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Abstract. Oblivious RAM (ORAM), introduced in the context of soft-
ware protection by Goldreich and Ostrovsky [JACM’96], aims at ob-
fuscating the memory access pattern induced by a RAM computation.
Ideally, the memory access pattern of an ORAM should be independent
of the data being processed. Since the work of Goldreich and Ostro-
vsky, it was believed that there is an inherent Ω(logn) bandwidth over-
head in any ORAM working with memory of size n. Larsen and Nielsen
[CRYPTO’18] were the first to give a general Ω(logn) lower bound for
any online ORAM, i.e., an ORAM that must process its inputs in an
online manner.

In this work, we revisit the lower bound of Larsen and Nielsen, which was
proved under the assumption that the adversarial server knows exactly
which server accesses correspond to which input operation. We give an
Ω(logn) lower bound for the bandwidth overhead of any online ORAM
even when the adversary has no access to this information. For many
known constructions of ORAM this information is provided implicitly
as each input operation induces an access sequence of roughly the same
length. Thus, they are subject to the lower bound of Larsen and Nielsen.
Our results rule out a broader class of constructions and specifically, they
imply that obfuscating the boundaries between the input operations does
not help in building a more efficient ORAM.

As our main technical contribution and to handle the lack of structure,
we study the properties of access graphs induced naturally by the mem-
ory access pattern of an ORAM computation. We identify a particular
graph property that can be efficiently tested and that all access graphs
of ORAM computation must satisfy with high probability. This property
is reminiscent of the Larsen-Nielsen property but it is substantially less
structured; that is, it is more generic.
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1 Introduction

Oblivious simulation of RAM machines, initially studied in the context of soft-
ware protection by Goldreich and Ostrovsky [11], aims at protecting the memory
access pattern induced by computation of a RAM from an eavesdropper. In the
present day, such oblivious simulation might be needed when performing a com-
putation in the memory of an untrusted server.1 Despite using encryption for
protecting the content of each memory cell, the memory access pattern might
still leak sensitive information. Thus, the memory access pattern should be obliv-
ious of the data being processed and, optimally, depend only on the size of the
input.

Constructions. The strong guarantee of obliviousness of the memory access
pattern comes at the cost of additional overhead. A trivial solution which scans
the whole memory for each memory access induces linear bandwidth overhead,
i.e., the multiplicative factor by which the length of a memory access pattern
increases in the oblivious simulation of a RAM with n memory cells. Given its
many practical applications, an important research direction is to construct an
ORAM with as low overhead as possible. The foundational work of Goldreich and
Ostrovsky [11] already gave a construction with bandwidth overhead O(log3(n)).
Subsequent results introduced various improved approaches for building ORAMs
(see [1, 4–6, 9, 11–13, 17, 22, 25, 26, 28, 29] and the references therein) leading to
the recent construction of Asharov et al. [2] with bandwidth overhead O(log n)
for the most natural setting of parameters.

Lower-bounds. It was a folklore belief that an Ω(log n) bandwidth overhead is
inherent based on a lower bound presented already in the initial work of Goldre-
ich and Ostrovsky [11]. However, the Goldreich-Ostrovsky result was recently
revisited in the work of Boyle and Naor [3], who pointed out that the lower
bound actually holds only in a rather restricted “balls and bins” model where
the ORAM is not allowed to read the content of the data cells it processes. In
fact, Boyle and Naor showed that any general lower bound for offline ORAM
(i.e., where each memory access of the ORAM can depend on the whole se-
quence of operations it needs to obliviously simulate) implies non-trivial lower
bounds on sizes of sorting circuits which seem to be out of reach of the known
techniques in computational complexity. The connection between offline ORAM
lower bounds and circuit lower bounds was extended to read-only online ORAMs
(i.e., where only the read operations are processed in online manner) by Weiss
and Wichs [30] who showed that lower bounds on bandwidth overhead for read-
only online ORAMs would imply non-trivial lower bounds for sorting circuits or
locally decodable codes.

The first general Ω(log n) lower bound for bandwidth overhead in online
ORAM (i.e., where the ORAM must process sequentially the operations it has to

1 Protecting the memory access of a computation is particularly relevant in the light
of the recent Spectre [16] and Meltdown [19] attacks.
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obliviously simulate) was given by Larsen and Nielsen [18]. The core of their lower
bound comprised of adapting the information transfer technique of Patrascu and
Demaine [23], originally used for proving lower bounds for data structures in the
cell probe model, to the ORAM setting. In fact, the lower bound of Larsen
and Nielsen [18] for ORAM can be cast as a lower bound for the oblivious
Array Maintenance problem and it was recently extended to other oblivious
data structures by Jacob et al. [15].

1.1 Our Results

In this work, we further develop the information transfer technique of [23] when
applied in the context of online ORAMs. We revisit the lower bound of Larsen
and Nielsen which was proved under the assumption that the adversarial server
knows exactly which server accesses correspond to each input operation. Specifi-
cally, we prove a stronger matching lower bound in a relaxed model without any
restriction on the format of the access sequence to server memory.

Note that the [18] lower bound does apply to the known constructions of
ORAMs where it is possible to implicitly separate the accesses corresponding to
individual input operations – since each input operation generates an access se-
quence of roughly the same length. However, the [18] result does not rule out the
possibility of achieving sub-logarithmic overhead in an ORAM which obfuscates
the boundaries in the access pattern (e.g. by translating input operations into
variable-length memory accesses). We show that obfuscating the boundaries be-
tween the input operations does not help in building a more efficient ORAM. In
other words, our lower bound justifies the design choice of constructing ORAMs
where each input operation is translated to roughly the same number of probes
to server memory (common to the known constructions of ORAMs).

Besides online ORAM (i.e., the oblivious Array Maintenance problem), our
techniques naturally extend to other oblivious data structures and allow to gen-
eralize also the recent lower bounds of Jacob et al. [15] for oblivious stacks,
queues, deques, priority queues and search trees.

For online ORAMs with statistical security, our results are stated in the
following informal theorem.

