, we can
complete the remaining part of the proof based on the one-time KDM security
of SKE and the IND-CCA security of PKE′ similarly to the proof for the KDM-
CPA security of PKE∗

kdm.

Is It Essential to Encrypt skdv into ctske? It is not essential to maintain skdv
(and sk′) in the encrypted form ctske by the key s and make SK consist only of s.
In fact, we can consider a variant of PKEkdm such that we set SK := (s, skdv, sk

′).
In this case, we use 2 · ℓSK = 2 · (|s| + |skdv| +

∣∣sk′∣∣) key pairs of PKE, and we
generate ctske as an encryption of (skj,SKj )j∈[ℓSK] by s, where SKj is the j-th bit
of SK for every j ∈ [ℓSK]. Even if we adopt such a construction, we can realize
an indirection that is sufficient to use the deferred analysis technique, and we
can prove its KDM-CCA security similarly to the above.

The security proof for PKEkdm is simpler than that for the above variant.
Moreover, as we will explain below, we need to encrypt skdv and sk′ and make
SK = s when considering KDM-CCA security in the multi-user setting. For these
reasons, we adopt the current construction of PKEkdm.

2.5 Extension to KDM-CCA Security in the Multi-User Setting

We finally explain how to extend the above construction PKEkdm into a scheme
that is KDM-CCA secure in the multi-user setting. In fact, we need not change
the construction at all. The only difference is that we require a weak variant of
RKA-KDM security [?] for the underlying SKE scheme SKE, instead of one-time
KDM security. We also require a mild property that a secret key is uniformly
distributed over the secret key space {0, 1}ℓs .

Informally, an SKE scheme is said to be RKA-KDM secure if no adversary
can guess the challenge bit b with probability significantly greater than 1/2 given
an encryption of fb(s) under the key s⊕∆ ∈ {0, 1}ℓs when it queries two functions
(f0, f1) and a key shift ∆ ∈ {0, 1}ℓs as an RKA-KDM-encryption query. For our
purpose, we need a much weaker form of RKA-KDM security where all key shifts
are not chosen by an adversary, but generated uniformly at random in advance
by the challenger. We call our RKA-KDM security passive RKA-KDM security.
For its formal definition, see Definition ?? in Section ??.

In the security proof of the KDM-CCA security in the multi-user setting of
PKEkdm, there exist n key pairs of PKEkdm for some polynomial n of the security
parameter. As the first step of the proof, we change the security game so that n
secret keys s1, . . . , sn of PKEkdm are generated by first generating a single source
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key s and n key shifts (∆i)i∈[n] and then setting si := s ⊕∆i for every i ∈ [n].
This does not at all change the distribution of the keys due to the requirement
on SKE that a secret key is distributed uniformly in the secret key space {0, 1}ℓs .
We next change the security game so that for every i∗ ∈ [n], an encryption of
fb(s

1∥ . . . ∥sn) under the i∗-th key can be simulated from fb and n key shifts
(∆i)i∈[n] and not the source key s, where (i∗, f0, f1) is a KDM-encryption query
made by an adversary. This is possible by garbling a circuit into which fb, i

∗,
and (∆i)i∈[n] are hardwired,9 while we just directly garble fb in the proof for
the single user security. Then, we can complete the rest of the security proof
in the same way as the proof of the single user security except that we use the
(passive) RKA-KDM security instead of one-time KDM security.

Differently from the single user case, it is critical that skdv and sk′ are en-
crypted into ctske, and SK consists only of s. If SK is of the form (s, skdv, sk

′), it
is not clear how we control the multiple secret keys even if SKE is RKA-KDM
secure.

KDM-CCA Secure PKE from New Assumptions. An SKE scheme satisfying
our definition of RKA-KDM security can be constructed based on the LPN
assumption [?]. Moreover, we show how to construct an SKE scheme satisfying
our RKA-KDM security definition based on hash encryption [?,?] which in turn
can be based on the CDH assumption. The construction is an extension of that
of a KDM-CPA secure PKE scheme based on batch encryption proposed by
Brakerski et al. [?]. For the details of the construction and its security proof, see
the full version.

In addition to RKA-KDM secure SKE schemes, all other building blocks of
our construction can be obtained based on the LPN and CDH assumptions via
KDM-CPA secure PKE schemes. Through our generic construction, we obtain
the first PKE schemes that are KDM-CCA secure in the multi-user setting based
on the LPN and CDH assumptions. Previously to our work, KDM-CCA secure
PKE schemes even in the single user setting based on these assumptions were
not known.

2.6 On the Connections with the Techniques by Barak et al. [?]

The idea of garbling a constant circuit used in this overview was previously
used by Barak et al. [?] in which they constructed a PKE scheme that is KDM-
CPA secure with respect to functions computable by circuits of a-priori bounded
size (i.e. bounded-KDM-CPA security). They used the technique of garbling a
constant circuit together with a primitive that they call targeted encryption,
which is a special form of PKE and whose syntactical and security requirements
have some similarities with hash encryption [?]. In fact, the KDM-CPA variant
of our construction PKE∗

kdm explained in Section ?? can be described by using the
abstraction of targeted encryption in which the targeted encryption scheme is

9 To make this change possible, in the formal proof, we need to pad a circuit garbled
in the encryption algorithm to some appropriate size depending on n.
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constructed from an IND-CPA secure PKE scheme and a one-time KDM secure
SKE scheme.10

We note that although we can use the abstraction of targeted encryption
for the KDM-CPA variant of our construction, it seems difficult to use it for
our main construction of a KDM-CCA secure PKE scheme. The problem is
that if we use the abstraction of targeted encryption, we have to prove the
well-formedness of ciphertexts of the targeted encryption scheme by using the
DV-NIZK argument system. As explained in Section ??, in the security proof
of our KDM-CCA secure PKE scheme, we have to change the security game so
that when responding to a decryption query, we recover all labels from “0-side”
ciphertexts (ctj,0)j∈[ℓs] of the underlying IND-CPA secure PKE scheme (instead
of “si-side” ciphertexts (ctj,si)j∈[ℓs]). This key-switching step is not compatible
with the syntax of targeted encryption, and it seems difficult to use a targeted
encryption scheme in a black-box way.

