
Linear-Size Constant-Query IOPs
for Delegating Computation

Eli Ben-Sasson1, Alessandro Chiesa2, Lior Goldberg1, Tom Gur3, Michael Riabzev1,
and Nicholas Spooner2

1 StarkWare
{eli,lior,michael}@starkware.co

2 UC Berkeley
{alexch,nick.spooner}@berkeley.edu

3 University of Warwick
tom.gur@warwick.ac.uk

Abstract. We study the problem of delegating computations via interactive proofs
that can be probabilistically checked. Known as interactive oracle proofs (IOPs),
these proofs extend probabilistically checkable proofs (PCPs) to multi-round
protocols, and have received much attention due to their application to constructing
cryptographic proofs (such as succinct non-interactive arguments). The relevant
complexity measures for IOPs in this context are prover and verifier time, and
query complexity.
We construct highly efficient IOPs for a rich class of nondeterministic algebraic
computations, which includes succinct versions of arithmetic circuit satisfiability
and rank-one constraint system (R1CS) satisfiability. For a time-T computa-
tion, we obtain prover arithmetic complexity O(T log T) and verifier complexity
polylog(T). These IOPs are the first to simultaneously achieve the state of the art
in prover complexity, due to [14], and in verifier complexity, due to [7]. We also
improve upon the query complexity of both schemes.
The efficiency of our prover is a result of our highly optimized proof length; in
particular, ours is the first construction that simultaneously achieves linear-size
proofs and polylogarithmic-time verification, regardless of query complexity.

Keywords: interactive oracle proofs; probabilistically checkable proofs; delega-
tion of computation

1 Introduction

Verifiable delegation of computation is a central goal in cryptography. The complexity-
theoretic study of proof systems has enabled significant progress in this area, and the
efficiency of numerous delegation schemes crucially relies on the efficiency of the
underlying complexity-theoretic objects.

An influential line of work began with probabilistically checkable proofs (PCPs)
[5]. These are non-interactive proofs for membership in a language, which admit fast
probabilistic verification based on local queries to the proof. While the most prominent
application of PCPs is to hardness of approximation [26], seminal works of Kilian [34]

2 E. Ben-Sasson et al.

and Micali [37] showed that PCPs can also be used to obtain computationally-sound
verifiable delegation schemes that are asymptotically efficient.

The application of PCPs to delegation singles out particular design objectives, dis-
tinct from those which arise from hardness of approximation. The relevant complexity
measures for PCPs in the context of delegation are: query complexity, verifier time,
and prover time. The latter two are self-explanatory, since the proof must be produced
and validated; the former arises because in existing delegation schemes based on PCPs,
communication complexity depends linearly on the query complexity of a PCP. Note
that the running time of the prover is not typically considered in the context of PCPs,
because one considers only the existence of a valid PCP and not how it is constructed.
For delegation schemes, on the other hand, the time required to generate the proof is
often a barrier to practical use.

An ideal PCP for delegation would have constant query complexity, (poly)logarithmic
verifier time and linear prover time. State-of-the-art PCPs achieve constant query com-
plexity and polylogarithmic verifier time, but only quasilinear (N logcN) prover time
[38]. While the prover time is asymptotically close to optimal, c is a fairly large constant,
and more generally the construction uses gap amplification techniques that are not be-
lieved to be concretely efficient. The value of c turns out to be very significant in practical
settings, but improving it has proven to be a serious challenge in PCP constructions.

In light of these apparent barriers, Ben-Sasson et al. [15] have demonstrated how to
obtain computationally-sound delegation schemes from a natural generalization of PCPs
known as interactive oracle proofs (IOPs) [15, 40]. An IOP is an interactive protocol
consisting of multiple rounds, where in each round the verifier sends a challenge and
the prover responds with a PCP oracle to which the verifier can make a small number of
queries (generalizing the “interactive PCP” model studied in [33]). The proof length of
an IOP is the total length of all oracles sent by the prover, and the query complexity is the
total number of queries made to these oracles. The study of IOPs explores the tradeoff
between a new efficiency measure, round complexity, and other efficiency measures.
Viewed in this way, a PCP is an IOP with optimal round complexity.

A recent line of works has demonstrated that this additional freedom is valuable,
proving a number of results for IOPs that we do not know how to obtain via PCPs alone
[11, 10, 6, 8, 7, 14]. For example, there are constant-round IOPs with linear proof length
and constant query complexity for Boolean circuit satisfiability [10], whereas the best
linear-size PCPs known have query complexity N ε [18]. Interaction also enables gains
in prover time: the FRI protocol [8] is an O(logN)-round IOP of proximity for the
Reed–Solomon code where the prover has linear arithmetic complexity. In contrast,
state-of-the-art PCPs of proximity for this code have quasilinear arithmetic complexity
[20, 13]. This theoretical progress has led to IOP-based implementations [7, 14], which
are significantly more efficient than those based on PCPs [6].

The work of [15] justifies why exploiting the tradeoff between round complexity
and other efficiency measures is advantageous for constructing computationally-sound
verifiable delegation schemes. In particular, if we could obtain IOPs with constant round
complexity that otherwise match the parameters of an ideal PCP (constant queries,
polylogarithmic verifier, linear prover), then we would obtain delegation schemes that

Linear-Size Constant-Query IOPs for Delegating Computation 3

have the same asymptotic efficiency as those derived from an ideal PCP. Thus, for the
purposes of verifiable delegation schemes, it suffices to construct such ‘ideal’ IOPs.

A recent work [14] constructs IOPs for arithmetic circuits with logarithmic query
and round complexity where the prover has O(N logN) (strictly quasilinear) arithmetic
complexity, and hence bit complexity Õ(N logN). Because the construction emphasizes
concrete efficiency over asymptotics, query and round complexity fall somewhat short
of the state of the art, but the prover time, while still not linear, is the best among known
schemes with subpolynomial query complexity. However, the IOPs in [14] do not achieve
polylogarithmic verification time: for the language they target even sublinear verification
is impossible (without preprocessing) because the size of the input is the same as the
size of the computation.

When the arithmetic circuit can be represented succinctly, however, polylogarithmic
time verification is possible in principle. Unfortunately the protocol of [14] cannot
exploit this property, and the verifier would still run in linear time. Our goal is to achieve
an exponential improvement in this case.

1.1 Our results

In this work we construct IOPs for algebraic computations that are “almost” ideal,
namely, we achieve constant query and round complexity, polylogarithmic time for
the verifier, and O(N logN) (strictly quasilinear) arithmetic complexity for the prover.
Our new IOP protocols match the state-of-the-art prover time of [14], while at the
same time achieving an exponential improvement in verification time for a rich class
of computations. We focus on arithmetic complexity as the natural notion of prover
efficiency for IOPs for algebraic problems; moving to bit complexity incurs an additional
poly(log log) factor to account for the cost of field multiplication.

While the arithmetic complexity of our prover is not linear, the length of the proof
is linear in the computation size, which is optimal. The single logarithmic factor in our
prover’s arithmetic complexity comes solely from fast Fourier transforms. In particular,
if there were a linear-time encoding procedure for the Reed–Solomon code, our prover
would run in linear time, and thereby achieve optimal prover efficiency without any other
changes in the scheme itself.
Small fields. All of our results are stated over large fields. Computations over small
fields (e.g. F2) can be handled by moving to an extension field, which introduces an
additional logarithmic factor in the proof length and prover time (the same is true of
[7, 14]). Even with this additional logarithmic factor, our construction matches the
state of the art for prover complexity for succinct boolean circuit satisfiability, while
improving the verifier running time to polylogarithmic.

Delegating bounded-space algebraic computation Rank-one constraint satisfiability
(R1CS) is a natural generalization of arithmetic circuits that is widely used across
theoretical and applied constructions of proof systems (see [24]). An R1CS instance
is specified by matrices A,B,C over a finite field F, and is satisfied by a vector w if
Aw ◦Bw = Cw, where ◦ is the element-wise (Hadamard) product. Arithmetic circuits
reduce in linear-time to R1CS instances.

4 E. Ben-Sasson et al.

Many problems of interest, however, involve R1CS instances where the matrices
A,B,C have some structure. For example, many applications consider computations
that involve checking many Merkle authentication paths — in this case a hash function
is invoked many times, within the same path and across different paths. It would be
valuable for the verifier to run in time that is related to a succinct representation of
such instances, rather than to the (much larger) explicit representation that “ignores” the
structure. In light of this motivation, we introduce a notion of succinctly-represented
R1CS instances that capture a rich class of bounded-space algebraic computations. (Later
in the paper we refer to these as algebraic automata.)

Definition 1 (informal). A succinct R1CS instance is specified by matrices A =
[A0|A1], B = [B0|B1], C = [C0|C1] ∈ Fk×2k over F, and a time bound T , and is
satisfied by a vector z ∈ FkT if

A0 A1

A0 A1

. . .
. . .
A0 A1

w ◦

B0 B1

B0 B1

. . .
. . .
B0 B1

w =

C0 C1

C0 C1

. . .
. . .
C0 C1

w

The relation Succinct-R1CS is the set of pairs (x, w) such that x is an instance of
succinct R1CS which is satisfied by w.