Theorem 1 (Informal). Any statistically secure online ORAM with internal
memory of size m has expected bandwidth overhead Ω(log n), where n ≥ m2 is
the length of the sequence of input operations. This result holds even when the
adversarial server has no information about boundaries between probes corre-
sponding to different input operations.

In the computational setting, we consider two definitions of computational
security. Our notion of weak computational security requires that no polynomial
time algorithm can distinguish access sequences corresponding to any two input
sequences of the same length – this is closer in spirit to computational security
for ORAMs previously considered in the literature. The notion of strong com-
putational security requires computational indistinguishability even when the
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distinguisher is given the two input sequences together with an access sequence
corresponding to one of them. The distinguisher should not be able to tell which
one of the two input sequences produced the access sequence. Interestingly, our
technique (as well as the proof technique of [18] in the model with structured
access pattern) yields different lower bounds with respect to the two definitions
stated in the following informal theorem.

Theorem 2 (Informal). Any weakly computationally secure online ORAM
with internal memory of size m must have expected bandwidth overhead ω(1).
Any strongly computationally secure online ORAM with internal memory of
size m must have expected bandwidth overhead Ω(log n), where n ≥ m2 is the
length of the sequence of input operations. This result holds even when the adver-
sarial server has no information about boundaries between probes corresponding
to different input operations.

Note that even the ω(1) lower bound for online ORAMs satisfying weak
computational security is an interesting result in the light of the work of Boyle
and Naor [3]. It follows from [3] that any super-constant lower bound for of-
fline ORAM would imply super-linear lower bounds on size of sorting circuits
– which would constitute a major breakthrough in computational complexity
(for additional discussion, see Section 5). Our techniques clearly do not provide
lower bounds for offline ORAMs. On the other hand, we believe that proving
the ω(1) lower bound in any meaningful weaker model would amount to proving
lower bounds for offline ORAM or read-only online ORAM which would have
important implications in computational complexity.

Alternative Definitions of ORAM. Previous works considered various al-
ternative definitions of ORAM. We clarify the ORAM model in which our tech-
niques yield a lower bound in Section 2.1 and discuss its relation to other models
in Section 5. As an additional contribution, we demonstrate an issue with the
definition of ORAM appearing in Goldreich and Ostrovsky [11]. Specifically, we
show that the definition can be satisfied by a RAM with constant overhead and
no meaningful security. The definition of ORAM in Goldreich and Ostrovsky [11]
differs from the original definition in Goldreich [10] and Ostrovsky [21], which
do not share the issue we observed in the definition from Goldreich and Ostro-
vsky [11]. Given that the work of Goldreich and Ostrovsky [11] might serve as a
primary reference for our community, we explain the issue in Section 5 to help
preventing the use of the problematic definition in future works.

Persiano and Yeo [24] recently adapted the chronogram technique [8] from
the literature on data structure lower bounds to prove a lower bound for dif-
ferentially private RAMs (a relaxation of ORAMs in the spirit of differential
privacy [7] which ensures indistinguishability only for input sequences that dif-
fer in a single operation). Similarly to the work of Larsen and Nielsen [18],
the proof in [24] exploits the fact that the distinguisher knows exactly which
server accesses correspond to each input operation. However, as the chronogram
technique significantly differs from the information transfer approach, we do not
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think that our techniques would directly allow to strengthen the [24] lower bound
for differentially private RAMs and prove it in the model with an unstructured
access pattern.

1.2 Our Techniques

The structure of our proof follows a similar blueprint as the work of Larsen and
Nielsen [18]. However, we must handle new issues introduced by the more general
adversarial model. Most significantly, our proof cannot rely on any formatting
of the access pattern, whereas Larsen and Nielsen leveraged the fact that the
access pattern is split into blocks corresponding to each read/write operation. To
handle the lack of structure in the access pattern, we study the properties of the
access graph induced naturally by the access pattern of an ORAM computation.
We identify a particular graph property that can be efficiently tested and that
all access graphs of ORAM computation must satisfy with high probability. This
property is reminiscent of the Larsen-Nielsen property but it is substantially less
structured; that is, it is more generic.

The access graph is defined as follows: the vertices are timestamps of server
probes and there is an edge connecting two vertices if and only if they correspond
to two subsequent accesses to the same memory cell. We define a graph property
called `-dense k-partition. Roughly speaking, graphs with `-dense k-partitions
are graphs which may be partitioned into k disjoint subgraphs, each subgraph
having at least ` edges. We show that this property has to be satisfied (with high
probability) by access graphs induced by an ORAM for any k and an appropriate
`. To leverage this inherent structure of access graph towards a lower bound on
bandwidth overhead, we prove that if a graph has `

k -dense k-partition for some `
and K different values of k then the graph must have at least Ω(` logK) edges.
In Section 3, we provide the formal definition of access graph and `-dense k-
partitions and prove a lower bound on the expected number of edges for a graph
that has many `-dense k-partitions.

In Section 4, we prove that access graphs of ORAMs have many dense parti-
tions. Specifically, using a communication-type argument we show that for Ω(n)
values of k, there exist input sequences for which the corresponding graph has
Ω(n

k )-dense k-partition with high probability. Applying the indistinguishability
of sequences of probes made by ORAM, we get one sequence for which its access
graph satisfies n

k -dense k-partition for Ω(n) values of k with high probability.
Combining the above results from Section 4 with the results from Section 3, we
get that the graph of such a sequence has Ω(n log n) edges, and thus by defini-
tion, Ω(n log n) vertices in expectation. This implies that the expected number
of probes made by the ORAM on any input sequence of length n is Ω(n log n).

2 Preliminaries

In this section, we introduce some basic notation and recall some standard defini-
tions and results. Throughout the rest of the paper, we let [n] for n ∈ N to denote
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the set {1, 2, . . . , n}. A function negl(n) : N→ R is negligible if it approaches zero
faster than any inverse polynomial.

Definition 1 (Statistical Distance). For two probability distributions X and
Y on a discrete universe S, we define statistical distance of X and Y as

SD (X,Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| .

We use the following observation, which characterizes statistical distance as
the difference of areas under the curve (see Fact 3.1.9 in Vadhan [27]).