3 Preliminaries

In this section, we review basic notation and the definitions of cryptographic
primitives used in the paper.

3.1 Notations

N denotes the set of natural numbers, and for n ∈ N, we define [n] := {1, . . . , n}.
For a discrete finite set S, |S| denotes its size, and x

r←− S denotes choosing
an element x uniformly at random from S. For strings x and y, x∥y denotes
their concatenation. For a (probabilistic) algorithm or a function A, y ← A(x)
denotes assigning to y the output of A on input x, and if we need to specify a
randomness r used in A, we denote y ← A(x; r) (in which case the computation
of A is understood as deterministic on input x and r). λ always denotes a security
parameter. PPT stands for probabilistic polynomial time. A function f(λ) is said
to be negligible if f(λ) tends to 0 faster than λ−c for every constant c > 0. We
write f(λ) = negl(λ) to mean that f(λ) is a negligible function.

3.2 Public-Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. The key generation algorithm KG, given a security parameter 1λ

as input, outputs a public key pk and a secret key sk. The encryption algorithm
Enc, given a public key pk and a message m as input, outputs a ciphertext ct.
The (deterministic) decryption algorithm Dec, given a public key pk, a secret
key sk, and a ciphertext ct as input, outputs a message m (which could be
the special symbol ⊥ indicating that ct is invalid). As correctness, we require
Dec(sk,Enc(pk,m)) = m for all λ ∈ N, all (pk, sk)← KG(1λ), and all m.

10 These connections with the techniques by Barak et al. were pointed out by the
anonymous reviewers.
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Security Notions for PKE. Next, we review the definitions of key-dependent mes-
sage security against chosen plaintext attacks/chosen ciphertext attacks (KDM-
CPA/CCA security). Note that IND-CPA/CCA security are covered as their
special cases.

Definition 1 (KDM-CCA/KDM-CPA Security). Let PKE be a PKE scheme
whose secret key and message spaces are SK and M, respectively. Let n ∈ N,
and let F be a function family with domain SKn and range M. Consider the
following F-KDM(n)-CCA game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates n key pairs
(
pki, ski

)
← KG(1λ) (i ∈ [n]). Then, the challenger sets

sk :=
(
sk1, . . . , skn

)
and sends

(
pk1, . . . , pkn

)
to A. Finally, the challenger

prepares an empty list Lkdm.
2. A may adaptively make the following queries.

KDM-encryption queries: A sends (j, f0, f1) ∈ [n] × F2 to the chal-
lenger. The challenger returns ct ← Enc(pkj , fb(sk)) to A. Finally, the
challenger adds (j, ct) to Lkdm.

Decryption queries: A sends (j, ct) to the challenger. If (j, ct) ∈ Lkdm,
then the challenger returns ⊥ to A. Otherwise, the challenger returns
m← Dec(pkj , skj , ct) to A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM(n)-CCA secure if for all PPT adversaries A,
we have Advkdmcpa

PKE,F,A,n(λ) := 2 · |Pr[b = b′]− 1/2| = negl(λ).

F-KDM(n)-CPA security is defined similarly, using the F-KDM(n)-CPA game
where an adversary A is not allowed to make decryption queries.

The above definition is slightly different from the standard definition where
an adversary is required to distinguish encryptions of f(sk1, . . . , skn) from en-
cryptions of some fixed message. However, the two definitions are equivalent if
the function class F contains a constant function, which is the case for the func-
tion families used in this paper (see below). This formalization is easier to work
with for security proofs.

Function Families. In this paper, we will deal with the following function families
for KDM security of PKE:

P (Projection functions): A function is said to be a projection function if
each of its output bits depends on at most a single bit of its input. We
denote by P the family of projection functions.

Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size
= size(λ) is a polynomial, the function family such that each member in Bsize
can be described by a circuit of size size.

C (Constant functions): We denote by C the set of all constant functions.
Note that C-KDM-CCA (resp. C-KDM-CPA) security is equivalent to IND-
CCA (resp. IND-CPA) security.
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3.3 Secret-Key Encryption

A secret-key encryption (SKE) scheme SKE is a three tuple (K,E,D) of PPT
algorithms. The key generation algorithm K, given a security parameter 1λ as
input, outputs a key s. The encryption algorithm E, given a key s and a message
m as input, outputs a ciphertext ct. The (deterministic) decryption algorithm
D, given a key s and a ciphertext ct as input, outputs a message m (which could
be the special symbol ⊥ indicating that ct is invalid). As correctness, we require
D(s,E(s,m)) = m for all λ ∈ N, all keys s output by K(1λ), and all m.

Security Notions for SKE. In this paper, we will deal with two types of security
notions for SKE: one-time KDM security and passive RKA-KDM security. We
review the definitions below.

One-time KDM security is a weak form of KDM-CPA security in which an
adversary is allowed to make only a single KDM-encryption query.

Definition 2 (One-Time KDM Security). Let SKE = (K,E,D) be an SKE
scheme whose key and message spaces are K and M, respectively. Let F be a
function family with domain K and range M. Consider the following one-time
F-KDM game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates a secret key s← K(1λ) and sends 1λ to A.
2. A sends a function f ∈ F as a single KDM-encryption query to the chal-

lenger. If b = 1, the challenger returns ct← E(s, f(s)) to A; Otherwise, the
challenger returns ct ← E(s, 0|f(·)|) to A. (Note that this step is done only
once.)

3. A outputs b′ ∈ {0, 1}.

We say that SKE is one-time F-KDM secure if for all PPT adversaries A,
we have AdvotkdmSKE,F,A(λ) := 2 · |Pr[b = b′]− 1/2| = negl(λ).

Remark 1 (On the Message Space of One-Time KDM Secure SKE). Unlike ordi-
nary IND-CPA secure encryption schemes, extending the message space of KDM
secure encryption schemes is in general not easy. Fortunately, however, things
are easy for P-KDM security. We can extend the message space of a one-time
P-KDM secure SKE scheme as much as we want, if the size of the message space
of the SKE scheme is already sufficiently large. Specifically, we can show that if
there exists a one-time P-KDM secure SKE scheme whose secret key and mes-
sage spaces are {0, 1}ℓ and {0, 1}µ, respectively, for some polynomials ℓ = ℓ(λ)
and µ = µ(λ) satisfying µ = Ω(ℓ · λ), then for any polynomial µ′ = µ′(λ), there
also exists a one-time P-KDM secure SKE scheme that can encrypt messages of
length µ′.