The size of an instance is O(k2+log T), but the size of the computation described is
kT . Note that Succinct-R1CS is a PSPACE-complete relation, while the (regular) R1CS
relation is merely NP-complete.

To obtain some intuition about the definition, consider the problem of repeated
application of an arithmetic circuit C : Fn → Fn. Suppose that we want to check that
there exists z such that CT (z) = 0n, where CT = C(C(· · · C(·))) is the circuit which
applies C iteratively T times. The circuit CT has size Ω(|C| · T), and if the verifier were
to “unroll” the circuit then it would pay this cost in time. However, the R1CS instance
corresponding to CT is of the above form, with k = O(|C|), where (roughly) the matrices
A0, B0, C0 represent the gates of C and A1, B1, C1 represent the wires between adjacent
copies of C. (The condition that the output of CT is zero is encoded separately as a
“boundary constraint”.)

Our first result gives a constant-round IOP for satisfiability of succinct R1CS
where the verifier runs in time poly(k, log T), the prover has arithmetic complexity
O(kT log kT), and the proof length is O(kT log |F|) (linear in the computation tran-
script). In the theorem statement below we take k = O(1) for simplicity.

Theorem 1 (informal). There is a universal constant ε0 ∈ (0, 1) such that, for any
computation time bound T (n) and large smooth field family F(n), there is a 4-round
IOP for succinct R1CS over F(n), with proof length O(T (n) log |F(n)|), 4 queries, and
soundness error ε0. The prover uses O(T (n) log T (n)) field operations and the verifier
uses poly(n, log T (n)) field operations.

As in prior work (e.g., [20]), “large smooth field” refers to a field of size Ω(N),
whose additive or multiplicative group has a nice decomposition. For example, ensembles

Linear-Size Constant-Query IOPs for Delegating Computation 5

of large enough binary fields have this property, as well as prime fields with smooth
multiplicative groups.

Delegating unbounded-space algebraic computation While algebraic automata cap-
ture a useful class of computations, they are restricted to space-bounded computation
(recall Succinct-R1CS ∈ PSPACE). In particular, using Theorem 1 we can obtain useful
delegation protocols for computations whose space usage is much smaller than their
running time.

To handle computations which use more space, we introduce the algebraic machine
relation. This is a natural algebraic analogue of the bounded accepting problem for
nondeterminstic random-access machines, where the transition function is an arithmetic
(rather than Boolean) circuit. It is NEXP-complete via a linear time reduction from
succinct arithmetic circuit satisfiability.

Theorem 2 (informal). There is a universal constant ε0 ∈ (0, 1) such that, for any
computation time bound T (n) and large smooth field F(n), there is a 5-round IOP for
the satisfiability problem of T (n)-time algebraic machines over F(n), with proof length
O(T (n) log |F(n)|), 5 queries, and soundness error ε0. The prover usesO(T (n) log T (n))
field operations and the verifier uses poly(n, log T (n)) field operations.

For simplicity, as with Theorem 1 we have stated Theorem 2 for machines whose
description is a constant number of field elements, or Θ(log |F|) bits. The proof length
is linear in the size of the computation trace, which is N := Θ(T log |F|) bits. We stress
that the number of queries is 5, regardless of the choice of machine.

The above theorem is obtained by bootstrapping Theorem 1. Namely we show that
leveraging interaction, we can design an automaton which checks whether a pair of
automata have satisfying assignments which are permutations of one another; for more
details see Section 2.4.

On the power of machines. In the linear-length regime, the choice of computational
model supported by a proof protocol is important, because reductions between problems
typically introduce logarithmic factors. For example, it is not known how to reduce a
random-access machine, or even a Turing machine, to a circuit of linear size. Indeed,
the sublinear-query PCP of [18] achieves linear proof size for circuits but not machine
computations. We thus view Theorem 2 as particularly appealing, because it achieves
linear length for a powerful model of computation, algebraic machines, which facilitates
linear-size reductions from many other problems; notably, succinct arithmetic circuit
satisfiability. We view the identification of a model which is both highly expressive and
amenable to efficient probabilistic checking using IOPs as a contribution of this work.

1.2 Relation to prior work

There are relatively few works which explicitly deal with prover complexity for PCP
and IOP constructions. We present a comparison of the relevant parameters for each
construction in Table 1. Since we are concerned with logarithmic factors, it is not
sufficient to specify only a complexity class (NP or NEXP) for each one. Instead,

6 E. Ben-Sasson et al.

for each proof system we give a canonical expressive language for which the given
parameters are achieved. In particular, the first three proof systems are for boolean
circuit problems, and the latter three are for arithmetic circuit problems. For purposes
of comparison, all of the parameters for both boolean and arithmetic constructions are
presented in terms of bit complexity.

rounds circuit type prover time verifier time proof length queries
[38] 1 succinct boolean N polylog(N) ∗ polylog(N) N polylog(N) O(1)
[18] 1 boolean poly(N) † poly(N) † Oε(N) N ε

[10] 3 boolean poly(N) poly(N) O(N) O(1)

[7] O(logN) succinct arithmetic ♦ Õ(N log2N) ‡ polylog(N) O(N logN) O(logN)

[14] O(logN) arithmetic ♦ Õ(N logN) ‡ poly(N) O(N) O(logN)

this work 5 succinct arithmetic ♦ Õ(N logN) ‡ polylog(N) O(N) 5

Table 1: Comparison of PCP/IOP constructions for circuit satisfiability problems
for a (fixed) constant soundness. Here N is the size of the circuit in bits, which
means that for ASAT and Succinct-ASAT, N implicitly includes a factor of
log |F|. For succinct problems, the circuit size N is exponential in the size of its
description.
∗: [38] shows a poly(N) bound; this tighter bound is due to [13].
♦: The size of the underlying field must grow as Ω(N) to achieve the stated
efficiency. Problems over smaller fields (e.g. boolean circuits) incur a multiplicative
cost of logN in prover time and proof length.
†: The specified time is for non-uniform computation (each input size receives
poly(N) advice bits).
‡: The notation Õ hides poly(log logN) factors, which arise because here we
consider the bit complexity of the prover (rather than the arithmetic complexity).

From a technical perspective, prover running time is tightly connected to proof length,
which is more well-studied. In all constructions, the proof length is a lower bound on the
prover running time. Moreover, in the most prover-efficient constructions [7, 14], the
dominant cost for the prover is in computing Reed–Solomon encodings, which means
that for proof length ` the arithmetic complexity of the prover isO(` log `). Finally, since
proof length is an information-theoretic property of the system, it is also usually easier
to analyse. We proceed by discussing the state of the art for PCPs and IOPs with linear
(optimal) proof length, since this is what our construction achieves.

There are two natural approaches that one could follow to simultaneously achieve
linear proof length and constant query complexity: (1) start from a construction with
constant query complexity and reduce proof length; or (2) start from a construction with
linear proof length and reduce query complexity. We summarize prior works that have
followed these approaches, and highlight the limitations that arise in each case.

Approach (1). The first approach has been studied extensively [5, 39, 31, 21, 27, 17],
leading to PCPs for NEXP with proof length N polylog(N) and query complexity O(1)

Linear-Size Constant-Query IOPs for Delegating Computation 7

[20, 16, 25, 38]. Later works have reduced the logarithmic factors in the proof length
[12, 13], but attempts to achieve linear length have failed. Recent work has obtained
IOPs with proof length O(N logN) but at the cost of increasing query complexity from
O(1) to O(logN) [6, 7].

Approach (2). The second approach has received much less attention. Insisting
on linear proof length significantly restricts the available techniques because many
tools introduce logarithmic factors in proof length. For example, one cannot rely on
arithmetization via multivariate polynomials and standard low-degree tests, nor rely on
algebraic embeddings via de Bruijn graphs for routing; in addition, query-reduction
techniques for interactive PCPs [33] do not apply to the linear proof length regime.
The state-of-the-art in linear-length PCPs is due to [18], and the construction is based
on a non-uniform family of algebraic geometry (AG) codes (every input size needs
a polynomial-size advice string). In more detail, [18] proves that for every ε ∈ (0, 1)
there is a (non-uniform) PCP for the NP-complete problem CSAT (Boolean circuit
satisfiability) with proof length 2O(1/ε)N and query complexity N ε, much more than
our goal of O(1).

By leveraging interaction, [10] obtains IOPs for CSAT with proof length O(N)
and query complexity O(1). This is a natural starting point for our goal of achieving
polylogarithmic-time verification, because we are “only” left to extend this result from
CSAT to its succinct analogue, Succinct-CSAT. Unfortunately, the construction in [10]
uses AG codes and such an extension would, in particular, require obtaining a succinct
representation of a dense asymptotically good family of AG codes over a small field,
which is out of reach of current techniques. More generally, we do not know of any
suitable code over small fields, which currently seems to prevent us from obtaining
linear-size IOPs for Succinct-CSAT. Moreover, obtaining an efficient prover would
require efficient encoding and decoding procedures for AG codes.