Proposition 1. Let X and Y be probability distributions on a discrete universe
S, let SX = {s ∈ S : Pr[X = s] > Pr[Y = s]}, and define SY analogously. Then

SD (X,Y ) = Pr[X ∈ SX ]− Pr[Y ∈ SX ] = Pr[Y ∈ SY ]− Pr[X ∈ SY ] .

We also use the following data-processing-type inequality.

Proposition 2. Let X and Y be probability distributions on a discrete universe
S. Then for any function f : S → {0, 1}, it holds that |Pr[f(X) = 1]−Pr[f(Y ) =
1]| ≤ SD (X,Y ).

Definition 2 (Computational indistinguishability). Two probability en-
sembles, {Xn}n∈N and {Yn}n∈N, are computationally indistinguishable if for
every polynomial-time algorithm D there exists a negligible function negl(·) such
that

|Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1]| ≤ negl(n) .

2.1 Online ORAM

In this section, we present the formal definition for online oblivious RAM (ORAM)
we consider in our work – we build on the oblivious cell-probe model of Larsen
and Nielsen [18].

Definition 3 (Array Maintenance Problem [18]). The Array Maintenance
problem with parameters (`, w) is to maintain an array B of ` w-bit entries
under the following two operations:

– (W,a, d): Set the content of B[a] to d, where a ∈ [`], d ∈ {0, 1}w. (Write
operation)

– (R, a, d): Return the content of B[a], where a ∈ [`] (note that d is ignored).
(Read operation)

We say that a machine M implements the Array Maintenance problem with
parameters (`, w) and probability p, if for every input sequence of operations

y = (o1, a1, d1), . . . , (on, an, dn), where each oi ∈ {R,W} , ai ∈ [`], di ∈ {0, 1}w ,

and for every read operation in the sequence y, M returns the correct answer
with probability at least p.
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Definition 4 (Online Oblivious RAM). For m,w ∈ N, let RAM*(m,w) de-
note a probabilistic random access machine M with m cells of internal memory,
each of size w bits, which has access to a data structure, called server, imple-
menting the Array Maintenance problem with parameters (2w, w) and probability
1. In other words, in each step of computation M may probe the server on a
triple (o, a, d) ∈ {R,W} × [2w]× {0, 1}w and on every input (R, a, d) the server
returns toM the data last written in B[a]. We say that RAM∗ probes the server
whenever it makes an Array Maintenance operation to the server.

Let m,M,w be any natural numbers such that M ≤ 2w. An online Oblivious
RAMM with address range M , cell size w bits and m cells of internal memory
is a RAM∗(m,w) satisfying online access sequence, correctness, and statistical
(resp. computational) security as defined below.

Online Access Sequence: For any input sequence y = y1, . . . , yn the RAM*
machine M gets yi one by one, where each yi ∈ {R,W} × [M ] × {0, 1}w.
Upon the receipt of each operation yi, the machine M generates a possibly
empty sequence of server probes (o1, a1, d1), . . . , (o`i , a`i , d`i), where each
(oi, ai, di) ∈ {R,W}× [2w]×{0, 1}w, and updates its internal memory state
in order to correctly implement the request yi. We define the access sequence
corresponding to yi as A(M, yi) = a1, a2, . . . , a`i . For the input sequence y,
the access sequence A(M, y) is defined as

A(M, y) = A(M, y1), A(M, y2), A(M, y3), . . . , A(M, yn).

Note that the definition of the machine M is online, and thus for each input
sequence y = y1, . . . , yn and each i ∈ [n − 1], the access sequence A(M, yi)
does not depend on yi+1, . . . , yn.

Correctness: M implements the Array Maintenance problem with parameters
(M,w) with probability at least 1− pfail.

Statistical Security: For any two input sequences y, y′ of the same length,
the statistical distance of the distributions of access sequences A(M, y) and
A(M, y′) is at most 1

4 .
Computational Security: For computational security, we consider infinite fam-

ilies of ORAM where we allow m,M,w to be functions of the length n of the
input sequence. We distinguish between the following two notions:

Weak Computational Security: For any infinite families of input se-
quences {yn}n∈N and {y′n}n∈N such that |yn| = |y′n| ≥ n for all n ∈ N,
the probability ensembles {A(M, yn)}n∈N and {A(M, y′n)}n∈N are com-
putationally indistinguishable.

Strong Computational Security: For any infinite families of input se-
quences {yn}n∈N and {y′n}n∈N such that |yn| = |y′n| ≥ n for all n ∈ N, the
probability ensembles {(yn, y′n, A(M, yn))}n∈N and {(yn, y′n, A(M, y′n))}n∈N
are computationally indistinguishable.

The parameters of our ORAM model from Definition 4 are depicted in Fig-
ure 2.1. We use different sizes of arrows on server and RAM side to denote the
asymmetry of the communication (the RAM sends type of operation, address,
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and data and the server returns requested data in case of a read operation and
dummy value in case of a write operation). Note that the input sequence y of
ORAM consists of a sequence of all operations, whereas the access sequence
A(M, y) consists of a sequence of addresses of all probes.

Arguably, a user of an ORAM might want the stronger notion of computa-
tional security whereas the weaker notion is closer to the past considerations.
Note that in the case of weak computational security, the adversarial distin-
guisher does not have access to the input sequences. Thus, it is restricted to
contain only constant amount of information about the whole families of input
sequences {yn}n and {y′n}n. In contrast, in the case of strong computational
security, the adversarial distinguisher is given also the input sequences. Thus,
it is able to compute any polynomial time computable information about the
input sequences. This distinction is crucial for our results, as we are able to
prove only an ω(1) lower bound for weak security as opposed to the Ω(log n)
lower bound for strong security (see Theorem 5 and Theorem 4). Nevertheless,
we believe that the known constructions of ORAM satisfy the notion of strong
computational security.

For ease of exposition, in the rest of the paper we assume perfect correctness
of the ORAM (i.e., pfail = 0). However, our lower bounds can be extended also
to ORAMs with imperfect correctness (see Remark 1). Finally, our lower bounds
hold also for semi-offline ORAMs where the ORAM machine M receives the
type and address of each operation in advance and it has to process in online
manner only the data to be written during each write operation (see Remark 2).

