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Abstract. Cryptographic combiners allow one to combine many can-
didates for a cryptographic primitive, possibly based on different com-
putational assumptions, into another candidate with the guarantee that
the resulting candidate is secure as long as at least one of the origi-
nal candidates is secure. While the original motivation of cryptographic
combiners was to reduce trust on existing candidates, in this work, we
study a rather surprising implication of combiners to constructing secure
multiparty computation protocols. Specifically, we initiate the study of
functional encryption combiners and show its connection to secure mul-
tiparty computation.
Functional encryption (FE) has incredible applications towards comput-
ing on encrypted data. However, constructing the most general form
of this primitive has remained elusive. Although some candidate con-
structions exist, they rely on nonstandard assumptions, and thus, their
security has been questioned. An FE combiner attempts to make use of
these candidates while minimizing the trust placed on any individual FE
candidate. Informally, an FE combiner takes in a set of FE candidates
and outputs a secure FE scheme if at least one of the candidates is secure.
Another fundamental area in cryptography is secure multi-party compu-
tation (MPC), which has been extensively studied for several decades.
In this work, we initiate a formal study of the relationship between func-
tional encryption (FE) combiners and secure multi-party computation
(MPC). In particular, we show implications in both directions between
these primitives. As a consequence of these implications, we obtain the
following main results.

– A two-round semi-honest MPC protocol in the plain model secure
against up to n−1 corruptions with communication complexity pro-
portional only to the depth of the circuit being computed assuming
learning with errors (LWE). Prior two round protocols based on
standard assumptions that achieved this communication complexity
required trust assumptions, namely, a common reference string.

– A functional encryption combiner based on pseudorandom genera-
tors (PRGs) in NC

1. This is a weak assumption as such PRGs are
implied by many concrete intractability problems commonly used in
cryptography, such as ones related to factoring, discrete logarithm,
and lattice problems [11]. Previous constructions of FE combiners,
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implicit in [7], were known only from LWE. Using this result, we
build a universal construction of functional encryption: an explicit
construction of functional encryption based only on the assumptions
that functional encryption exists and PRGs in NC

1.

Keywords: Functional encryption · Cryptographic combiners · Multi-
party computation.

1 Introduction

The foundations of several cryptographic primitives rely upon computational
assumptions. The last few decades have seen the birth of many assumptions,
such as factoring, quadratic residuosity, decisional Diffie-Hellman, learning with
errors, and many more. Understanding the security of these assumptions is still
very much an active research area. Despite years of research, very little is known
in terms of how different cryptographic assumptions compare with each other.
For instance, its not known whether decisional Diffie-Hellman is a weaker or a
stronger assumption than learning with errors. This leads us to the following
unsatisfactory scenario: suppose a cryptographic primitive (say, public key en-
cryption) has many candidate constructions based on different assumptions, and
we want to pick the most secure candidate. In this scenario, it is unclear which
one we should pick.

Cryptographic Combiners. The notion of cryptographic combiners was intro-
duced to resolve this dilemma. Given many candidates of a cryptographic prim-
itive, possibly based on different assumptions, a cryptographic combiner churns
these candidates into another candidate construction for the same primitive with
the guarantee that the resulting construction is secure as long as at least one
of the original candidates are secure. For instance, a combiner for public key
encryption can be used to transform two candidates based on decisional Diffie-
Hellman and learning with errors into a different public-key encryption candidate
that is secure as long as either decisional Diffie-Hellman or learning with errors
is secure.

While combiners were originally introduced to reduce trust on existing cryp-
tographic constructions, in this work, we study a rather surprising implication
from combiners to secure multi-party computation. Secure multi-party compu-
tation [79,50,19], one of the fundamental notions in cryptography, allows many
parties, who don’t necessarily trust each other, to come together and compute
a function on their private inputs. We consider the primitive of functional en-
cryption and study the implications of functional encryption combiners to secure
multi-party computation. But first, we recall the notion of functional encryption.

Functional Encryption. Functional encryption (FE), introduced by [78,28,73],
is one of the core primitives in the area of computing on encrypted data. This
notion allows an authority to generate and distribute constrained keys asso-
ciated with functions f1, . . . , fq, called functional keys, which can be used to
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learn the values f1(x), . . . , fq(x) given an encryption of x. Intuitively, the se-
curity notion states that the functional keys associated with f1, . . . , fq and an
encryption of x reveal nothing beyond the values f1(x), . . . , fq(x). While this
notion is interesting on its own, several works have studied its connections to
other areas in cryptography and beyond, including reusable garbled circuits [51],
indistinguishability obfuscation [8,23,9,69,68], adaptive garbling [57], verifiable
random functions [54,21,14], deniable encryption [52], hardness o1f Nash equi-
librium [45,46], and many more.