We now consider arithmetic circuit satisfiability (ASAT) defined over fields F that
are large (of size Ω(N)). In this regime, [14] obtains IOPs for ASAT with proof length
O(N) and query complexity O(logN). The arithmetization, following [20], is based on
the Reed–Solomon code and uses the algebraic structure of large smooth fields. Testing
is done via FRI [8], a recent IOP of proximity for the Reed–Solomon code with linear
proof length and logarithmic query complexity. The construction in [14], which we
will build upon, falls short of our goal on two fronts: verification is linear in the size of
the circuit rather than polylogarithmic, and query complexity is logarithmic rather than
constant.

1.3 Open questions

We highlight four problems left open by our work.

Optimal arithmetic complexity. The prover in our construction has strictly quasilinear
arithmetic complexity and produces a proof of linear size. A natural question is whether
the arithmetic complexity of the prover can be reduced to linear. To do so with our
construction would require a breakthrough in encoding algorithms for the Reed–Solomon
code. A promising direction is to build IOPs based on codes with linear-time encoding
procedures [42, 30, 23].

8 E. Ben-Sasson et al.

All fields. The question of whether it is possible to simultaneously achieve linear-length
proofs and polylogarithmic-time verifier for Succinct-ASAT over any field F remains
open. Progress on this question motivates the search for arithmetization-friendly families
of good codes beyond the Reed–Solomon code. For example, the case of F = F2,
which corresponds to boolean circuits, motivates the search for succinctly-represented
families of good algebraic-geometry codes over constant-size fields with fast encoding
algorithms.
Zero knowledge. Zero knowledge, while not a goal of this work, is a desirable property,
because zero knowledge PCP/IOPs lead to zero knowledge succinct arguments [32, 15].
Straightforward modifications to the protocol, similar to [14], achieve a notion of zero
knowledge wherein the simulator runs in time polynomial in the size of the computation
being checked, which is meaningful for nondeterministic problems since it does not have
access to the witness.

There is a stronger notion of zero knowledge for succinct languages where the
simulator runs in polylogarithmic time, which is exponentially more efficient. This gap
was precisely the subject of a work on designing succinct simulators for certain tests [9].
Whether succinct simulators can be designed for low-degree tests that we could use for
our protocol remains an intriguing problem that we leave to future research.
Round complexity. Our protocol has 5 rounds. Round complexity can be reduced
to 4 at the cost of increased (constant) query complexity. Reducing round complexity
beyond this while preserving linear proof length and polylogarithmic time verification,
or finding evidence against this possibility, remains open.

2 Technical overview

We discuss the main ideas behind our results. Our goal is to construct an IOP for
algebraic machines, over a large field F, with prover arithmetic complexity which is
strictly quasilinear in the size of the computation (i.e. O(N logN)); and crucially, the
running time of the verifier is polylogarithmic in the size of the computation (more
precisely, polynomial in the machine description). Additionally, we strive to optimize the
query and round complexity of this IOP. We stress that no prior work achieves non-trivial
strictly quasilinear prover PCPs or IOPs wherein the verifier runs in polylogarithmic
time in the size of the computation.

Following [7, 14], our construction relies heavily on the Reed–Solomon code, and
the dominant cost for the prover is in the encoding procedure. Thus to achieve strictly
quasilinear arithmetic complexity in our construction, we must achieve a linear proof
length. Thus from this point on, discussion will focus primarily on proof length.

The rest of this section is organized as follows. In Section 2.1 we discuss our
starting point, which is a construction of [14]. In Section 2.2 we discuss our approach
to overcoming the limitations of prior work by describing a new protocol for checking
succinctly-represented linear relations; this achieves an exponential improvement over
the prior state of the art. In Section 2.3 we discuss how to overcome the challenges
that arise when attempting to build on this exponential improvement to checking the
computation of algebraic automata. In Section 2.4, we discuss how to extend these
techniques to algebraic machines (which capture succinct arithmetic circuit satisfiability).

Linear-Size Constant-Query IOPs for Delegating Computation 9

In Section 2.5 we describe a modular framework, which we call oracle reductions, in
which we prove our results.

2.1 Our starting point

The starting point of our work is [14], which obtains IOPs for R1CS with proof length
O(N) and query complexity O(logN), and in which the prover uses O(N logN) field
operations and the verifier uses O(N). Recall that the R1CS problem is as follows: given
matrices A,B,C over a finite field F, the problem asks whether there exists a witness
vector w, where some entries are fixed to known values, for which the following R1CS
equation holds: (Aw) ◦ (Bw) = Cw, where “◦” denotes entry-wise product.

Our initial goal in this paper is to achieve an IOP for satisfiability of algebraic
automata. This entails an exponential improvement in the running time of the verifier,
from linear in the circuit size to polylogarithmic in the circuit size. Moreover, we need
to achieve this improvement with proof length O(N) and query complexity O(1) (and a
prover that uses O(N logN) field operations).

The ideas behind our results are better understood if we first briefly recall the IOP
of [14]. The prover sends to the verifier four oracles πw, πA, πB , πC that are purported
encodings of w,Aw,Bw,Cw. The verifier must now check two sub-problems: (a) if πw
encodes w then πA, πB , πC respectively encode Aw,Bw,Cw; and (b) if πA, πB , πC
encode wA, wB , wC then wA ◦ wB = wC .

As usual, there is a tension in selecting the encoding used to obtain the oracles
πw, πA, πB , πC . One needs an encoding that allows for non-trivial checking protocols,
e.g., where the verifier makes a small number of queries. On the other hand, the encoding
must have constant rate so that proof length can be linear.

The encoding used relies on univariate polynomials: denote by RS [L, ρ] ⊆ FL the
Reed-Solomon code over a subset L of a field F with rate parameter ρ ∈ (0, 1] (that is,
the set of all functions f : L→ F of degree less than ρ|L|). Also, denote by f̂ the unique
univariate polynomial of degree less than ρ|L| whose evaluation on L equals f . Given
a subset H ⊆ F (the domain of the encoding), a Reed–Solomon codeword f encodes
x ∈ FH if f̂(a) = xa for all a ∈ H; for each x, there is a unique encoding fx of x
of minimal rate. We can now restate the aforementioned sub-problems in terms of the
Reed–Solomon code.

– Lincheck: given a subset H ⊆ F, Reed–Solomon codewords f, g ∈ RS [L, ρ] that
encode x, y ∈ FH respectively, and a matrix M ∈ FH×H , check that x =My.

– Rowcheck: given a subset H ⊆ F and Reed–Solomon codewords f, g, h ∈ RS [L, ρ]
that encode x, y, z ∈ FH respectively, check that x ◦ y = z.

The IOP in [14] is obtained by combining sub-protocols for these sub-problems, a
lincheck protocol and a rowcheck protocol. The latter is a simple reduction from the
rowcheck problem to testing membership in the Reed–Solomon code, and is implied by
standard PCP tools. The former, however, is a novel (and non-trivial) reduction from the
lincheck problem to testing membership in the Reed–Solomon code.

While on the one hand the verifier in the rowcheck protocol runs in time that is
polylogarithmic in |H| (which is good) the verifier in the lincheck protocol runs in time

10 E. Ben-Sasson et al.

that is linear in |H| (which is much too slow). In other words, if we simply invoked the
IOP in [14] on the circuit described by a succinct R1CS instance, the verifier would run
in time that is linear in T , which is exponentially worse than our goal of polylog(T).
This state of affairs in the starting point of our work.

Next, in Section 2.2, we discuss how to obtain a succinct lincheck protocol that,
for suitable linear relations, is exponentially more efficient. After that, in Section 2.3,
we discuss the notion of algebraic automata in detail and describe how the succinct
lincheck protocol enables efficient probabilistic checking of algebraic automata. Finally
in Section 2.4 we describe how we can bootstrap our protocol for algebraic automata to
check the more powerful algebraic machine model.

Throughout, we present our contributions as oracle reductions from some computa-
tional task to testing membership in the Reed–Solomon code. Loosely speaking, these are
reductions in the setting of the IOP model (and therefore, in particular, allow interaction
in which the prover sends PCP oracles). This abstraction allows us to decouple IOP
protocol-design from the low-degree test that we invoke at the end of the protocol. See
Section 2.5 for details.

2.2 Checking succinctly-represented linear relations

Following the above discussion, we now temporarily restrict our attention to devising
a lincheck protocol, which reduces checking linear relations defined by matrices M ∈
FH×H to testing membership in the Reed–Solomon code, in which the verifier runs in
time that is polylogarithmic in |H|. This is not possible in general, however, because the
verifier needs to at least read the description of the matrix M . We shall have to consider
matrices M that have a special structure that can be exploited to obtain an exponential
improvement in verifier time. This improvement is a core technical contribution of this
paper, and we refer to the resulting reduction as the succinct lincheck protocol. We start
by describing the ideas behind the (non-succinct) lincheck protocol of [14].