3 Dense Graphs

In this section, we define an efficiently testable property of graphs that we show
to be satisfied by graphs induced by the access pattern of any statistically se-
cure ORAM. This property implies that the overhead of such ORAM must be
logarithmic.

We say a directed graph G = (V,E) is ordered if V is a subset of integers and
for each edge (u, v) ∈ E, u < v. For a graph G = (V,E) and S, T ⊆ V , we let
E(S, T ) ⊆ E be the set of edges that start in S and end in T , and for integers
a ≤ m ≤ b ∈ V we let E(a,m, b) = E({a, a+1, . . . ,m−1}, {m,m+1, . . . , b−1}).

Definition 5. A k-partition of an ordered graph G = (V = {0, 1, 2, . . . , N −
1}, E) is a sequence 0 = b0 ≤ m0 ≤ b1 ≤ m1 ≤ · · · ≤ bk = N . We say that the
k-partition is `-dense if for each i ∈ {0, . . . , k − 1}, E(bi,mi, bi+1) is of size at
least `.

There is a simple greedy algorithm running in time O(|V |2 · |E|) which tests
for given integers k, ` whether a given ordered graph G = (V,E) has an `-dense
k-partition. (The algorithm looks for the k parts one by one greedily from left
to right.)
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Lemma 1. Let K ⊆ N be a subset of powers of 4. Let ` ∈ N be given. Let
G = ({0, . . . , N − 1}, E) be an ordered graph which for each k ∈ K has an
(`/k)-dense k-partition. Then G has at least `

2 · |K| edges.

Proof. We use the following claim to bound the number of edges.

Claim. Let k > k′ > 0 be integers. Let 0 = b0 ≤ m0 ≤ b1 ≤ m1 ≤ · · · ≤ bk = N
be a k-partition of G, and 0 = b′0 ≤ m′0 ≤ b′1 ≤ m′1 ≤ · · · ≤ b′k′ = N be a
k′-partition of G. Then for at least k − k′ distinct i ∈ {0, . . . , k − 1}

E(bi,mi, bi+1) ∩
⋃

j∈{0,...,k′−1}

E(b′j ,m
′
j , b
′
j+1) = ∅. (1)

Proof. For any j ∈ {0, . . . , k′ − 1} and (u, v) ∈ E(b′j ,m
′
j , b
′
j+1), if (u, v) ∈

E(bi,mi, bi+1) for some i then bi < m′j < bi+1 (as bi ≤ u < m′j ≤ v ≤
bi+1.) Thus, i is uniquely determined by j. Hence, E(bi,mi, bi+1) may intersect⋃

j∈{0,...,k′−1}E(b′j ,m
′
j , b
′
j+1) only if bi ≤ m′j < bi+1, for some j ∈ {0, . . . , k′−1}.

Thus, such an intersection occurs only for at most k′ different i. The claim fol-
lows. ut

Now we are ready to prove Lemma 1. For each k ∈ K, pick an (`/k)-dense
k-partition 0 = b0 ≤ m0 ≤ b1 ≤ m1 ≤ · · · ≤ bk = N of G and define the set of
edges Ek:

Ek =
⋃

i∈{0,...,k−1}

E(bi,mi, bi+1).

For each k ∈ K, we lower-bound
∣∣∣Ek \

⋃
k′∈K,k′<k Ek′

∣∣∣ by `/2. Since K con-

tains powers of 4,
∑

k′∈K,k′<k k
′ ≤ k/2. By the above claim, for at least k −∑

k′∈K,k′<k k
′ ≥ k/2 different i ∈ {0, . . . , k−1}, E(bi,mi, bi+1)∩

⋃
k′∈K,k′<k Ek′ =

∅. By density, |E(bi,mi, bi+1)| ≥ `/k, so
∣∣∣Ek \

⋃
k′∈K,k′<k Ek′

∣∣∣ ≥ `
k ·

k
2 = `/2.

Hence,
∣∣⋃

k∈K Ek

∣∣ =
∑

k∈K

∣∣∣Ek \
⋃

k′∈K,k′<k Ek′

∣∣∣ ≥ |K| · `2 . ut

In the following corollary, we show that the property of having many dense
partitions with some probability implies proportionally many edges. (Note that
the blog4 tc − dlog4 se term corresponds exactly to the number of powers of four
between s and t.)

Corollary 1. Let `, s, t be natural numbers, where s ≤ t. Let p ∈ [0, 1] be a real.
Let G be an ordered graph picked at random from a distribution such that for
each integer k, s ≤ k ≤ t, the randomly chosen ordered graph G has (`/k)-dense
k-partition with probability at least p. Then the expected number of edges in G
is at least p`

2 · (blog4 tc − dlog4 se).

Proof. Let K be the set of integers such that k ∈ K if and only if k is a power
of 4 and G has an (`/k)-dense k-partition. K is a random variable. The expected
size of K is at least p(blog4 tc − dlog4 se). By Lemma 1, the expected number of
edges in G is at least `

2 · p · (blog4 tc − dlog4 se). ut
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4 ORAM Lower Bound

In this section, we fix integers n,m,M,w ≥ 1 such that m ≤
√
n, n ≤M ≤ 2w,

and an ORAM M with address range M , cell size w and m cells of internal
memory (see Definition 4). We argue that any statistically secure ORAM M
must make Ω(n log n) server probes in expectation in order to implement a
sequence of n input operations. We also show that any ORAM M satisfying
Weak Computational Security must make ω(n) server probes in expectation on
any input sequence of length n.

Definition 6. Let A(M, y) = a0, . . . , aN−1 be an access sequence of M for
some input sequence y. We define a directed graph G(A(M, y)) = (V,E) called
access graph as follows: V = {0, . . . , N − 1} and (i, j) ∈ E iff i < j and ai = aj
and for each k ∈ {i+ 1, . . . , j − 1}, ak 6= ai.

Notice that every vertex of an access graph has outdegree as well as indegree
at most one.