To see this, we observe that the KDM-CPA secure construction PKE∗
kdm that

we described in Section ??, works also in the secret-key setting. Namely, if we
replace the building block IND-CPA secure PKE schemes with IND-CPA secure
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SKE schemes, then the resulting SKE scheme11 is (multi-time) Bsize-KDM secure
where size = size(λ) is some polynomial that depends on the size of a constant
circuit (in which a message is hardwired). In fact, we can make the message
space of this construction arbitrarily large since by setting size appropriately, we
can hardwire a message of arbitrary length into a circuit to be garbled without
compromising the security. Moreover, we only need to assume that the underlying
one-time P-KDM secure SKE scheme can encrypt messages of length µ = Ω(ℓ ·λ)
since it is only required to encrypt ℓ + 1 secret keys of IND-CPA secure SKE
schemes, each of which can be assumed to be λ-bit without loss of generality.
This means that, using this construction, we can extend the message space of
a one-time P-KDM secure SKE scheme as much as we want if the scheme can
already encrypt a message of length µ = Ω(ℓ · λ).

Next, we give a formalization of passive RKA-KDM security, which is a
weaker variant of RKA-KDM security formalized by Applebaum [?]. Recall that
the original RKA-KDM security of [?] is a slightly stronger form of standard
KDM-CPA security (albeit in the presence of a single challenge key) where we
consider an adversary that is allowed to ask encryptions of key-dependent mes-
sages, encrypted under “related” keys. In this paper, we only consider “XOR
by a constant” as related-key deriving functions, and hence give a definition
specialized to this setting. On the other hand, however, we only need a weaker
“passive” variant of RKA-KDM security where the security game is changed as
follows: (1) not the adversary but the challenger randomly chooses the related-
key deriving functions (i.e. constants for XORing in our setting), and (2) an
adversary has to make its RKA-KDM-encryption queries in one shot.

Definition 3 (Passive RKA-KDM Security). Let SKE be an SKE scheme
whose key space is {0, 1}ℓ for some polynomial ℓ = ℓ(λ) and whose message space
isM. Let F be a function family with domain {0, 1}ℓ and rangeM. Let n ∈ N be

an a-priori bounded polynomial. Consider the following passive F-RKA-KDM(n)

game between a challenger and an adversary A.

1. First, the challenger chooses a challenge bit b
r←− {0, 1} and generates s ←

K(λ) and ∆i r←− {0, 1}ℓ for every i ∈ [n]. Then, the challenger sends (∆i)i∈[n]

to A.
2. A sends n functions f1, . . . , fn ∈ F to the challenger. If b = 1, the challenger

computes cti ← E(s⊕∆i, f i(s)) for every i ∈ [n]. Otherwise, the challenger

computes cti ← E(s ⊕ ∆i, 0|f
i(·)|) for every i ∈ [n]. Finally, the challenger

sends
(
cti

)
i∈[n]

to A.
3. A outputs b′ ∈ {0, 1}.

We say that SKE is passively F-RKA-KDM(n) secure, if for all PPT adver-
saries A, we have AdvprkakdmSKE,F,A,n(λ) := 2 · |Pr[b = b′]− 1/2| = negl(λ).
11 If we are only interested in one-time KDM security of the resulting scheme, the

SKE-ciphertext ctske that is originally put in a public key of PKE∗
kdm can be sent as

part of a ciphertext.
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3.4 Designated-Verifier Non-interactive Zero-Knowledge
Arguments

Here, we review the definitions for (reusable) designated-verifier non-interactive
zero-knowledge (DV-NIZK) argument systems.

Let L be an NP language associated with the corresponding NP relation R. A
DV-NIZK argument system DVNIZK for L is a three tuple (DVKG,P,V) of PPT
algorithms. DVKG is the key generation algorithm that takes a security parame-
ter 1λ as input, and outputs a public proving key pk and a secret verification key
sk. P is the proving algorithm that takes a public proving key pk, a statement
x, and a witness w as input, and outputs a proof π. V is the (deterministic)
verification algorithm that takes a secret verification key sk, a statement x, and
a proof π as input, outputs either accept or reject.

We require that DVNIZK satisfy the three requirements: Correctness, (adap-
tive) soundness, and zero-knowledge. In particular, we consider a version of
soundness which holds against adversaries that make multiple verification queries,
and a version of zero-knowledge which holds against adversaries that make mul-
tiple challenge proving queries. A DV-NIZK argument system that satisfies these
versions of soundness and zero-knowledge is called reusable.

Formally, these requirements are defined as follows.

Correctness We say that DVNIZK is correct if we have V(sk, x,P(pk, x, w)) =
accept for all λ ∈ N, all key pairs (pk, sk) output by DVKG(1λ), and all valid
statement/witness pairs (x,w) ∈ R.

Soundness Consider the following soundness game between a challenger and
an adversary A.
1. First, the challenger generates (pk, sk)← DVKG(1λ) and sends pk to A.
2. Amay adaptively make verification queries. WhenAmakes a verification

query (x, π), the challenger responds with V(sk, x, π).
3. A outputs (x∗, π∗).

We say that DVNIZK is sound if for all PPT adversaries A, we have
AdvsoundDVNIZK,A(λ) := Pr[x∗ /∈ L ∧ V(sk, x∗, π∗) = accept] = negl(λ).