Definition 2 (informal). In the lincheck problem, we are given a subset H ⊆ F, Reed–
Solomon codewords f, g ∈ RS [L, ρ] encoding vectors x, y ∈ FH , and a matrix M ∈
FH×H . The goal is to check that x =My.

A simple probabilistic test for the claim “x =My” is to check that 〈r, x−My〉 = 0
for a random r ∈ FH . Indeed, if x 6= My, then Prr∈FH [〈r, x −My〉 = 0] = 1/|F|.
However, this approach would require the verifier to sample, and send to the prover, |H|
random field elements (too many).

A natural derandomization is to choose r using a small-bias generator over F, rather
than uniformly at random. A small-bias generator G over F is a function with the
property that for any nonzero z ∈ FH , it holds with high probability over ρ ∈ {0, 1}`
that 〈z,G(ρ)〉 6= 0. Now the verifier needs to send only ` bits to the prover, which can
be much smaller than |H| log |F|.

A natural choice (used also, e.g., in [5, §5.2]) is the powering construction of [1],
which requires sending a single random field element (` = log |F|), and incurs only a
modest increase in soundness error. In this construction, we define a vector r(X) ∈
F[X]H of linearly independent polynomials in X , given by (1, X,X2, . . . , X |H|−1).

Linear-Size Constant-Query IOPs for Delegating Computation 11

The small-bias generator is then G(α) := r(α) for α ∈ F. If z is nonzero then h(X) :=
〈r(X), z〉 is a nonzero polynomial and so Prα∈F[〈G(α), z〉 = 0] ≤ deg(h)/|F|. The
verifier now merely has to sample and send α ∈ F, and the prover must then prove
the claim “h(α) = 0” to the verifier. Rearranging, this is the same as testing that
〈r(α), x〉 − 〈r(α)M,y〉 = 0. The problem is thus reduced to checking inner products
of known vectors with oracles.

In the setting of Reed–Solomon codewords, if fu is an encoding of u and fv is an
encoding of v, then fu · fv is an encoding of u ◦ v, the pointwise product of u and v.
Hence, to check that 〈u, v〉 = c, it suffices to check that the low-degree polynomial
fu · fv sums to c on H , since 〈u, v〉 =

∑
h∈H fu(h)fv(h). This can be achieved by

running the univariate sumcheck protocol ([14]) on the codeword fu · fv . This protocol
requires the verifier to efficiently determine the value of fu · fv at a given point in L.

The inefficiency. The foregoing discussion tells us that, to solve the lincheck problem,
the verifier must determine the value of the Reed–Solomon encodings of r(α) ◦ x and
r(α)M ◦ y at a given point in L. The encodings of the vectors x and y are provided (as
f and g). Hence it suffices for the verifier to evaluate low-degree extensions of r(α) and
r(α)M at a given point, and then perform a field multiplication.

This last step is the computational bottleneck of the protocol. In [14], the verifier
evaluates the low-degree extensions of r(α) and M>r(α) via Lagrange interpolation,
which requires time Ω(|H|). To make our verifier efficient, we must evaluate both low-
degree extensions in time polylog(|H|). In particular, this requires that M be succinctly
represented, since computing the low-degree extension of r(α)M in general requires
time linear in the number of nonzero entries in M , which is at least |H|.

The lincheck protocol in [14] chooses the linearly independent polynomials r(X) to
be the standard (or coefficient) basis (1, X, . . . ,X |H|−1). For this basis, however, we
do not know how to efficiently evaluate the low-degree extension of r(α). This problem
must be addressed regardless of the matrix M .

A new basis and succinct matrices. We leverage certain algebraic properties to
overcome the above problem. There is another natural choice of basis for polynomials,
the Lagrange basis (LH,h(X))h∈H , where LH,h is the unique polynomial of degree less
than |H| with LH,h(h) = 1 and LH,α(γ) = 0 for all γ ∈ H \ {h}. We observe that the
low-degree extension of r(α) = (LH,h(α))h∈H ∈ FH has a simple form that allows
one to evaluate it in time polylog(|H|) provided that H is an additive or multiplicative
subgroup of F. In other words, the Lagrange basis yields a small-bias generator over F
whose low-degree extension can be computed efficiently.

It remains to find a useful class of succinctly-represented matrices M for which
one can efficiently evaluate a low-degree extension of r(α)M ∈ FH . The foregoing
discussion suggests a natural condition: if we can efficiently compute a low-degree
extension of a vector v ∈ FH then we should also be able to efficiently compute a low-
degree extension of the vector vM . If this holds for all vectors v, we say that the matrix
M is (algebraically) succinct. For example, the identity matrix satisfies this definition
(trivially), and so does the matrix with 1s on the superdiagonal for appropriate choices
of F and H .

In sum, if we choose the Lagrange basis in the lincheck protocol and the linear
relation is specified by a succinct matrix, then, with some work, we obtain a lincheck pro-

12 E. Ben-Sasson et al.

tocol where the verifier runs in time polylog(|H|). To check satisfiability of succinctly-
represented arithmetic circuits, however, we need to handle a more general class of
matrices, described next.
Succinct lincheck for semisuccinct matrices. We will relax the condition on a matrix
M in a way that captures the matrices that arise when checking succinctly-described
arithmetic circuits, while still allowing us to obtain a lincheck protocol in which the
verifier runs in time polylog(|H|).

We show that the matrices that we consider are semisuccinct, namely, they can
be decomposed into a “large” part that is succinct and a “small” part that has no spe-
cial structure.4 This structure should appear familiar, because it is analogous to how
a succinctly-described circuit consists of a small arbitrary component (the circuit de-
scriptor) that is repeatedly used in a structured way to define the large circuit. Another
analogy is how in an automaton or machine computation a small, and arbitrary, transition
function is repeatedly applied across a large computation.

Specifically, by “decompose” we mean that the matrix M ∈ FH×H can be written
as the Kronecker product of a succinct matrix A ∈ FH1×H1 and a small matrix B ∈
FH2×H2 ; we write M = A⊗ B. (Succinctly representing a large operator like M via
the tensor product of simpler operators should be a natural idea to readers familiar with
quantum information.) In order for the product to be well-defined, we must supply a
bijection Φ : H → H1×H2. If this bijection satisfies certain algebraic properties, which
preserve the succinctness of the matrix A, we call it a bivariate embedding.

We obtain a succinct lincheck protocol for semisuccinct matrices.

Lemma 1 (informal). There is a linear-length reduction from the lincheck problem for
semisuccinct linear relations to testing membership in the Reed–Solomon code, where
the verifier runs in polylogarithmic time.

Next, we discuss how to obtain a reduction from algebraic automata (succinct R1CS)
to testing membership in the Reed–Solomon code, where the verifier runs in time that
is polylogarithmic in the circuit size, by building on our succinct lincheck protocol for
semisuccinct matrices.

2.3 Checking bounded-space computations in polylogarithmic time

An instance of the algebraic automaton relation is specified by three k × 2k matrices
(A,B,C) over F, and a time bound T . A witness f : [T]→ Fk is valid if

∀ t ∈ [T − 1] Af(t, t+ 1) ◦Bf(t, t+ 1) = Cf(t, t+ 1) , (1)

where f(t, t + 1) := f(t)‖f(t + 1) is the concatenation of the consecutive states
f(t) ∈ Fk and f(t+ 1) ∈ Fk.

We use the term “algebraic automata” since one can think of A,B,C as specifying
the transition relation of a computational device with k algebraic registers, and f as
an execution trace specifying an accepting computation of the device. The relation

4 We actually need to handle matrices that are the sum of semisuccinct matrices, but we ignore
this in this high-level discussion.

Linear-Size Constant-Query IOPs for Delegating Computation 13

is PSPACE-complete: it is in NPSPACE because it can be checked by a polynomial-
space Turing machine with one-directional access to an exponential-size witness, and
recall that NPSPACE = PSPACE; also, it is PSPACE-hard because given an arithmetic
circuit specifying the transition relation of a polynomial-space machine, we can find an
equisatisfiable R1CS instance in linear time.

If we view the execution trace f as a vector f = f(1)‖ · · · ‖f(T) ∈ FTk, then we
can rewrite the condition in Eq. (1) via the following (possibly exponentially large)
R1CS equation:
A0 A1

A0 A1

.
A0 A1

 f ◦

B0 B1

B0 B1

.
B0 B1

 f =

C0 C1

C0 C1

.
C0 C1

 f

where A0, A1 ∈ Fk×k are the first half and second half of A respectively; and likewise
for B and C. We thus see that algebraic automata are equivalent to Succinct-R1CS.

The matrices in the above R1CS equation have a rigid block structure that we refer
to as a staircase. Given the discussions in Sections 2.1 and 2.2, in order to achieve poly-
logarithmic verification time, it suffices to show that staircase matrices are semisuccinct
(or, at least, the sum of few semisuccinct matrices).