In the following, we consider input sequences of even length n ∈ N. First,
we define a sequence of alternating writes and reads at address a = 1 with data

d = 0w as Yn,0 = [(W, 1, 0w), (R, 1, 0w)]
n/2

. Second, for each k ∈
{

1, 2, . . . , n2
}

,

let ` =
⌊

n
2k

⌋
, we define a distribution Yn,k of input sequences as

Yn,k =(W, 1, b1,1), (W, 2, b1,2), . . . , (W, `, b1,`), (R, 1, 0
w), (R, 2, 0w), . . . , (R, `, 0w),

(W, 1, b2,1), (W, 2, b2,2), . . . , (W, `, b2,`), (R, 1, 0
w), (R, 2, 0w), . . . , (R, `, 0w),

. . . ,

(W, 1, bk,1), (W, 2, bk,2), . . . , (W, `, bk,`), (R, 1, 0
w), (R, 2, 0w), . . . , (R, `, 0w),

(W, 1, 0w), (R, 1, 0w), (W, 1, 0w), . . . , (R, 1, 0w) ,

where each bi,j ∈ {0, 1}w is an independently uniformly chosen bit string. We
define the i-th block of writesWi = (W, 1, bi,1), (W, 2, bi,2), . . . , (W, `, bi,`) and the
i-th block of reads Ri to be the sequence of operations (R, 1, 0w), (R, 2, 0w), . . . ,
(R, `, 0w) following right after Wi. Note that after the k-th block of reads the
sequence is padded to length n by a sequence of alternating writes and reads.
For an ORAM M, we use the notation Gn,k = G(A(M, Yn,k)) and Gn,0 =
G(A(M, Yn,0)) when M is clear from the context.

The following lemma uses only correctness of ORAM and does not depend
on its security. The proof of the lemma uses the information transfer technique
similarly to Lemma 2 in [18].

Lemma 2. Let n,m,M,w,M be as in the beginning of this section, moreover
suppose n ≥ 10 is an even integer. Let k ≥ 1 be an integer such that k ≤

n
10(m+2 logn+11) . Let A(M, Yn,k) be the access sequence of M and Gn,k be the

corresponding access graph. (Gn,k is a random variable that depends on Yn,k
and the internal randomness of M.) With probability at least 1 − 1

n , Gn,k has
(n/5k)-dense k-partition.
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Proof. By our assumption from the beginning of this section, n ≤ M , and thus
for any k ∈ {1, 2, . . . , n2 } all sequences Yn,k have all addresses in the correct
range. Fix any k satisfying the assumptions of this lemma and set ` =

⌊
n
2k

⌋
.

As defined before let Wi and Ri be the i-th block of writes and reads in Yn,k,
respectively. Let Ui be the vertices of Gn,k corresponding to Wi, and Vi be the
vertices corresponding to Ri. It suffices to prove that for each i ∈ {1, . . . , k}, the
probability that there are fewer than n/5k edges between Ui and Vi is less than
1/n2. If this holds then by the union bound the lemma follows.

For contradiction, assume there exists i ∈ {1, . . . , k} such that the probability
that there are fewer than n/5k edges between Ui and Vi is at least 1/n2. Here,
the randomness is taken over the choice of an input sequence y ← Yn,k and
the internal randomness of M. Fix such an i. Fix all the randomness except
for the choice of bi,1, . . . , bi,` in Yn,k so that Gn,k obtained from this restricted
distribution has fewer than n/5k edges between Ui and Vi with probability ≥
1/n2 over the choice of bi,1, . . . , bi,`. (This is possible by an averaging argument.)
Let B ⊆ {0, 1}w×` be the set of choices for bi,1, . . . , bi,` which give fewer than
n/5k edges between Ui and Vi in Gn,k. Clearly, |B| ≥ 2w`/n2.

We use M to construct a deterministic protocol that transmits any string
from B from Alice to Bob, two communicating parties, using at most log |B|−10
bits. That gives a contradiction as such an efficient transmission violates the
pigeon-hole principle.

On input b ∈ B to Alice, Alice sends a single message to Bob who can
determine b from the message. They proceed as follows. Both Alice and Bob
simulate M on Yn,k up until reaching Wi. All the randomness used before the
i-th block of writes Wi is fixed and known both to Alice and Bob. Then Alice
continues with the simulation of M on Wi with data bi,1, bi,2, . . . , bi,` set to
b. Once she finishes it, she sends the content of the internal memory of M to
Bob using wm bits. Then Alice continues with the simulation of M on Ri and
whenever M makes a server probe to read from a location that was written
last time during the simulation of Wi, Alice sends over the address and the
content of that cell to Bob. Overall, Alice sends at most mw + 2wn/5k bits of
communication to Bob that can be concatenated into a single message of this
size.

On receiving side, Bob uses the internal state of M communicated by Alice
to continue with the computation on Ri, while he uses the state of the server he
obtained initially before reaching Wi. He simulates all server probes by himself,
except for read operations that match the list sent by Alice, where he initially
uses the content provided by Alice. Clearly, Bob can determine b from the sim-
ulation.

As k ≤ n
10(m+2 logn+11) , mw + 2wn/5k ≤ (n/2k − 2 log n− 11)w, so mw +

2wn/5k ≤ (`− 2 log n− 10)w, hence, the number of communicated bits is mw+
2wn/5k ≤ log |B| − (2w − 2) log n− 10w, which is a contradiction. ut

Remark 1. Using good error-correcting codes (see for instance [20]), this lemma
could be generalized to the case when M implements Array Maintenance prob-
lem with probability 1 − pfail < 1, i.e., M is allowed to return a wrong value
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for each of its input read operations with a small constant probability pfail. The
graph Gn,k would still have (εn/k)-dense k-partition with 1 − 1/n probability
for some ε > 0 which depends only on the allowed failure probability pfail.

Remark 2. Note that the randomness of input sequence Yn,k is used only for
the data to be written. Moreover, the proof relies only on incompressibility of a
random string stored during the write block and it does not rely on the addresses
used to store this data. Thus, the same proof goes through even for semi-offline
ORAMs, i.e., if we allow the ORAM to know the type and address of each input
operation in y in advance. On the other hand, as our proof uses interleaved
sequences of write blocks and read blocks, it is unlikely that it would be possible
to extend it to the read-only online ORAM model of Weiss and Wichs [30].