Zero-Knowledge Let S = (S1,S2) be a pair of PPT “simulator” algorithms
whose syntax is as follows.
– S1 takes a security parameter 1λ as input, and outputs a fake public key

pk, a fake secret key sk, and a trapdoor td.
– S2 takes a trapdoor td and a statement x as input, and outputs a fake

proof π.
Consider the following zero-knowledge game between a challenger and an
adversary A.
1. First, the challenger chooses the challenge bit b

r←− {0, 1}. If b = 1, then
the challenger generates (pk, sk)← DVKG(1λ); Otherwise the challenger
generates (pk, sk, td)← S1(1

λ). Then, the challenger sends (pk, sk) to A.
2. A may adaptively make proving queries. When A submits a proving

query (x,w), if (x,w) /∈ R, then the challenger returns ⊥ to A. Then,
if b = 1, the challenger computes π ← P(pk, x, w); Otherwise, the chal-
lenger computes π ← S2(td, x). Finally, the challenger returns π to A.
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3. A outputs b′ ∈ {0, 1}.
We say that DVNIZK is zero-knowledge if there exists a PPT simulator S =
(S1,S2) such that for all PPT adversaries A, we have AdvzkDVNIZK,A,S(λ) :=
2 · |Pr[b = b′]− 1/2| = negl(λ).

3.5 Garbled Circuits

Here, we recall the definitions of a garbling scheme in the form we use in this
paper. We can realize a garbling scheme for all efficiently computable circuits
based on one-way functions [?].

Let {Cn}n∈N be a family of circuits where the input-length of each circuit in Cn
is n. A garbling scheme GC is a three tuple (Garble,Eval,Sim) of PPT algorithms.
Garble is the garbling algorithm that takes as input a security parameter 1λ

and a circuit C ∈ Cn, where n = n(λ) is a polynomial. Then, it outputs a

garbled circuit C̃ and 2n labels (labj,α)j∈[n],α∈{0,1}. For simplicity and without
loss of generality, we assume that the length of each labj,α is λ. Eval is the

evaluation algorithm that takes a garbled circuit C̃ and n labels (labj)j∈[n] as
input, and outputs an evaluation result y. Sim is the simulator algorithm that
takes a security parameter 1λ, the size parameter size (where size = size(λ) is a

polynomial), and a string y as input, and outputs a simulated garbled circuit C̃
and n simulated labels (labj)j∈[n].

For a garbling scheme, we require the following correctness and security prop-
erties.

Correctness For all λ, n ∈ N, all x = (x1, . . . , xn) ∈ {0, 1}n, and all C ∈ Cn,
we require that the following two equalities hold.12

– Eval(C̃, (labj,xj )j∈[n]) = C(x) for all (C̃, (labj,α)j∈[n],α∈{0,1}) output by

Garble(1λ, C).

– Eval(C̃, (labj)j∈[n]) = C(x) for all (C̃, (labj)j∈[n]) output by Sim(1λ, |C|,
C(x)).

Security Consider the following security game between a challenger and an
adversary A.
1. First, the challenger chooses a bit b

r←− {0, 1} and sends a security pa-
rameter 1λ to A.

2. A sends a circuit C ∈ Cn and an input x = (x1, . . . , xn) ∈ {0, 1}n to the

challenger. Then, if b = 1, the challenger executes (C̃, (labj,α)j∈[n],α∈{0,1})

← Garble(1λ, C) and returns (C̃, (labj,xj
)j∈[n]) to A; Otherwise, the chal-

lenger returns (C̃, (labj)j∈[n])← Sim(1λ, |C| , C(x)) to A.
3. A outputs b′ ∈ {0, 1}.
We say that GC is secure if for all PPT adversaries A, we have AdvgcGC,A,Sim(λ)
:= 2 · |Pr[b = b′]− 1/2| = negl(λ).

12 Requiring correctness for the output of the simulator may be somewhat non-
standard. However, it is satisfied by Yao’s garbling scheme based on an IND-CPA
secure SKE scheme.
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4 DV-NIZK via KDM Security

In this section, we explain how to construct a reusable DV-NIZK argument
system from the combination of an IND-CPA secure PKE scheme and a one-
time P-KDM secure SKE scheme. Specifically, we explain how the following
statement can be derived.

Theorem 2. Assume that there exist an IND-CPA secure PKE scheme and
a one-time P-KDM secure SKE scheme that can encrypt messages of length
Ω(ℓ · λ), where ℓ = ℓ(λ) is the secret key length of the SKE scheme. Then, there
exists a reusable DV-NIZK argument system for all NP languages.

As mentioned in the introduction, this almost immediately follows by com-
bining the results and techniques from the recent works by Lombardi et al. [?]
and by Kitagawa et al. [?]. To see this, we first briefly review Lombardi et al.’s
work.

Lombardi et al. showed how to construct a reusable DV-NIZK argument
system for all NP languages from the combination of an IND-CPA secure PKE
scheme and a hinting PRG introduced by Koppula and Waters [?]. The main
intermediate technical tool for their construction is what they call attribute-based
secure function evaluation (AB-SFE), which can be seen as a generalization (and
simplification) of a single-key attribute-based encryption (ABE) scheme (i.e., an
ABE scheme secure in the presence of a single secret key). Lombardi et al.
formalized two kinds of security notions for AB-SFE: key-hiding and message-
hiding, each notion with strong and weak variants, resulting in total four security
notions. Using the notion of AB-SFE, they achieved their result in a modular
manner by showing the following steps:

– (DV-NIZK-from-AB-SFE:) A reusable DV-NIZK argument system can
be constructed from an AB-SFE scheme satisfying strong key-hiding and
weak message-hiding.

– (Key-Hiding Enhancement:) An AB-SFE scheme satisfying strong key-
hiding and weak message-hiding can be constructed from an AB-SFE scheme
satisfying weak key-hiding and weak message-hiding, by additionally assum-
ing a hinting PRG. This step directly uses the CPA-to-CCA security trans-
formation for ABE using a hinting PRG by Koppula and Waters [?].

– (AB-SFE-from-PKE:) An AB-SFE scheme satisfying weak key-hiding
and weak message-hiding can be constructed from an IND-CPA secure PKE
scheme.

On the other hand, Kitagawa et al. [?] showed that an IND-CCA secure PKE
scheme can be constructed from the combination of an IND-CPA secure PKE
scheme and a one-time P-KDM secure SKE scheme which can encrypt messages
of length Ω(ℓ · λ), where ℓ denotes the secret key length of the SKE scheme,
based on the Koppula-Waters construction [?].