So let S(M0,M1) be the staircase matrix of two given k × k matrices M0,M1 over
F. Namely, S(M0,M1) is the Tk × Tk matrix with M0-blocks on the diagonal and
M1-blocks on the superdiagonal. Observe that:
1. we can write the matrix with M0-blocks on the diagonal as I ⊗M0, where I is the
T × T identity matrix;

2. we can write the matrix with M1-blocks on the superdiagonal as I) ⊗M1, where I)

is the T × T matrix with 1s on the superdiagonal.
Under an appropriate mapping from [Tk] into a subset of F, we prove that both of these
matrices are semisuccinct. This tells us that S(M0,M1) is the sum of two semisuccinct
matrices:

S(M0,M1) :=

M0 M1

M0 M1

.
M0 M1

M0

 = I ⊗M0 + I) ⊗M1 ∈ FTk × FTk .

(Note that the above is not exactly the matrix structure we want, because of the extra M0

block; we handle this technicality separately.) We obtain the following lemma.

Lemma 2 (informal). There is a linear-length reduction from the algebraic automaton
relation to testing membership in the Reed–Solomon code, where the verifier runs in
time poly(k, log T).

2.4 Checking machine computations in polylogarithmic time

An instance of the algebraic (R1CS) machine relation is specified by two algebraic
(R1CS) automata (A,A′). A witness (f, π), where f : [T]→ Fk is an execution trace

14 E. Ben-Sasson et al.

and π : [T]→ [T] is a permutation, is valid if: (1) f is a valid witness for the automaton
A, and (2) f ◦ π is a valid witness for the automaton A′. The algebraic machine
relation is NEXP-complete, as the NEXP-complete problem of succinct arithmetic
circuit satisfiability reduces to it in linear time.

Execution traces for machines. Before we discuss how we reduce from the algebraic
machine relation, we briefly explain why the above relation is a natural problem to
consider, and in particular why it has anything to do with (random-access) machines.
Recall that a random-access machine is specified by a list of instructions, each of which
is an arithmetic operation, a control-flow operation, or a read/write to memory. One
way to represent the execution trace for the machine is to record the state of the entire
memory at each time step; for a time-T space-S computation, such an execution trace
has size Θ(TS) (much more than linear!). Yet, the machine can access only a single
memory location at each time step. Thus, instead of writing down the state of the entire
memory at each time step, we could hope to only write the state of the accessed address
— this would reduce the size of the trace to Θ(T logS). The problem then is that it is no
longer possible to check consistency of memory via local constraints because the same
address can be accessed at any time.

Classical techniques of Gurevich and Shelah [29] tell us that one can efficiently
represent an execution trace for a machine via two execution traces that are permutations
of one another. Informally, sorting the execution trace by time enables us to check
the transition relation of the machine; and sorting the execution trace by the accessed
addressed (and then by time) enables us to locally check that memory is consistent.
(One must ensure that, for each location, if we write some value to memory and then
read the same address, we retrieve that same value.) The transition relation and memory
consistency can each be expressed individually as automata. This view of machines
immediately gives rise to the algebraic machine relation above.

Checking the algebraic machine relation. We have discussed how to check automata
in Section 2.3, so it remains to check that the traces are permutations of one another.
Historically this has been achieved in the PCP literature using algebraic embeddings
of routing networks; e.g., see [12]. The problem is that this increases the size of the
representation of the execution trace by at least a logarithmic factor. We instead use
an interactive permutation test from the program checking literature [36, 22]. The test
is based on the observation that u ∈ FT is a permutation of v ∈ FT if and only if the
multi-sets given by their elements are equal, which is true if and only if the polynomials
pu(X) =

∏T
i=1(X − ui) and pv(X) =

∏T
i=1(X − vi) are equal. Thus it suffices to

evaluate each polynomial at a random point and check equality.
These polynomials require timeΘ(T) to evaluate, which in our setting is exponential.

Therefore the prover must assist the verifier with the evaluation. We show that evaluating
this polynomial can be expressed as an algebraic automaton, and can therefore be
checked again using the protocol from Section 2.3.

The reader may believe that by now we have reduced checking an algebraic machine
to checking three instances of algebraic automata. Recall, however, that the algebraic
automaton relation is PSPACE-complete, whereas the algebraic machine relation is
NEXP-complete. What happened? The answer lies in the randomness used in the per-
mutation automaton. In order to check that u is a permutation of v, the prover must first

Linear-Size Constant-Query IOPs for Delegating Computation 15

commit to u and v before the verifier chooses his evaluation point α, and then the prover
sends the trace of the automaton that evaluates pu(α), pv(α). This trace depends on the
choice of α, and so we use interaction. This is captured by the interactive automaton
relation, which is NEXP-complete; it can be checked in essentially the same way as the
automaton relation.

We hence obtain the following lemma.

Lemma 3 (informal). There is a linear-length reduction from the algebraic machine
relation to testing membership in the Reed–Solomon code, where the verifier runs in
time poly(k, log T).

2.5 Oracle reductions

Many results in this paper describe IOPs that reduce a computational problem to mem-
bership in (a subcode of) the Reed–Solomon code. We find it useful to capture this class
of reductions via a precise definition. This lets us prove general lemmas about such
reductions, and obtain our protocols in a modular fashion.

We thus formulate a new notion that we call interactive oracle reductions (in short,
oracle reductions). Informally, an oracle reduction is a protocol that reduces from a
computational problem to testing membership in a code (in this paper, the code is the
interleaved Reed–Solomon code). This is a well-understood idea in constructions of
PCPs and IOPs. Our contribution is to provide a formal framework for this technique.

We illustrate the notion of oracle reductions via an example. Consider the problem of
testing proximity to the vanishing Reed–Solomon code, which plays an important role in
a PCP of Ben-Sasson and Sudan [20] and several other PCPs/IOPs. Informally, the goal
is to test whether a univariate polynomial f , provided as an oracle, is zero everywhere
on a subset H of F.

We describe an oracle reduction that maps the foregoing problem to the problem of
testing membership in the Reed–Solomon code of the related polynomial g := f/ZH .
Observe that f is divisible by ZH if and only if f is zero everywhere in H , and so g
is in the Reed–Solomon code if and only if f satisfies the desired property. But what
exactly is g? In the oracle reduction framework, we refer to g as a virtual oracle: an
oracle whose value at any given point in its domain can be determined efficiently by
making a small number of queries to concrete oracles. In this case, so long as the domain
L we choose for g does not intersect H , a verifier can evaluate g at any point α ∈ L
with only a single query to f . To test that g is low degree, the verifier can invoke any
low-degree test on g, and simulate queries to the virtual oracle g via queries to f .

The two main parameters in an oracle reduction are the proof length, which is simply
the total length of the oracles sent by the prover, and the locality, which is the number
of queries one would have to make to the concrete oracles to answer a single query to
any virtual oracle (in this paper, locality always equals the number of rounds). Using
the perspective of oracle reductions, our main theorems (Theorems 1 and 2) follow by
combining two main sub-components: (1) a linear-length 3-local oracle reduction from
the algebraic automata or machine problem to proximity testing to the Reed–Solomon
code (discussed in Sections 2.3 and 2.4); and (2) a linear-length strictly quasilinear
prover 3-query IOP for testing proximity to the Reed–Solomon code from [10].

16 E. Ben-Sasson et al.

3 Roadmap

Fig. 1 below provides a diagram of the results proved in this paper. The remaining
sections in this paper are organized as follows. In Section 4 we recall useful notions
and definitions. In Section 5 we define oracle reductions, and prove how to create IOP
protocols from RS oracle reductions and RS proximity tests. In the full version, we
define and construct trace embeddings, describe our succinct lincheck protocol, describe
an oracle reduction from R1CS automata to testing proximity to the Reed–Solomon
code, describe an oracle reduction from R1CS machines to testing proximity to the
Reed–Solomon codem, and finally prove Theorems 1 and 2.

Theorem 1:
IOP for succinct R1CS

Theorem 2:
IOP for algebraic machines

[10]:
linear-size constant-query
IOP of proximity for RS

with polylog verifier

[14]:
univariate sumcheck

succinct lincheck

(interactive) algebraic automata

R1CS machines

Corollary 1: create IOP protocol from
RS oracle reduction and RS proximity test

Fig. 1: Diagram of the results in this paper.

4 Preliminaries

Given a relationR ⊆ S × T , we denote by L(R) ⊆ S the set of s ∈ S such that there
exists t ∈ T with (s, t) ∈ R; for s ∈ S, we denote byR|s ⊆ T the set {t ∈ T : (s, t) ∈
R}. Given a set S and strings v, w ∈ Sn for some n ∈ N, the fractional Hamming
distance ∆(v, w) ∈ [0, 1] is ∆(v, w) := 1

n |{i : vi 6= wi}|. We denote the concatenation

Linear-Size Constant-Query IOPs for Delegating Computation 17

of two vectors u1, u2 by u1‖u2, and the concatenation of two matrices A,B by [A|B].
All fields F in this paper are finite, and we denote the finite field of size q by Fq . We say
that H is a subgroup in F if it is either a subgroup of (F,+) (an additive subgroup) or of
(F \ {0},×) (a multiplicative subgroup); we say that H is a coset in F if it is a coset of a
subgroup in F (possibly the subgroup itself).