Note that using an averaging argument we can assume that the probability in
Lemma 2 is only over the randomness ofM. Thus we get the following corollary
proving for every k the existence of a single input sequence whose corresponding
access graph has n

5k -dense k-partition with high probability.

Corollary 2. For any even integer n ≥ 10 and an integer k ≥ 1 such that k ≤
n

10(m+2 logn+11) there is an input sequence yn,k of length n such that G(A(M, yn,k))

has a (n/5k)-dense k-partition with probability at least 1− 1
n .

We show that by statistical security of M, this property holds for a single
input sequence and many different values of k.

Lemma 3. Let n,m,M,w,M be as in the beginning of this section, and assume
n is even and n ≥ 10. Let y be an input sequence toM of length n. IfM is a sta-

tistically secure online ORAM then for every k ∈
{

1, 2, . . . ,
⌊

n
10(m+2 logn+11)

⌋}
Pr [G(A(M, y)) has an (n/5k)-dense k-partition] ≥ 3

5
.

Proof. For contradiction, suppose that for some k the probability is less than
3/5. From the statistical security of M we know that the statistical distance
SD (A(M, y), A(M, yn,k)) ≤ 1

4 where yn,k is given by Corollary 2. By Corollary 2
the sequence yn,k gives us a graph G(A(M, yn,k)) which has an (n/5k)-dense
k-partition with probability at least 1 − 1/n ≥ 9/10. Define a function f`,k on
ordered graphs that is an indicator of having an `-dense k-partition. Applying
Proposition 2 with X ← G(A(M, y)), Y ← G(A(M, yn,k)), and f = fn/5k,k, we
can conclude that G(A(M, y)) has an (n/5k)-dense k-partition with probability
at least 3/4− 1/10 ≥ 3/5. ut

We are ready to prove our main theorem for statistically secure ORAM.

Theorem 3. There are constants c0, c1 > 0 such that for any integers m,w ≥ 1
and M ≥ n ≥ c0 where m ≤

√
n and M ≤ 2w, any statistically secure online

ORAMM with address range M , cell size w bits and m cells of internal memory
must perform at least c1n log n server probes in expectation (the expectation is
over the randomness of M) on any input sequence of length n.
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Proof. Fix an ORAM machineM. Consider any input sequence y toM of length

n. By Lemma 3 for every k, such that 1 ≤ k ≤
⌊

n
10(m+2 logn+11)

⌋
, we get that

Pr [G(A(M, y)) has an (n/5k)-dense k-partition] ≥ 3

5
.

Applying Corollary 1 with s = 1, t =
⌊

n
10(m+2 logn+11)

⌋
, ` =

⌊
n
5

⌋
, and

p = 3/5, we can lower bound the expected number of edges in G(A(M, y)) by

3n

50

⌊
log4

⌊
n

10(m+ 2 log n+ 11)

⌋⌋
.

For n ≥ 1000,
⌊

n
10(m+2 logn+11)

⌋
≥
√
n

40 . Hence, the expected number of edges in

G(A(M, y)) is at least 3
100 · n log

√
n

40 ≥
1

100 · n log n, provided c0 is large enough.
Since the indegree of each vertex of an access graph is at most one, the expected
number of vertices in G(A(M, y)), which is the same as the expected number of
probes in A(M, y), is at least 1

100 · n log n. ut

Next, we prove Ω(log n) lower bound for ORAMs satisfying strong compu-
tational security from Definition 4.

Lemma 4. Let m,M,w : N→ N be non-decreasing functions such that for all n
large enough: m(n) ≤

√
n and n ≤ M(n) ≤ 2w(n). Let {Mn}n∈N be a sequence

of online ORAMs with address range M(n), cell size w(n) bits and m(n) cells
of internal memory which satisfy strong computational security. Let {yn}n∈N be
an infinite family of input sequences where |yn| = n, for each n ∈ N.

Then there exists n0 such that for every n ≥ n0 and for every k in the set{
1, 2, . . . ,

⌊
n

10(m(n)+2 logn+11)

⌋}
,

Pr [G(A(Mn, yn)) has an (n/5k)-dense k-partition] ≥ 3

5
.

Proof. For contradiction, assume there are infinitely many pairs of integers

(n, k), s.t. k ≤
⌊

n
10(m(n)+2 logn+11)

⌋
and that the probability that yn has an

(n/5k)-dense k-partition is less than 3/5.
Let D be an algorithm which given two input sequences y and y′ of length n

and an access sequence A(Mn, z), where z ∈ {y, y′}, does the following:

1. Compute n.
2. Compute k′ to be the number of blocks of consecutive reads of length bn/k′c

in the input sequence y′.
3. If A(Mn, z) does not have (n/5k′)-dense k′-partition D returns “1” (i.e. D

guesses that z = y).
4. Otherwise D returns “1” with probability 1/2 and “2” with probability 1/2

(i.e. D guesses at random).
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There is a polynomial time greedy algorithm determining whether the graph
G(A(Mn, z)) contains an `-dense k-partition. Thus algorithm D runs in time
polynomial in the length of the access sequence A(Mn, z).

Let yn,k be a sequence from Corollary 2. So, G(A(Mn, yn,k)) has an (n/5k)-
dense k-partition with probability at least 1−1/n ≥ 9/10. Observe that if y = yn
and y′ = yn,k then:

|Pr[D(yn, yn,k, A(Mn, yn)) = 1]− Pr[D(yn, yn,k, A(Mn, yn,k)) = 1]|

≥
(

2

5
+

3

5
· 1

2

)
−
(

1

10
+

9

10
· 1

2

)
=

3

20
.

By the assumption D returns “1” in step 3 on A(Mn, yn) with probability at
least 2/5. By Corollary 2 D answers “1” on A(Mn, yn,k) with probability at
most 1/10.