Kitagawa et al.’s result can be understood as showing a technique for replac-
ing a hinting PRG in the Koppula-Waters construction (and its variants) with
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a one-time P-KDM secure SKE scheme. Hence, we can apply Kitagawa et al.’s
technique to the “key-hiding enhancement” step of Lombardi et al. to replace the
hinting PRG with a one-time P-KDM secure SKE scheme. This can be formally
stated as follows.

Theorem 3 (Key-Hiding Enhancement via KDM Security). Assume
that there exists an AB-SFE scheme that satisfies weak key-hiding and weak
message-hiding, and a one-time P-KDM secure SKE scheme that can encrypt
messages of length Ω(ℓ · λ), where ℓ = ℓ(λ) is the secret key length of the SKE
scheme. Then, there exists an AB-SFE scheme that satisfies strong key-hiding
and weak message-hiding.

Then, Theorem ?? follows from the combination of the “DV-NIZK-from-AB-
SFE” and “AB-SFE-from-PKE” steps of Lombardi et al. [?] and Theorem ??.

We give the formal proof of Theorem ?? in the full version.

5 Generic Construction of KDM-CCA Secure PKE

In this section, we show our main result: a CPA-to-CCA transformation for
KDM security.

More specifically, we show how to construct a PKE scheme that is KDM-CCA
secure with respect to circuits whose size is bounded by an a-priori determined
polynomial size = size(λ) and in the single user setting (i.e. Bsize-KDM(1)-CCA),
from the combination of the five building block primitives: (1) an IND-CPA
secure PKE scheme, (2) an IND-CCA secure PKE scheme, (3) a reusable DV-
NIZK argument system for an NP language, (4) a garbling scheme, and (5) a
one-time P-KDM secure SKE scheme.

We have seen in Section ?? that a reusable DV-NIZK argument system can
be constructed from the combination of an IND-CPA secure PKE scheme and a
one-time P-KDM secure SKE scheme. Furthermore, the recent work by Kitagawa
et al. [?] showed that an IND-CCA secure PKE scheme can also be constructed
from the same building blocks. Moreover, a garbling scheme can be constructed
only from a one-way function [?], which is in turn implied by an IND-CPA secure
PKE or a one-time P-KDM secure SKE scheme. Hence, our result in this section
implies that a Bsize-KDM(1)-CCA secure PKE scheme can be constructed only
from an IND-CPA secure PKE scheme and a one-time P-KDM secure SKE
scheme.

Looking ahead, in the next section, we will show that the same construction
can be shown to be secure in the n-user setting (i.e. Bsize-KDM(n)-CCA secure) if

we additionally require the SKE scheme to be passively P-RKA-KDM(n) secure.

Construction. Let ℓm = ℓm(λ) be a polynomial that denotes the length of mes-
sages to be encrypted by our constructed PKE scheme. Let size = size(λ) be a
polynomial and let n ∈ N be the number of users for which we wish to achieve
Bsize-KDM(n)-CCA security.13

13 As noted earlier, in this section we aim at achieving the security for n = 1, and in
the next section we will consider more general n ≥ 1.
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We use the following building blocks.

– Let PKE = (KG,Enc,Dec) be a PKE scheme whose message space is {0, 1}λ.
We denote the randomness space of Enc by R, and the secret key length by
ℓsk = ℓsk(λ).

– Let PKE′ = (KGcca,Enccca,Deccca) be a PKE scheme whose message space is
{0, 1}∗. We denote its secret key length by ℓ′sk = ℓ′sk(λ).

– Let SKE = (K,E,D) be an SKE scheme whose plaintext space is {0, 1}µ for
a polynomial µ = µ(λ) to be determined below and whose secret key space
is {0, 1}ℓs for some polynomial ℓs = ℓs(λ).

– Let GC = (Garble,Eval,Sim) be a garbling scheme.
– Let DVNIZK = (DVKG,P,V) be a DV-NIZK argument system for the fol-

lowing NP language

L =

 (pkj,α, ctj,α)j∈[ℓs],α∈{0,1}

∣∣∣∣∣∣
∃(labj , rj,0, rj,1)j∈[ℓs] s.t.
∀(j, α) ∈ [ℓs]× {0, 1} :

ctj,α = Enc(pkj,α, labj ; rj,α)

 .

We denote the verification key length of DVNIZK by ℓskdv = ℓskdv(λ).

We require the message length µ of the underlying SKE scheme SKE to satisfy
µ = ℓs · ℓsk+ ℓ′sk+ ℓskdv . Finally, let pad = pad(λ, n) ≥ size be a polynomial that is
used as the size parameter for the underlying garbling scheme, and is specified
differently in Theorem ?? in this section and in Theorem ?? in Section ??.

Using these ingredients, we construct our proposed PKE scheme PKEkdm =
(KGkdm,Enckdm,Deckdm) whose message space is {0, 1}ℓm , as described in Fig-
ure ??.

Correctness. The correctness of PKEkdm follows from that of the building blocks.
Specifically, let (PK,SK) = (((pkj,α)j,α, pkcca, pkdv, ctske), s) be a key pair output

by KGkdm, let m ∈ {0, 1}ℓm be any message, and let CT← Enckdm(PK,m) be an
honestly generated ciphertext. Due to the correctness of PKE, PKE′, SKE, and
DVNIZK, each decryption/verification done in the execution of Deckdm(PK,SK,
CT) never fails, and just before the final step of Deckdm, the decryptor can recover

a garbled circuit Q̃ and the labels (labj)j , which must have been generated as

(Q̃, (labj)j) ← Sim(1λ, pad,m). Hence, by the correctness of GC (in particular,
correctness of the evaluation of a simulated garbled circuit and labels), we have

Eval(Q̃, (labj)j) = m.

Security. The following theorem guarantees the Bsize-KDM(1)-CCA security of
the PKE scheme PKEkdm.