4.1 Codes and polynomials

The Reed–Solomon code. Given a subset S of a field F and rate ρ ∈ (0, 1], we denote
by RS [S, ρ] ⊆ FS all evaluations over S of univariate polynomials of degree less than
ρ|S|. Namely, a word c ∈ FS is in RS [S, ρ] if there is a polynomial of degree less than
ρ|S| that, for every a ∈ S, evaluates to ca at a. We denote by RS [S, (ρ1, . . . , ρn)] :=∏n
i=1 RS [S, ρi] the interleaving of Reed–Solomon codes with rates ρ1, . . . , ρn.

Representations of polynomials. We frequently move from univariate polynomials
over F to their evaluations on subsets of F, and back. We use plain letters like f, g, h, π to
denote evaluations of polynomials, and “hatted letters” f̂ , ĝ, ĥ, π̂ to denote corresponding
polynomials. This bijection is well-defined only if the size of the evaluation domain
is larger than the degree. If f ∈ RS [S, ρ] for S ⊆ F and ρ ∈ (0, 1], then f̂ is the
unique polynomial of degree less than ρ|S| whose evaluation on S equals f . Likewise,
if f̂ ∈ F[X] with deg(f̂) < ρ|S|, then fS := f̂ |S ∈ RS [S, ρ] (but we drop the subscript
when the subset is clear from context).

Vanishing polynomials. Let F be a finite field, and S ⊆ F. We denote by ZS the
unique non-zero monic polynomial of degree at most |S| that is zero everywhere on S;
ZS is called the vanishing polynomial of S. In this work we use efficiency properties of
vanishing polynomials for sets S that have group structure.

If S is a multiplicative subgroup of F, then ZS(X) = X |S| − 1, and so ZS(X) can
be evaluated at any α ∈ F inO(log |S|) field operations. More generally, if S is a γ-coset
of a multiplicative subgroup S0 (namely, S = γS0) then ZS(X) = γ|S|ZS0

(X/γ) =
X |S| − γ|S|.

If S is an (affine) subspace of F, then ZS is called an (affine) subspace polynomial.
In this case, there exist coefficients c0, . . . , ck ∈ F, where k := dim(S), such that
ZS(X) = Xpk +

∑k
i=1 ciX

pi−1

+ c0 (if S is linear then c0 = 0). Hence, ZS(X) can
be evaluated at any α ∈ F in O(k log p) = O(log |S|) operations. Such polynomials
are called linearized because they are Fp-affine maps: if S = S0 + γ for a subspace
S0 ⊆ F and shift γ ∈ F, then ZS(X) = ZS0

(X − γ) = ZS0
(X) − ZS0

(γ), and ZS0

is an Fp-linear map. The coefficients c0, . . . , ck can be derived from a description of S
(any basis of S0 and the shift γ) in O(k2 log p) field operations (see [35, Chapter 3.4]
and [12, Remark C.8]).

Lagrange polynomials. For F a finite field, S ⊆ F, a ∈ S, we denote by LS,a the
unique polynomial of degree less than |S| such that LS,a(a) = 1 and LS,a(b) = 0 for
all b ∈ S \ {a}. Note that

LS,a(X) =

∏
b∈S\{a}(X − b)∏
b∈S\{a}(a− b)

=
L′S(X)

L′S(a)
,

18 E. Ben-Sasson et al.

where L′S(X) is the polynomial ZS(X)/(X − a). For additive and multiplicative sub-
groups S and a ∈ S, we can evaluate LS,a(X) at any α ∈ F in polylog(|S|) field
operations. This is because an arithmetic circuit for L′S can be efficiently derived from
an arithmetic circuit for ZS [41].

4.2 Interactive oracle proofs

The information-theoretic protocols in this paper are Interactive Oracle Proofs (IOPs)
[15, 40], which combine aspects of Interactive Proofs [4, 28] and Probabilistically
Checkable Proofs [5, 3, 2], and also generalize the notion of Interactive PCPs [33].

A k-round public-coin IOP has k rounds of interaction. In the i-th round of interaction,
the verifier sends a uniformly random message mi to the prover; then the prover replies
with a message πi to the verifier. After k rounds of interaction, the verifier makes some
queries to the oracles it received and either accepts or rejects.

An IOP system for a relation R with round complexity k and soundness error ε
is a pair (P, V), where P, V are probabilistic algorithms, that satisfies the following
properties. (See [15, 40] for details.)

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w),
V (x)) is a k(n)-round interactive oracle protocol with accepting probability 1.

Soundness: For every instance x /∈ L(R) and unbounded malicious prover P̃ , (P̃ ,
V (x)) is a k(n)-round interactive oracle protocol with accepting probability at most
ε(n).

Like the IP model, a fundamental measure of efficiency is the round complexity k.
Like the PCP model, two additional fundamental measures of efficiency are the proof
length p, which is the total number of alphabet symbols in all of the prover’s messages,
and the query complexity q, which is the total number of locations queried by the verifier
across all of the prover’s messages.

We say that an IOP system is non-adaptive if the verifier queries are non-adaptive,
namely, the queried locations depend only on the verifier’s inputs and its randomness.
All of our IOP systems will be non-adaptive.

IOPs of proximity An IOP of Proximity extends an IOP the same way that PCPs of
Proximity extend PCPs. An IOPP system for a relation R with round complexity k,
soundness error ε, and proximity parameter δ is a pair (P, V) that satisfies the following
properties.

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w),
V w(x)) is a k(n)-round interactive oracle protocol with accepting probability 1.

Soundness: For every instance-witness pair (x,w) with ∆(w,R|x) ≥ δ(n) and un-
bounded malicious prover P̃ , (P̃ , V w(x)) is a k(n)-round interactive oracle protocol
with accepting probability at most ε(n).

Efficiency measures for IOPPs are as for IOPs, except that we also count queries to the
witness: if V makes at most qw queries to w and at most qπ queries to prover messages,
the query complexity is q := qw + qπ .

Linear-Size Constant-Query IOPs for Delegating Computation 19

5 Oracle reductions

We define interactive oracle reductions (henceforth just oracle reductions), which, infor-
mally, are reductions from computational problems to the problem of testing membership
of collections of oracles in a code.

The main result in this section is Lemma 4 (and an implication of it, Corollary 1),
which enables the construction of IOPs by modularly combining oracle reductions and
proximity tests. The ideas underlying oracle reductions are not new. Essentially all
known constructions of PCPs/IPCPs/IOPs consist of two parts: (1) an encoding, typically
via an algebraic code, that endows the witness with robust structure (often known as
arithmetization); and (2) a procedure that locally tests this encoding (often known as
low-degree testing).

Oracle reductions provide a formal method of constructing proof systems according
to this framework. We use them to express results in the full version of the paper,
which significantly simplifies exposition. Additionally, expressing our results as oracle
reductions enables us to consider the efficiency of the oracle reduction itself as a separate
goal from the efficiency of the low-degree test. In particular, future improvements in
low-degree testing will lead immediately to improvements in our protocols.

This section has two parts: in Section 5.1 we define oracle reductions; then in
Section 5.2, we introduce a special case of oracle reductions where the target code is the
Reed–Solomon (RS) code. For this special case we give additional lemmas: we show that
it suffices to prove a weaker soundness property, because it generically implies standard
soundness; also, we show that all such oracle reductions admit a useful optimization
which reduces the number of low-degree tests needed to a single one.

5.1 Definitions

Informally, an oracle reduction is an interactive public-coin protocol between a prover
and a verifier that reduces membership in a language to a promise problem on oracles
sent by the prover during the protocol.

In more detail, an oracle reduction from a language L ⊆ X to a relation R′ ⊆
X ′ × Σs is an interactive protocol between a prover and a verifier that both receive
an instance x ∈ X , where in each round the verifier sends a message and the prover
replies with an oracle (or several oracles), as in the IOP model. Unlike in an IOP, the
verifier does not make any queries. Instead, after the interaction the verifier outputs a list
of claims of the form “(x,Π) ∈ R′”, which may depend on the verifier’s randomness,
where x′ ∈ X ′ and Π is a deterministic oracle algorithm that specifies a string in Σs as
follows: the i-th entry in Σs is computed as Ππ1,...,πr (i), where πj is the oracle sent by
the prover in the j-th round. The reduction has the property that if x ∈ L then all claims
output by the verifier are true, and if instead x /∈ L then (with high probability over the
verifier’s randomness) at least one claim is false.

We refer to each oracle algorithm Π(j) as a virtual oracle because Π(j) represents
an oracle that is derived from oracles sent by the prover. We are interested in virtual
oracles Π(j) where, for each i, the number of queries Ππ1,...,πr (i) makes to the oracles
is small. For simplicity, we also assume that the algorithms are non-adaptive in that the
queried locations are independent of the answers to the queries.