This contradicts the strong computational security of Mn as D should not
distinguish between y and y′ with non-negligible probability. ut

Theorem 4. Let m,M,w : N→ N be non-decreasing functions such that for all
n large enough: m(n) ≤

√
n and n ≤M(n) ≤ 2w(n). Let {Mn}n∈N be a sequence

of online ORAMs with address range M(n), cell size w(n) bits and m(n) cells
of internal memory which satisfy strong computational security. Let {yn}n∈N be
an infinite family of input sequences where |yn| = n, for each n ∈ N.

There are constants c0, c1 > 0, such that for any n ≥ c0, Mn must perform
in expectation at least c1n log n server probes on the input sequence yn.

Proof. The proof is identical to the proof of Theorem 3 but we use Lemma 4
instead of Lemma 3. Note that the different order of quantifiers is caused by
different order of quantifiers in Lemma 3 and in Lemma 4. ut

In the rest of this section, we prove an ω(1) lower bound for ORAMs satis-
fying weak computational security from Definition 4. Note that in the case of
weak computational security it is unclear which k should the adversary use to
distinguish y and y′. Thus, we cannot directly conclude that y has n

5k -dense k-

partition for every n and k ≤
⌊

n
10(m(n)+2 logn+11)

⌋
. On the other hand, for every

k there could be only finitely many values n such that there is an input sequence
of length n which has no n

5k -dense k-partition. This fact allows us to prove the
ω(1) lower bound for weak computational security.

Theorem 5. Let m,M,w : N→ N be non-decreasing functions such that for all
n large enough: m(n) ≤

√
n and n ≤M(n) ≤ 2w(n). Let {Mn}n∈N be a sequence

of online ORAMs with address range M(n), cell size w(n) bits and m(n) cells
of internal memory which satisfy weak computational security. Let {yn}n∈N be a
sequence of input sequences where |yn| = n, for each n ∈ N.

For any constant c1 > 0 there is a constant c0 > 0, such that for any n ≥ c0,
Mn must perform in expectation at least c1n server probes on the input sequence
yn.
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In particular there is no computationally secure online ORAM with constant
bandwidth overhead O(1).

Proof. For each n ∈ N, define k(n) to be the smallest k such that

Pr[G(A(Mn, yn)) has (n/5k)-dense k-partition] < 1/2.

Using Corollary 1 we get for each n large enough that the expected number of
edges in G(A(Mn, yn)) is at least c ·n log k(n), for some absolute constant c > 0.
It suffices to show that k(n) → ∞ as n → ∞. There cannot exist a constant
k such that Yn has (n/5k)-dense k-partition with probability less than 1

2 for
infinitely many n. Otherwise {yn}n would be computationally distinguishable
from {Yn,k}n (by the greedy algorithm which has k hard-wired). So, k(n)→∞
as n→∞. ut

5 Alternative Definitions for Oblivious RAM

In this section, we recall some alternative definitions for ORAM which appeared
in the literature and explain the relation of our lower bound to those models.

The definition of Larsen and Nielsen. Larsen and Nielsen (see Defini-
tion 4 in [18]) required that for any two input sequences of equal length, the
corresponding distributions of access sequences cannot be distinguished with
probability greater than 1/4 by any algorithm running in polynomial time in the
sum of the following terms: the length of the input sequence, logarithm of the
number of memory cells (i.e., log n), and the size of a memory cell (i.e., log n
for the most natural parameters). We show that their definition implies statis-
tical closeness as considered in our work (see the statistical security property in
Definition 4). Therefore, any lower bound on the bandwidth overhead of ORAM
satisfying our definition implies a matching lower bound w.r.t. the definition of
Larsen and Nielsen [18].

To this end, let us show that if two distributions of access sequences are
not statistically close, then they are distinguishable in the sense of Larsen and
Nielsen. Assume there exist two input sequences y and y′ of equal lengths,
for which the access sequences A(M, y) and A(M, y′) have statistical distance
greater than 1/4. We define a distinguisher algorithm D that on access sequence
x outputs 1 whenever Pr[A(M, y) = x] > Pr[A(M, y′) = x], outputs 0 when-
ever Pr[A(M, y) = x] < Pr[A(M, y′) = x], and outputs a uniformly random bit
whenever Pr[A(M, y) = x] = Pr[A(M, y′) = x]. It follows from definition of D,
basic properties of statistical distance (see proposition 1), and our assumption
about the statistical distance of A(M, y) and A(M, y′) that

|Pr[D(A(M, y)) = 1]− Pr[D(A(M, y′)) = 1]| = SD (A(M, y), A(M, y′)) >
1

4
.

Note that D can be specific for the pair of the two input sequences y and y′ and
it can have all the significant information about the distributions A(M, y) and
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A(M, y′) hardwired. For example, it is sufficient to store a string describing for
each access sequence x whether it is more, less, or equally likely under A(M, y)
or A(M, y′). Even though such string is of exponential size w.r.t. the length of
the access pattern, D needs to simply access the position corresponding to the
observed access pattern to output its decision as described above. Thus, D can
run in linear time in the length of the access sequence (which is polynomial in
the length of the input sequence) and distinguishes the two access sequences
with probability greater than 1/4.

The definition of Goldreich and Ostrovsky. Unlike the original defini-
tion of ORAM from Goldreich [10] and Ostrovsky [21], the definition of ORAM
presented in Goldreich and Ostrovsky [11] postulates an alternative security re-
quirement. However, the alternative definition suffers from an issue which is not
present in the original definition and which, to the best of our knowledge, was not
pointed out in the literature. In particular, the definition in [11] can be satisfied
by a dummy ORAM construction with only a constant overhead and without
achieving any indistinguishability of the access sequences. Given that Goldreich
and Ostrovsky [11] might serve as a primary reference for our community, we
explain the issue in the following paragraph to help preventing the use of the
problematic definition in future works.

Recall the definition of ORAM with perfect security from Goldreich and
Ostrovsky (Definition 2.3.1.3 in [11]):

Goldreich-Ostrovsky security: For any two input sequences y and y′, if the
length distributions |A(M, y)| and |A(M, y′)| are identical, then A(M, y) and
A(M, y′) are identical.