Currently, we know how to construct only restricted versions3 of functional
encryption from well studied cryptographic assumptions. However, constructing
the most general form of functional encryption has been an active research area
and has intensified over the past few years given its implication to indistinguisha-
bility obfuscation [8,23]. In fact, if we are willing to tolerate a subexponential
security loss, then even secret-key FE is enough to imply indistinguishability
obfuscation [22,63,62]. All the candidates [43,65,71,10,66,70] we know so far are
either based on assumptions pertaining to the tool of graded encodings [29,42],
or on other new and relatively unstudied assumptions [5,67,1]. Recent cryptan-
alytic attacks [35,60,39,36,38] on assumptions related to graded encodings have
prompted scrutiny of the security of schemes that use this tool as the building
block. Given this, we should hope to minimize the trust we place on any individ-
ual FE candidate. The notion of a functional encryption combiner achieves this
purpose. Roughly speaking, a functional encryption combiner allows for combin-
ing many functional encryption candidates in such a way that the resulting FE
candidate is secure as long as any one of the initial FE candidates is secure. In
other words, a functional encryption combiner says that it suffices to place trust
collectively on multiple FE candidates, instead of placing trust on any specific
FE candidate.

Our Work. We initiate a systematic study of functional encryption combiners. In
particular, we study implications from FE combiners to secure multi-party com-
putation (and vice versa), and by doing so, we achieve interesting consequences
that were previously unknown. We detail our contributions next.

1.1 Our Contributions

Our results can be classified into two parts. The first part shows how to translate
constructions of functional encryption combiners into secure MPC protocols. The
second part studies the other direction.

From combiners for single-key FE to secure MPC: Our first result shows how
to construct a passively secure multi-party computation protocol that is both

3 For instance, we can restrict the adversary to only ask for one functional key in the
security experiment. A functional encryption scheme satisfying this property can
be based on public key encryption schemes [77,53] (or one-way functions if one can
settle for the secret key version).
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round-optimal (two rounds) and communication efficient (depends only on cir-
cuit depth). Recall that in a passively secure MPC protocol, corrupted parties
follow the instructions of the protocol, but try to learn about honest party inputs
from their combined view of the protocol execution. Moreover, our resulting pro-
tocol is in the plain model and can tolerate all but one corruption4. Prior round-
optimal passively-secure MPC protocols were either communication inefficient,
that is communication complexity was proportional to circuit size [47,30,20,48],
based on strong assumptions such as indistinguishability obfuscation [40] or were
based on trust assumptions [37,72,74,33,32] (for instance, a common reference
string). Subsequent to our work, [76] (FOCS’18) matched our result under the
same assumption; they use the new primitive of laconic function evaluation to
achieve their result instead of FE combiners. We prove the following theorem.

Theorem 1 (Informal). Consider an n-party functionality f computable by a
poly-sized circuit of depth d, for any n ≥ 2. Assuming LWE, there is a construc-
tion of a passively secure (semi-honest) n-party computation protocol for f in
the plain model secure against n− 1 corruptions. The number of rounds in this
protocol is 2, and the communication complexity is poly(λ, n, d, Lin, Lout), where
Lin is the input length of this circuit computing f , Lout is its output length and
λ is the security parameter.

We summarize the state of art in the Table 1.1.

Communication Com-
plexity

Assumptions Model

[37,72,74,33] poly(λ, n, d, Lin, Lout) LWE CRS

[40] poly(λ, n, d, Lin, Lout)
piO and lossy en-
cryption

Plain

[47] poly(λ, n, |f |) Bilinear maps Plain
[20,48] poly(λ, n, |f |) Two-round OT Plain

Our Work, poly(λ, n, d, Lin, Lout) LWE Plain
[76]

Fig. 1. State of the art in terms of communication complexity of two-round passively
secure n-party protocols in the all-but-one corruption model. We denote by |f | and d

the size and depth of the circuit representing the MPC functionality f , respectively.
Moreover, Lin and Lout, respectively, denote the input and output lengths of the cir-
cuit. CRS stands for common reference string and piO stands for probabilistic indis-
tinguishability obfuscation [34].

Central to proving the above theorem is a transformation from a functional
encryption combiner to passively secure MPC. We only require a combiner for

4 Unless otherwise specified, we only consider MPC protocols tolerating all but one
corruption.
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functional encryption schemes where the adversary only receives one functional
key. We require the functional encryption combiner to have some structural
properties. Namely, the functional key for f associated with the combined can-
didate needs to be of the form (f, sk1f , . . . , sk

n
f ), where (i) decomposability: skif

is produced by the ith FE candidate and, (ii) succinctness: the length of skif is
poly(λ, d, Lout), where d is the depth of the circuit computing f and Lout is its
output length. As part of the succinctness property, we also require that the en-
cryption complexity is poly(λ, d, Lin), where Lin is the length of the message to
be encrypted. We show how to construct such an FE combiner assuming LWE.