Theorem 4. Let ℓm = ℓm(λ) and size = size(λ) ≥ max{ℓs, ℓm} be any polyno-
mials, and let pad := size. Assume that PKE is IND-CPA secure, PKE′ is IND-
CCA secure, SKE is one-time P-KDM secure, GC is a secure garbling scheme,
and DVNIZK is a reusable DV-NIZK argument system for the NP language L.
Then, PKEkdm is Bsize-KDM(1)-CCA secure.
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KGkdm(1
λ) :

∀(j, α) ∈ [ℓs]× {0, 1} : (pkj,α, skj,α)← KG(1λ)

(pkcca, skcca)← KGcca(1
λ)

(pkdv, skdv)← DVKG(1λ)
s = (s1, . . . , sℓs)← K(1λ)
ctske ← E(s, ((skj,sj )j , skcca, skdv))
PK← ((pkj,α)j,α, pkcca, pkdv, ctske); SK← s
Return (PK, SK).

Enckdm(PK,m) :
((pkj,α)j,α, pkcca, pkdv, ctske)← PK

(Q̃, (labj)j)← Sim(1λ, pad,m) (†)

∀(j, α) ∈ [ℓs]× {0, 1} :
rj,α

r←− R
ctj,α ← Enc(pkj,α, labj ; rj,α)

x← (pkj,α, ctj,α)j,α
w ← (labj , rj,0, rj,1)j
π ← P(pkdv, x, w)

CT← Enccca(pkcca, (Q̃, (ctj,α)j,α, π))
Return CT.

Deckdm(PK, SK,CT) :
(⋆)

((pkj,α)j,α, pkcca, pkdv, ctske)← PK
s = (s1, . . . , sℓs)← SK
((skj,sj )j , skcca, skdv)← D(s, ctske)

(Q̃, (ctj,α)j,α, π)← Deccca(pkcca, skcca,CT)
x← (pkj,α, ctj,α)j,α
If V(skdv, x, π) = reject then return ⊥.
∀j ∈ [ℓs] : labj ← Dec(pkj,sj , skj,sj , ctj,sj )

Return m← Eval(Q̃, (labj)j).

Fig. 1. The proposed PKE scheme PKEkdm. The notations like (Xj,α)j,α and (Xj)j
are abbreviations for (Xj,α)j∈[ℓs],α∈{0,1} and (Xj)j∈[ℓs], respectively.

(⋆) If D, Dec, or

Deccca returns ⊥, then we make Deckdm return ⊥ and terminate. (†) pad = pad(λ, n)
denotes the size parameter that is specified differently in each of Theorems ?? and ??.

One might wonder the necessity of IND-CCA security for the outer PKE
scheme PKE′. Suppose the underlying garbling scheme GC has the property that
a circuit being garbled is hidden against adversaries that do not see the cor-
responding labels (which is satisfied by Yao’s garbling scheme). Then, among

the components (Q̃, (ctj,α)j,α, π), the only component that actually needs to be
encrypted is the DV-NIZK proof π, as long as all the components are “tied”
together in a non-malleable manner (say, using a one-time signature scheme).
Looking ahead, in a sequence of games argument in the security proof, we will
consider a modified game in which the key pair (pkdv, skdv) and proofs π in the
challenge ciphertexts are generated by the zero-knowledge simulator of DVNIZK,
and we have to bound the probability that an adversary makes a “bad” decryp-
tion query CT such that the statement/proof pair (x, π) corresponding to CT is
judged valid by V while x is actually invalid (i.e. not in L). This could be done
if DVNIZK satisfies (unbounded) simulation soundness, which is not achieved by
the DV-NIZK argument system in Section ??. By encrypting π with an IND-
CCA secure scheme (and relying also on the security properties of the other
building blocks), we can argue that the probability of the bad event that we
would like to bound, is negligibly close to the probability of the bad event in
another modified game in which the key pair (pkdv, skdv) is generated honestly
by DVKG, and proofs π need not be generated for the challenge ciphertexts. The
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probability of the bad event in such a game can be bounded by the (ordinary)
soundness of DVNIZK. For the details, see the proof below.

Proof of Theorem ??. Let A be an arbitrary PPT adversary that attacks the
Bsize-KDM(1)-CCA security of PKEkdm. We proceed the proof via a sequence of
games argument using eight games. For every t ∈ [7], let SUCt be the event that
A succeeds in guessing the challenge bit b in Game t. (Game 8 will be used only
to bound the probability of a bad event introduced later.)

Game 1: This is the original Bsize-KDM(1)-CCA game regarding PKEkdm. By
definition, we have Advkdmcca

PKEkdm,Bsize,A,1(λ) = 2 · |Pr[SUC1]− 1/2|.
Game 2: Same as Game 1, except that the challenger uses the simulator S =

(S1,S2) for the zero-knowledge property of DVNIZK for generating (pkdv, skdv)
and a proof π in generating a ciphertext in response to KDM-encryption
queries, instead of using DVKG and P. Namely, when generating PK and SK,
the challenger generates (pkdv, skdv, td) ← S1(1

λ) instead of (pkdv, skdv) ←
DVKG(1λ). In addition, when A makes a KDM-encryption query (f0, f1),
the challenger computes π ← S2(td, x) instead of π ← P(pkdv, x, w), where
x = (pkj,α, ctj,α)j,α and w = (labj , rj,0, rj,1)j .
By the zero-knowledge property of DVNIZK, we have |Pr[SUC1]− Pr[SUC2]|
= negl(λ).

Game 3: Same as Game 2, except that when responding to a KDM-encryption
query, the challenger generates a garbled circuit Q̃ and labels (labj)j by gar-
bling fb. More precisely, whenAmakes a KDM-encryption query (f0, f1), the

challenger computes (Q̃, (labj,α)j,α) ← Garble(1λ, fb), instead of (Q̃, (labj)j)
← Sim(1λ, pad, fb(s)). Moreover, for every j ∈ [ℓs] and α ∈ {0, 1}, the chal-
lenger computes ctj,α ← Enc(pkj,α, labj,sj ).

14

By definition, the circuit size of fb is pad = size. Hence, by the security of
GC, we have |Pr[SUC2]− Pr[SUC3]| = negl(λ).