20 E. Ben-Sasson et al.

A crucial property is that virtual oracles with small locality compose well, which
allows us to compose oracle reductions. For this we need an oracle reduction of proximity
(Definition 5), which we can view as an oracle reduction from a relationR ⊆ X ×Σs

to another relation R′ ⊆ X ′ × Σs′ . Then we can construct an oracle reduction from
L toR′ by composing an oracle reduction A from L toR′ with an oracle reduction of
proximity B from R′ to R′′. Such a reduction may output virtual oracles of the form
ΠΠA

B where ΠB is a virtual oracle output by B and ΠA is a virtual oracle output by A.
This can be expressed as a standard virtual oracle with access to the prover messages,
and if ΠA and ΠB have small locality then so does ΠΠA

B .
We now formalize the foregoing discussion, starting with the notion of a virtual oracle.

Since the virtual oracles in this work are non-adaptive, we specify them via query (“pre-
processing”) and answer (“post-processing”) algorithms. The query algorithm receives
an index i ∈ [s] and computes a list of locations to be queried across oracles. The answer
algorithm receives the same index i, and answers to the queries, and computes the value
of the virtual oracle at location i. In other words, the answer algorithm computes the
value of the virtual oracle at the desired location from the values of the real oracles at
the queried locations.

Definition 3. A virtual oracle Π of length s over an alphabet Σ is a pair of deter-
ministic polynomial-time algorithms (Q,A). Given any oracles π1, . . . , πr of appro-
priate sizes, these algorithms define an oracle Π ∈ Σs given by Π[π1, . . . , πr](i) :=
A(i, (πj [k])(j,k)∈Q(i)) for i ∈ [s]. Π is `-local if maxi∈[s] |Q(i)| ≤ `.

Observe that the definition of a virtual oracle given above is equivalent to saying that
Π is an algorithm with non-adaptive query access to π1, . . . , πr. Where convenient we
will use this perspective.

We now define the notion of an oracle reduction. Since in this work we primarily
deal with relations, rather than languages, we define our reductions accordingly.

Definition 4. An oracle reduction from a relationR to a relationR′ with base alphabet
Σ is an interactive protocol between a prover P and verifier V that works as follows.
The prover P takes as input an instance-witness pair (x,w) and the verifier V takes as
input the instance x. In each round, V sends a message mi ∈ {0, 1}∗, and P replies
with an oracle πi ∈ Σ∗i over an alphabet Σi = Σsi ; let π1, . . . , πr be all oracles sent.5

After the interaction, V outputs a list of instances (x(1), . . . ,x(m)) and a list of virtual
oracles (Π(1), . . . ,Π(m)) over alphabets Σ′1, . . . , Σ

′
m respectively, where Σ′i = Σs′i .

We say that the oracle reduction has soundness error ε and distance δ if the
following conditions hold.

– Completeness: If (x,w) ∈ R then, with probability 1 over the verifier’s randomness,
for every j ∈ [m] it holds that

(
x
(j),Π(j)[π1, . . . , πr]

)
∈ R′ where (x(j),Π(j))j∈[m] ←

(P (x,w), V (x)).
– Soundness:6 If x /∈ L(R) then for any prover P̃ , with probability 1 − ε over the

verifier’s randomness, there exists j ∈ [m] such that ∆(Π(j)[π1, . . . , πr],R′|x(j)) >
δ where (x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

5 Sometimes it is convenient to allow the prover to reply with multiple oracles πi,1, πi,2, . . .; all
discussions extend to this case.

6 This is analogous to the “interactive soundness error” εi in [14].

Linear-Size Constant-Query IOPs for Delegating Computation 21

An oracle reduction is public coin if all of the verifier’s messages consist of uniform
randomness. All of the oracle reductions we present in this paper are public coin. Note
that we can always choose the base alphabet Σ to be {0, 1}, but it will be convenient for
us to use a larger base alphabet.

This above definition can be viewed as extending the notion of linear-algebraic
CSPs [11], and indeed Lemma 4 below gives a construction similar to the “canonical”
PCP described in that work.

It will be useful to compose oracle reductions. As in the PCP setting, for this we will
require an object with a stronger proximity soundness property.

Definition 5. An oracle reduction of proximity is as in Definition 4 except that, for
a given proximity parameter δ0 ∈ (0, 1), the soundness condition is replaced by the
following one.

– Proximity soundness: If (x,w) is such that ∆(w,R|x) > δ0 then for any prover P̃ ,
with probability 1− ε over the verifier’s randomness, there exists j ∈ [m] such that
∆(Π(j)[π1, . . . , πr],R′|x(j)) > δ(δ0) where (x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

In the PCPP literature the foregoing soundness property is usually known as robust
soundness, and the condition is expressed in terms of expected distance. The definition
given here is more convenient for us.
Efficiency measures. There are several efficiency measures that we study for an oracle
reduction.

– An oracle reduction has r rounds if the interactive protocol realizing it has r rounds.
– An oracle reduction has m virtual oracles and locality ` if the verifier outputs at most
m virtual oracles {Π(j) = (Qj , Aj)}j∈[m], and it holds that maxi∈[s] |∪mj=1Qj(i)| ≤
`. Note that the answer to a single query may consist of multiple symbols over the
base alphabet Σ, but we count the query only once.

– An oracle reduction has length s =
∑r
i=1 si|πi| over the base alphabet. Its length in

bits is s log |Σ|.

Other efficiency measures include the running time of the prover and of the verifier.
Oracle reductions combine naturally with proofs of proximity to produce IOPs. The

following lemma is straightforward, and we state it without proof.

Lemma 4. Suppose that there exist:
(i) an r-round oracle reduction from R to R′ over base alphabet Σ with soundness

error ε, distance δ, length s, locality `, and m virtual oracles;
(ii) an r′-round IOPP for R′ over alphabet Σ with soundness error ε′, proximity

parameter δ′ ≤ δ, length s′, and query complexity (qw, qπ).
Then there exists an (r +mr′)-round IOP for R with soundness error ε + ε′, length
s+ s′ ·m over Σ, and query complexity (qw · `+ qπ) ·m.

5.2 Reed–Solomon oracle reductions

In this work we focus on a special class of oracle reductions, in which we reduce to
membership in the Reed–Solomon code, and where the virtual oracles have a special

22 E. Ben-Sasson et al.

form. These reductions coincide with “RS-encoded IOPs” [14, Definition 4.6], which
we recast in the language of virtual oracles.

We first define the notion of a rational constraint, a special type of virtual oracle that
is “compatible” with the (interleaved) Reed–Solomon code.

Definition 6. A rational constraint is a virtual oracle Π = (Q,A) over a finite field
F where Q(α) = ((1, α), . . . , (r, α)) and A(α, β1, . . . , βr) = N(α, β1, . . . , βr)/D(α),
for two arithmetic circuits (without division gates) N : F

∑
i si → F and D : F→ F.

A Reed–Solomon (RS) oracle reduction is a reduction from some relation to member-
ship in the Reed–Solomon code, where additionally every oracle is a rational constraint.

Definition 7. A Reed–Solomon (RS) oracle reduction over a domain L ⊆ F is an
oracle reduction, over the base alphabet F, from a relationR to the interleaved Reed–
Solomon relation

R∗RS :=
{
(ρ, f) s.t. ρ ∈ (0, 1]∗, f : L→ F is a codeword in RS [L,ρ]

}
where every virtual oracle output by the verifier is a rational constraint, except for a
special instance (ρ0,Π0), which the verifier must output. Π0, over alphabet F

∑
i si , is

given by Π0(α) = (π1(α), . . . , πr(α)) (i.e., it is a stacking of the oracles sent by the
prover).

In this work we will assume throughout that L comes a family of subgroups (of a
family of fields) such that there is an encoding algorithm for the Reed–Solomon code on
domain L

Note that Π0 is not a rational constraint because its alphabet is not F. Later we
will also refer to the non-interleaved Reed–Solomon relation RRS := {(ρ, f) : ρ ∈
(0, 1], f ∈ RS [L, ρ]}.

RS oracle reductions have a useful property: if the soundness condition holds for
δ = 0, then the soundness condition also holds for a distance δ > 0 related to the
maximum rate of the reduction. Informally, the maximum rate is the maximum over the
(prescribed) rates of codewords sent by the prover and those induced by the verifier’s
rational constraints. To define it, we need notation for the degree and rate of a circuit.

Definition 8. The degree of an arithmetic circuit C : F1+` → F on input degrees
d1, . . . , d` ∈ N, denoted deg(C; d1, . . . , d`), is the smallest integer e such that for all
pi ∈ F≤di [X] there exists a polynomial q ∈ F≤e[X] such thatC(X, p1(X), . . . , p`(X)) ≡
q(X). Given domain L ⊆ F and rates ρ ∈ (0, 1]`, the rate of C is rate(C;ρ) :=
deg(C; ρ1|L|, . . . , ρ`|L|)/|L|. (The domain L will be clear from context.) Note that if
` = 0 then this notion of degree coincides with the usual one (namely, deg(C) is the
degree of the polynomial described by C), and rate(C) := deg(C)/|L|.