An intermediate tool we use in this implication is a communication inefficient
passively secure MPC protocol. By communication inefficient, we mean that the
communication complexity is proportional to the size of the circuit representing
f . We note that such protocols [47,20,48] exist in the literature5 based on just
the assumption of round-optimal passively secure oblivious transfer.

Lemma 1 (Informal). Consider a n-party functionality f , for any n ≥ 2.
There is a passively secure n-party computation protocol for f in two rounds
with communication complexity poly(λ, n, d, Lin, Lout) secure against n− 1 cor-
ruptions, where d is the depth of circuit computing f , Lin is the input length
of the circuit and Lout is its output length. Moreover, we assume (i) a decom-
posable and succinct functional encryption combiner and (ii) a communication
inefficient (as defined above) two-round secure n-party computation protocol se-
cure against n− 1 corruptions.

By plugging in the recent round-optimal secure MPC protocols [47,20,48] that
can be based on two-round oblivious transfer, which in turn can be based on
learning with errors [75], and our new decomposable and succinct FE combiner
from LWE, we get Theorem 1. We note that MPC with malicious security re-
quires at least 4 rounds [44,4,32,15,55], and thus, we do not consider MPC with
malicious security in this work.

From secure MPC to combiners for unbounded-key FE: In the other direction,
we show how to transform existing secure multi-party computation protocols
into constructions of functional encryption combiners. However, we note that
the FE combiners we construct from MPC here do not satisfy decomposability
or succinctness. In particular, we show how to transform specific constant round
passively secure MPC protocols based on low degree randomized encodings [17]
into functional encryption combiners. By instantiating low degree randomized
encodings from pseudorandom generators in NC1, we get the following result.

5 These protocols are inherently communication inefficient. The reason is that they
present a compiler that turns any arbitrary interactive MPC protocol into a two-
round MPC protocol. The communication complexity in the resulting two-round
MPC protocol is at least the computational complexity of the original MPC pro-
tocol. However, the computational complexity of the resulting protocol has to be
proportional to the size of the circuit representing the functionality f .
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Theorem 2 (Informal). Assuming pseudorandom generators in NC1, there is
a construction of a combiner for unbounded-key functional encryption.

By unbounded-key functional encryption, we mean that there is no a priori
bound on the number of functional keys the adversary can request in the security
experiment. We note that such pseudorandom generators in NC1 are implied by
most concrete intractability assumptions commonly used in cryptography, such
as ones related to factoring, discrete logarithm, and lattice problems [11]. Fur-
thermore, such PRGs are also implied by the existence of one-way permutations
in NC1 or one-way functions in NC1 with efficiently computable entropy [11].

Next, we present a generic reduction that can transform two-round passively
secure MPC protocols into functional encryption combiners. For this transforma-
tion to hold, the MPC protocol must satisfy two properties: (i) delayed function-
dependence: the first round of the MPC protocol should be independent of the
functionality being securely computed and (ii) reusability: the first round can
be reused by the parties to securely compute many functionalities (but on the
same inputs fixed by the first round).

Theorem 3 (Informal). Assuming a delayed function-dependent and reusable
round-optimal secure MPC protocol, there is a construction of an unbounded-key
decomposable functional encryption combiner.

We then observe that existing two-round secure MPC protocols [72,74,33], based
on learning with errors, already satisfy delayed function-dependence and reusabil-
ity. We note that it is not necessary for the round-optimal protocols to be in the
plain model (indeed, the protocols [72,74,33] are in the common reference string
(CRS) model).

Prior to this work, the only polynomial hardness assumption known to imply
an FE combiner was the learning with errors assumption [7]6. While Theorem 2
already gives a construction of a functional encryption combiner from learning
with errors (pseudorandom generators in NC1 can be based on learning with
errors [16]), the functional encryption combiner constructed in Theorem 3 ar-
guably provides a more efficient transformation. In particular, the efficiency of
the functional keys in the combined scheme from Theorem 3 is linear in the ef-
ficiency of the functional keys in the FE candidates. However, the efficiency in
the combined scheme from Theorem 2 degrades polynomially in the efficiency of
the original FE candidates. Furthermore, the FE combiner from Theorem 3 is
decomposable, a property needed by an FE combiner as a building block in the
proof of Theorem 1. On the other hand, the FE combiner from Theorem 2 is
inherently not decomposable, since it is based on an “onion-layered” approach –
this means that the keys generated with respect to one FE candidate make oracle
calls to other FE candidates (see [56] for a related discussion on black-box com-
biners). Furthermore, the FE combiner from Theorem 3 makes only black-box
use of the underlying FE candidates, whereas the FE combiner from Theorem 2
is inherently non-black-box.