Game 4: Same as Game 3, except that when responding to a KDM-encryption
query (f0, f1), the challenger computes ctj,1⊕sj ← Enc(pkj,1⊕sj , labj,1⊕sj )
for every j ∈ [ℓs]. Due to the change made in this game, the challenger now
computes ctj,α ← Enc(pkj,α, labj,α) for every j ∈ [ℓs] and α ∈ {0, 1}.
In Games 3 and 4, we do not need the secret keys (skj,1⊕sj )j of PKE that do
not correspond to s = (s1, . . . , sℓs) (though we need (skj,sj )j for computing
ctske and responding to decryption queries). Therefore, by the IND-CPA
security of PKE under the keys (pkj,1⊕sj )j , we have |Pr[SUC3]− Pr[SUC4]| =
negl(λ).

At this point, the challenger need not use s to respond to KDM-encryption
queries. In the next game, we will ensure that the challenger does not use s
to respond to decryption queries.

Game 5: Same as Game 4, except that when responding to a decryption query,
the challenger computes the labels (labj)j of a garbled circuit by decrypting

14 Note that in Game 3, the labels of the “opposite” positions, namely (labj,1⊕sj )j , are
not used. They will be used in the subsequent games.
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ctj,0, instead of ctj,sj , for every j ∈ [ℓs]. More precisely, for a decryption
query CT from A, the challenger returns ⊥ to A if CT ∈ Lkdm, and otherwise
responds as follows. (The change from the previous game is underlined.)

1. Compute (Q̃, (ctj,α)j,α, π) ← Deccca(pkcca, skcca,CT), and then set x :=
(pkj,α, ctj,α)j,α.

2. If V(skdv, x, π) = reject, then return ⊥ to A.
3. For every j ∈ [ℓs], compute labj ← Dec(pkj,0, skj,0, ctj,0).

4. Return m← Eval(Q̃, (labj)j) to A.
(By the change made in this game, s is not needed for responding to decryp-
tion queries.)

We define the following events in Game t ∈ {4, . . . , 8}.

BDQt: In Game t, A makes a decryption query CT /∈ Lkdm that satisfies the
following two conditions, where (Q̃, (ctj,α)j,α, π)← Deccca(pkcca, skcca,CT):

1. V(skdv, (pkj,α, ctj,α)j,α, π) = accept.
2. There exists j∗ ∈ [ℓs] such that Dec(pkj∗,0, skj∗,0, ctj∗,0) ̸= Dec(pkj∗,1,

skj∗,1, ctj∗,1).

We call such a decryption query a bad decryption query.

Games 4 and 5 are identical unless A makes a bad decryption query in the
corresponding games. Therefore, we have |Pr[SUC4]− Pr[SUC5]| ≤ Pr[BDQ5].

Game 6: Same as Game 5, except that when generating PK, the challenger
generates ctske ← E(s, 0µ), instead of ctske ← E(s, ((skj,sj )j , skcca, skdv)).

In Games 5 and 6, when generating PK, the challenger does not need the
secret key s of SKE except for the step of computing ctske. Furthermore, the
“message” ((skj,sj )j , skcca, skdv) encrypted in ctske in Game 5 can be described
by a projection function of s. Thus, by the one-time P-KDM security of
SKE, we have |Pr[SUC5]− Pr[SUC6]| = negl(λ). In addition, whether A has
submitted a bad decryption query can be detected by using skcca, skdv, and
(skj,α)j,α, without using s. Thus, again by the one-time P-KDM security of
SKE, we have |Pr[BDQ5]− Pr[BDQ6]| = negl(λ).

Game 7: Same as Game 6, except that when responding to a KDM-encryption
query, the challenger computes CT← Enccca(pkcca, 0

ℓ′), where ℓ′ = |Q̃|+2ℓs ·
|ctj,α|+ |π|.
Recall that in the previous game, we have eliminated the information of
skcca from ctske. Thus, we can rely on the IND-CCA security of PKE′ at this
point, and straightforwardly derive |Pr[SUC6]− Pr[SUC7]| = negl(λ). More-
over, a reduction algorithm (attacking the IND-CCA security of PKE′) can
detect whether A’s decryption query is bad by using (skj,α)j,α, skdv, and the
reduction algorithm’s own decryption queries. Thus, again by the IND-CCA
security of PKE′, we have |Pr[BDQ6]− Pr[BDQ7]| = negl(λ).

We see that in Game 7, the challenge bit b is information-theoretically hidden
from A’s view. Thus, we have Pr[SUC7] = 1/2.

We need one more game to bound Pr[BDQ7].
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Game 8: Same as Game 7, except that when generating PK, the challenger
uses DVKG to generate (pkdv, skdv), instead of using S1. Namely, we undo
the change made between Games 1 and 2 for generating (pkdv, skdv).

15

By the zero-knowledge property of DVNIZK, we have |Pr[BDQ7]− Pr[BDQ8]|
= negl(λ).
Finally, we argue that the soundness of DVNIZK implies Pr[BDQ8] = negl(λ).
To see this, note that in Game 8, (pkdv, skdv) is now generated by DVKG. Also,
if A submits a bad decryption query CT such that (1) V(skdv, (pkj,α, ctj,α)j,α,
π) = accept and (2) Dec(pkj∗,0, skj∗,0, ctj∗,0) ̸= Dec(pkj∗,1, skj∗,1, ctj∗,1) for

some j∗ ∈ [ℓs], where (Q̃, (ctj,α)j,α, π) ← Deccca(pkcca, skcca,CT), then the
condition (2) in particular implies (pkj,α, ctj,α)j,α /∈ L. Thus ((pkj,α, ctj,α)j,α,
π) satisfies the condition of violating the soundness of DVNIZK. Note that
a reduction algorithm (attacking the soundness of DVNIZK) is not directly
given a secret verification key skdv. However, the reduction algorithm is al-
lowed to make verification queries, which is sufficient to perfectly simulate
Game 8 for A. The reduction algorithm can also detect whether A has made
a bad decryption query by using skcca and (skj,α)j,α, and verification queries.
Hence, by the soundness of DVNIZK, we have Pr[BDQ8] = negl(λ).

From the above arguments, we see that Advkdmcca
PKEkdm,Bsize,A,1(λ) = negl(λ). Since

the choice of A was arbitrary, we can conclude that PKEkdm is Bsize-KDM(1)-CCA
secure. □ (Theorem ??)