An oracle reduction has maximum rate ρ∗ if, for every rational constraint (σ,Π) out-
put by the verifier, max(rate(N ;ρ0), σ + rate(D)) ≤ ρ∗. This expression is motivated
by the proof of the following lemma; see [14, Proof of Theorem 9.1] for details.

Linear-Size Constant-Query IOPs for Delegating Computation 23

Lemma 5. Suppose that an RS oracle reduction with maximum rate ρ∗ satisfies the fol-
lowing weak soundness condition: if x /∈ L(R) then for any prover P̃ , with probability
1−ε over the verifier’s randomness, there exists j ∈ [m] such that (ρ(j),Π(j)[π1, . . . , πn]) /∈
RRS. Then the reduction satisfies the standard soundness condition (see Definition 4)
with soundness error ε and distance δ := 1

2 (1− ρ
∗).

This means that for the oracle reductions in this paper we need only establish weak
soundness. Also, one can see that RS oracle reductions have locality r (the number of
rounds), since |Q(α)| = r for all α ∈ L.

The following lemma shows that, for RS oracle reductions, it suffices to run the
proximity test on a single virtual oracle. This reduces the query complexity and proof
length when we apply Lemma 4.

Lemma 6. Suppose that there exists an r-round RS oracle reduction from R over
domain L, m virtual oracles, soundness error ε, maximum rate ρ∗, and distance δ.
Then there is an r-round oracle reduction fromR to the non-interleaved Reed–Solomon
relationRRS with locality r, one virtual oracle, soundness error ε+ |L|/|F|, maximum
rate ρ∗, and distance min(δ, (1− ρ∗)/3, (1− 2ρ∗)/2).

Proof. Implicit in [14, Proof of Theorem 9.1], where it follows from [19].

Combining Lemmas 4 to 6 yields the following useful corollary. We invoke it, in the
full version, on the two main building blocks obtained in this paper in order to prove our
main result.

Corollary 1. Suppose that there exist:
(i) an r-round RS oracle reduction fromR over domain L, m virtual oracles, length

s and rate ρ∗ that satisfies the weak soundness condition with soundness error ε;
(ii) an r′-round IOP of proximity forRRS with soundness error ε′, proximity parameter

δ′ < min((1− ρ∗)/3, (1− 2ρ∗)/2), length p and query complexity (qw, qπ).
Then there exists an (r + r′)-round IOP forR with soundness error ε+ ε′ + |L||F| , length
s+ p and query complexity qw · r + qπ .

Acknowledgments

We thank Michael Forbes for helpful discussions. This work was supported in part by:
donations from the Ethereum Foundation and the Interchain Foundation.

References

1. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construction of almost k-wise inde-
pendent random variables. Random Structures and Algorithms 3(3), 289–304 (1992)

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness
of approximation problems. Journal of the ACM 45(3), 501–555 (1998), preliminary version
in FOCS ’92.

3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. Journal of
the ACM 45(1), 70–122 (1998), preliminary version in FOCS ’92.

24 E. Ben-Sasson et al.

4. Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th Annual ACM
Symposium on Theory of Computing. pp. 421–429. STOC ’85 (1985)

5. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic
time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing. pp.
21–32. STOC ’91 (1991)

6. Ben-Sasson, E., Bentov, I., Chiesa, A., Gabizon, A., Genkin, D., Hamilis, M., Pergament,
E., Riabzev, M., Silberstein, M., Tromer, E., Virza, M.: Computational integrity with a
public random string from quasi-linear pcps. In: Proceedings of the 36th Annual Interna-
tional Conference on Theory and Application of Cryptographic Techniques. pp. 551–579.
EUROCRYPT ’17 (2017)

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018)

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed–Solomon interactive oracle
proofs of proximity. In: Proceedings of the 45th International Colloquium on Automata,
Languages and Programming. pp. 14:1–14:17. ICALP ’18 (2018)

9. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.: Zero
knowledge protocols from succinct constraint detection. In: Proceedings of the 15th Theory
of Cryptography Conference. pp. 172–206. TCC ’17 (2017)

10. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive oracle proofs
with constant rate and query complexity. In: Proceedings of the 44th International Colloquium
on Automata, Languages and Programming. pp. 40:1–40:15. ICALP ’17 (2017)

11. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasilinear-size zero knowledge from
linear-algebraic PCPs. In: Proceedings of the 13th Theory of Cryptography Conference. pp.
33–64. TCC ’16-A (2016)

12. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to delegatable
succinct constraint satisfaction problems. In: Proceedings of the 4th Innovations in Theoretical
Computer Science Conference. pp. 401–414. ITCS ’13 (2013)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: Proceedings of the 45th ACM Symposium on the
Theory of Computing. pp. 585–594. STOC ’13 (2013)

14. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Transpar-
ent succinct arguments for R1CS. In: Proceedings of the 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 103–128. EUROCRYPT ’19
(2019), full version available at https://eprint.iacr.org/2018/828

15. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Proceedings of the 14th
Theory of Cryptography Conference. pp. 31–60. TCC ’16-B (2016)

16. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs verifiable in
polylogarithmic time. In: Proceedings of the 20th Annual IEEE Conference on Computational
Complexity. pp. 120–134. CCC ’05 (2005)

17. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of proximity,
shorter PCPs, and applications to coding. SIAM Journal on Computing 36(4), 889–974 (2006)

18. Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant rate PCPs
for Circuit-SAT with sublinear query complexity. In: Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science. pp. 320–329. FOCS ’13 (2013)

19. Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reductions for the distance
to a code. In: Proceedings of the 33rd ACM Conference on Computer and Communications
Security. pp. 24:1–24:23. CCS ’18 (2018)

20. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM Journal on
Computing 38(2), 551–607 (2008), preliminary version appeared in STOC ’05.

https://eprint.iacr.org/2018/828

Linear-Size Constant-Query IOPs for Delegating Computation 25

21. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests
and short PCPs via epsilon-biased sets. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing. pp. 612–621. STOC ’03 (2003)

22. Blum, M., Kannan, S.: Designing programs that check their work. Journal of the ACM 42(1),
269–291 (1995), preliminary version in STOC ’89.

23. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time
zero-knowledge proofs for arithmetic circuit satisfiability. In: Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security. pp. 336–365 (2017)

24. Bowe, S., Gurkan, K., Tromer, E., B?nz, B., Chalkias, K., Genkin, D., Grigg, J., Hopwood,
D., Law, J., Poelstra, A., abhi shelat, Venkitasubramaniam, M., Virza, M., Wahby, R.S.,
Wuille, P.: Implementation track proceeding. Tech. rep., ZKProof Standards (2018), https:
//zkproof.org/documents.html

25. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3), 12 (2007)
26. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the

hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996), preliminary
version in FOCS ’91.

27. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length. Journal of
the ACM 53, 558–655 (July 2006), preliminary version in STOC ’02.

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof
systems. SIAM Journal on Computing 18(1), 186–208 (1989), preliminary version appeared
in STOC ’85.

29. Gurevich, Y., Shelah, S.: Nearly linear time. In: Logic at Botik ’89, Symposium on Logical
Foundations of Computer Science. pp. 108–118 (1989)

30. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-optimal rate.
IEEE Transactions on Information Theory 51(10), 3393–3400 (2005), preliminary version
appeared in STOC ’03.

31. Harsha, P., Sudan, M.: Small PCPs with low query complexity. Computational Complexity
9(3–4), 157–201 (Dec 2000), preliminary version in STACS ’01.

32. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: Limitations, sim-
plifications, and applications (2015), available at http://www.cs.virginia.edu/
˜mohammad/files/papers/ZKPCPs-Full.pdf

33. Kalai, Y., Raz, R.: Interactive PCP. In: Proceedings of the 35th International Colloquium on
Automata, Languages and Programming. pp. 536–547. ICALP ’08 (2008)

34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the
24th Annual ACM Symposium on Theory of Computing. pp. 723–732. STOC ’92 (1992)

35. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, second edition edn.
(1997)

36. Lipton, R.J.: New directions in testing. In: Proceedings of a DIMACS Workshop in Distributed
Computing And Cryptography. pp. 191–202 (1989)

37. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253–1298
(2000), preliminary version appeared in FOCS ’94.

38. Mie, T.: Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals of Mathe-
matics and Artificial Intelligence 56, 313–338 (2009)

39. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: Proceedings of the
26th Annual ACM Symposium on Theory of Computing. pp. 194–203. STOC ’94 (1994)

40. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for delegating
computation. In: Proceedings of the 48th ACM Symposium on the Theory of Computing. pp.
49–62. STOC ’16 (2016)

41. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science 5(3-4), 207–388 (2010)

https://zkproof.org/documents.html
https://zkproof.org/documents.html
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

26 E. Ben-Sasson et al.

42. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE Trans-
actions on Information Theory 42(6), 1723–1731 (1996), preliminary version appeared in
STOC ’95.

	Linear-Size Constant-Query IOPs for Delegating Computation