As we show, this requirement can be satisfied by creating an ORAM that
makes sure that on any two distinct sequences y, y′, the length distributions
|A(M, y)| and |A(M, y′)| differ. Note that no indistinguishability is required
in that case and the ORAM can then reveal the access pattern of the input
sequence.

To this end, we describe an ORAM with a constant overhead so that the
length |A(M, y)| is either 2|y| or 2|y|+ 1 and the distribution |A(M, y)| encodes
the sequence y. The ORAM proceeds by performing every operation yi directly
on the server followed by a read operation from address 1. After the last instruc-
tion in y, the ORAM selects a random sequence of operations r of length |y|
and if r is lexicographically smaller than y then the ORAM performs an extra
read from address 1 before terminating. Note that this ORAM can be efficiently
implemented using constant amount of internal memory by comparing the input
sequence to the randomly selected one online. Also, the machine does not need
to know the length of the sequence in advance. Finally, the length distribution
|A(M, y)| is clearly different for each input sequence y. Given that the above
definition of ORAM of Goldreich and Ostrovsky allows the dummy construction
with a constant overhead, we do not hope to extend our lower bound towards
this definition.



18 P. Hubáček et al.

One could object that the above dummy ORAM exploits the fact that in-
distinguishability of access sequences must hold only if the length distributions
are identical. However, it is possible to construct a similar dummy ORAM with
low overhead satisfying even the following relaxation of the definition requiring
indistinguishability of access sequences corresponding to any pair of y and y′ for
which |A(M,y)| and |A(M,y′)| are statistically close (i.e., the indistinguishabil-
ity is required for a potentially larger set of access patterns):

Relaxation of Goldreich-Ostrovsky security: For any two input sequences
y and y′, if the length distributions |A(M, y)| and |A(M, y′)| are statistically
close, then A(M, y) and A(M, y′) are statistically close.

We show there is a dummy ORAMM with a constant overhead such that for
any two input sequences y and y′ which differ in their accessed memory locations,
the statistical distance SD (|A(M, y)|, |A(M, y′)|) is at least 1

nM (where n =
|y| = |y′| and M is the size of address range).

The ORAM M works as follows. At the beginning, the ORAM picks i ∈ [n]
and r ∈ [M ] uniformly at random. Then for j = 1, . . . n, it executes each of the
input operations (oj , aj , dj) directly on the server. For each j < i, it performs
two additional reads from address 1 after executing the j-th input operation.
For j = i, after the i-th input operation it performs two additional reads from
address 1 if r ≤ ai, and it performs one additional read from address 1 if r > ai.
For j > i, it performs each of the input operations without any additional read.

It is straightforward to verify that the distribution of |A(M, y)| satisfies:
for each i ∈ [n], Pr[|A(M, y)| = n + 2i] = ai

nM . Hence, for any pair y and y′

of two input sequences of length n, if the sequences of addresses accessed by
them differ then the statistical distance between the distributions of |A(M, y)|
and |A(M, y′)| is at least 1/nM . If M is polynomial in n this means that their
distance is at least 1

poly(n) . Thus, M satisfies even the stronger variant of the

definition from [11] even though its access sequence leaks the addresses from the
input sequence.

It was previously shown by Haider, Khan and van Dijk [14] that there ex-
ists an ORAM construction which reveals all memory accesses from the input
sequence while satisfying the definition of Goldreich and Ostrovsky from [11].
However, their construction has an exponential bandwidth overhead which makes
it insufficient to demonstrate any issue with the definition of Goldreich and
Ostrovsky. Clearly, any definition of ORAM can disregard constructions with
super-linear overhead as a perfectly secure ORAM (with linear overhead) can be
constructed by simply passing over the whole server memory for each input oper-
ation. Unlike the construction of [14], our constructions of the dummy ORAMs
with constant bandwidth overhead exemplify that the definition of Goldreich
and Ostrovsky from [11] is problematic in the interesting regime of parameters.

Simulation-based definitions. The recent work of Asharov et al. [2] employs
a simulation-based definition parameterized by a functionality which implements
an oblivious data structure. Our lower bounds directly extend to their stronger
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definition when the functionality implements Array Maintenance. Moreover, our
techniques can be adapted to give lower bounds for functionalities implementing
stacks, queues and others considered in [15].

Weak vs. strong computational security. In this work, we distinguish be-
tween weak and strong computational security (see Definition 4). Our techniques
do not allow to prove matching bounds for ORAMs satisfying the two notions
and we show Ω(log n) lower bound only w.r.t. strong computational security.
Though, as we noted in Section 1.1, even the ω(1) lower bound for online ORAMs
satisfying weak computational security is an interesting result in the light of the
work of Boyle and Naor [3]. It follows from [3] that any super-constant lower
bound for offline ORAM would imply super-linear lower bounds on size of sort-
ing circuits – which would constitute a major breakthrough in computational
complexity. The main result from Boyle and Naor [3] can be rephrased using our
notation as follows.

Theorem 6 (Theorem 3.1 [3]). Suppose there exists a Boolean circuit en-
semble C = {C(n,w)}n,w of size s(n,w), such that each C(n,w) takes as input
n words each of size w bits, and outputs the words in sorted order. Then for
word size w ∈ Ω(log n) ∩ no(1) and constant internal memory m ∈ O(1), there
exists a secure offline ORAM (as per Definition 2.8 [3]) with total bandwidth
and computation O(n logw + s(2n/w,w)).

Moreover, the additive factor of O(n logw) follows from the transpose part of
the algorithm of [3] (see Figures 1 and 2 in [3]). As Boyle and Naor showed in
their appendix (Remark B.3 [3]) this additive factor in total bandwidth may be
reduced to O(n) if the size of internal memory is m ≥ w. Thus, sorting circuit of
size O(nw) implies offline ORAM with total bandwidth O(n+2 n

ww) = O(n). Or
the other way around, lower bound ω(n) for total bandwidth of offline ORAM
implies ω(nw) lower bound for circuits sorting n words of size w bits, each.

We leave it as an intriguing open problem whether it is possible to prove an
Ω(log n) lower bound for online ORAMs satisfying weak computational security.
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