6 Multi-User KDM-CCA Security from RKA-KDM
Security

In this section, we show that for any polynomial n = n(λ), our proposed PKE

scheme PKEkdm presented in Section ?? can be shown to be Bsize-KDM(n)-CCA
secure, by choosing a suitable parameter for pad = pad(λ, n) and additionally

requiring the underlying SKE scheme SKE satisfies P-RKA-KDM(n) security,
and its key generation algorithm outputs a uniformly random string in the secret
key space. Formally, our result for the multi-user setting is stated as follows.

Theorem 5. Let n = n(λ), ℓm = ℓm(λ), and size = size(λ) ≥ max{ℓs, ℓm} be
any polynomials, and let pad := size+O(ℓs · n). Assume that PKE is IND-CPA

secure, PKE′ is IND-CCA secure, SKE is passively P-RKA-KDM(n) secure and
its key generation algorithm outputs a string that is distributed uniformly over
{0, 1}ℓs , GC is a secure garbling scheme, and DVNIZK is a reusable DV-NIZK

argument system for the NP language L. Then, PKEkdm is Bsize-KDM(n)-CCA
secure.

15 Note that in Games 7 and 8, π is not computed when generating CT, and thus we
need not use S2.
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The formal proof is given in the full version. A high-level structure of the
sequence of the games used in the proof of Theorem ?? is similar to that of
Theorem ??. The main differences are as follows.

– Before the game-hop for switching the simulator Sim of the garbling scheme
GC to the ordinary algorithm Garble, we introduce a game in which every
user’s secret key si is derived by using a randomly chosen single “main” key
s ∈ {0, 1}ℓs and a randomly chosen “shift” ∆i ∈ {0, 1}ℓs , so that si := s⊕∆i.
This does not at all change the distribution of the keys due to the requirement
on SKE that a secret key is distributed uniformly in the secret key space
{0, 1}ℓs . This enables us to conduct the remaining game-hops as if s ∈ {0, 1}ℓs
is the single “main” secret key such that we need to care only its leakage to
an adversary via KDM-encryption and decryption queries.

– In the game-hop for switching the simulator Sim of GC to the ordinary
garbling algorithm Garble, instead of directly garbling a KDM-function fb
(which is a function of all users’ secret keys S := s1∥ . . . ∥sℓs in the n-user
setting) appearing in an adversary’s KDM-encryption query (i∗, f0, f1), we
garble some appropriately designed circuit Q with input length ℓs. More
specifically, we garble a circuit Q that has the index i∗, the KDM-function
fb, and the shifts (∆i)i∈[n] hard-wired, and satisfies fb(S) = Q(si

∗
).

– In the game-hop for erasing the information of ((skij,sj )j , sk
i
cca, sk

i
dv) from

ctiske for every i ∈ [n], we rely on the passive P-RKA-KDM(n) security
of SKE (as opposed to its one-time P-KDM security). Intuitively, passive

P-RKA-KDM(n) security suffices here because each user’s secret key si is
computed as si = s ⊕∆i where s and each ∆i are chosen randomly by the
challenger, due to the change made in the first item above.

7 Putting It All Together

In this section, we summarize our results.

By combining Theorems ?? and ??, for any polynomial size = size(λ), a

Bsize-KDM(1)-CCA secure PKE scheme can be constructed from an IND-CPA
secure PKE scheme, an IND-CCA secure PKE scheme, a one-time P-KDM se-
cure SKE scheme, and a garbling scheme. From the result by Kitagawa et al. [?],
we can realize an IND-CCA secure PKE scheme from an IND-CPA secure PKE
scheme and a one-time P-KDM secure PKE scheme. Moreover, a garbling scheme
is implied by one-way functions [?], which is in turn implied by an IND-CPA
secure PKE scheme. From these, we obtain the following theorem.

Theorem 6. Assume that there exist an IND-CPA secure PKE scheme and
a one-time P-KDM secure SKE scheme that can encrypt messages of length
Ω(ℓ ·λ), where ℓ = ℓ(λ) denotes the secret key length of the SKE scheme. Then,

for any polynomial size = size(λ), there exists a Bsize-KDM(1)-CCA secure PKE
scheme.
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Since both an IND-CPA secure PKE scheme and a one-time P-KDM secure
SKE scheme are implied by a P-KDM(1)-CPA secure PKE scheme, we obtain
the following main theorem.

Theorem 7 (CPA-to-CCA Transformation for KDM Security). Assume

that there exists a P-KDM(1)-CPA secure PKE scheme. Then, for any polyno-
mial size = size(λ), there exists a Bsize-KDM(1)-CCA secure PKE scheme.

Similarly to Theorem ??, by combining Theorems ?? and ??, and the previ-
ous results [?,?], we also obtain the following theorem.

Theorem 8. Let n = n(λ) be a polynomial. Assume that there exist an IND-

CPA secure PKE scheme, and a passively P-RKA-KDM(n) secure SKE scheme
that can encrypt messages of length Ω(ℓ·λ), where ℓ = ℓ(λ) denotes the secret key
length of the SKE scheme, and whose secret key generation algorithm outputs
a string that is distributed uniformly over {0, 1}ℓ . Then, for any polynomial

size = size(λ), there exists a Bsize-KDM(n)-CCA secure PKE scheme.

Note that a passively P-RKA-KDM(n) secure SKE scheme is also a one-time
P-KDM secure SKE scheme.

For any polynomials n and µ, we can construct a passively P-RKA-KDM(n)

secure SKE scheme whose message space is {0, 1}µ based on the LPN assump-
tion [?]. In addition, as shown in the full version of this paper, for any polynomials

n and µ, we can construct a P-RKA-KDM(n) secure SKE scheme whose message
space is {0, 1}µ based on the CDH assumption. The key generation algorithms
of the LPN-/CDH-based constructions output a uniformly random string as a
secret key. Since an IND-CPA secure PKE scheme can be constructed based on
the LPN and CDH assumptions, we obtain the following corollary.

Corollary 1. Let n = n(λ) and size = size(λ) be any polynomials. There ex-

ists a Bsize-KDM(n)-CCA secure PKE scheme under either the LPN or CDH
assumption.
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