6 Note that [7] required sub-exponential hardness only for constructing iO combiners,
not for constructing FE combiners.
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In terms of techniques, we introduce mechanisms to emulate a MPC protocol
using functional encryption candidates. This is remiscient of “MPC-in-the-head”
paradigm introduced by Ishai et al. [61] and more relevant to the context of FE is
the work of Gorbunov et al. [53] who used information-theoretic MPC protocols
to construct single-key FE. However, we encounter new challenges to implement
the “MPC-in-the-head” paradigm in our context.

Universal Functional Encryption: We strengthen our constructions of FE com-
biners by showing how to transform them into combiners that also work when
the insecure candidates don’t necessarily satisfy correctness (of course, we still
require that the secure candidate is correct). Such combiners are called robust
combiners. To do this, we present correctness amplification theorems based on
previous works on indistinguishability obfuscation [24,7] and, in particular, our
correctness amplification assumes only one-way functions (unlike [24,25]). Ro-
bust combiners have been useful in universal constructions [6,7]. Roughly speak-
ing, a universal construction of FE is a concrete construction of FE that is
secure as long as any secure and correct construction exists. We show how to
build universal functional encryption from robust FE combiners.

Theorem 4 (Universal Functional Encryption). Assuming pseudorandom
generators in NC1, there is a universal unbounded-key functional encryption
scheme.

Our construction will be parameterized by T , where T is an upper bound on the
running time of all the algorithms associated with the secure candidate. This
was a feature even in the universal iO construction of [6].

Related Work: The notion of combiners has been studied in the context of many
cryptographic primitives. Asmuth and Blakely [13] studied combiners for encryp-
tion schemes. Levin proposed a universal construction of one-way functions [64].
Later, a systematic study of combiners and their relation to universal construc-
tions was proposed by Harnik et al. [56] (also relevant are the constructions
in [58,59]). Recently, Ananth et al. [6] designed universal constructions of in-
distinguishability obfuscation (iO). Concurrently, Fischlin et al. also proposed
combiners in the context of program obfuscation [41]. Ananth et al. [7] then pro-
posed the concept of transforming combiners that transforms many candidates
of a primitive X , with at least one of them being secure and, into a secure can-
didate of primitive Y . In particular, they construct iO-to-functional encryption
transforming combiners.

Subsequent to our work, [76] (FOCS’18) matched our result by also achiev-
ing a two-round semi-honest MPC protocol in the plain model with depth-
proportional communication complexity assuming LWE, using laconic function
evaluation instead of FE combiners. [76]’s protocol consists of pre-processing,
online, and post-processing phases. Additionally, they note that the computa-
tion complexity of the online phase is also independent of the size of the function
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being computed. After seeing their work, we observe that our protocol also sat-
isfies this property. In particular, in the construction in Section 5, steps 1 − 3
in round 1 can be made the preprocessing phase. The resulting protocol will
now have online computation complexity independent of the size of the function
being computed.

1.2 Technical Overview

We begin by tackling the problem of constructing secure multi-party computa-
tion with depth-proportional communication complexity, i.e, proportional only
to the depth of the circuit being securely computed, starting from a functional
encryption combiner.

Round-Optimal MPC with Depth-Proportional Communication: Let’s start by
recalling prior known two-round secure MPC protocols [72,74,33] with depth-
proportional communication in the CRS model. The basic template is as follows:
in the first round, the ith party broadcasts an encryption of its input xi. These
ciphertexts are computed with respect to public keys that are derived from the
CRS. All the n parties then homomorphically compute on the encryptions of
(x1, . . . , xn) to obtain a ciphertext of f(x1, . . . , xn), where f is the function they
wish to securely compute. The resulting ciphertext is then partially decrypted,
and every party broadcasts its partially decrypted value in the second round.
These values can be combined to recover the output of the functionality.

One could imagine getting rid of the CRS in the above protocol using the
recent round-optimal MPC protocols in the plain model [47,20]. If this were
possible, then it would yield a round-optimal MPC in the plain model that has
depth-proportional communication complexity. However, the issue is that the
messages in the first round of [72,74,33] are computed as functions of the CRS
and thus, such an approach would inherently require three rounds.

To overcome this, we introduce a mechanism to parallelize the evaluation and
the encryption processes. The output of the evaluation in our approach is the
output of the functionality and not a partially decrypted value, as was the case
in [72,74,33], and thus, we save one round. To implement this high level idea,
we use a functional encryption combiner. Before we describe the high level tem-
plate, we require that the underlying functional encryption combiner satisfies the
decomposability property: Suppose we have FE candidates FE1, . . . ,FEn. Then, a
functional key for a circuit C in the combined scheme is just a concatenation of
the functional keys for C, (skC1 , . . . , sk

C
n ), where skCi is computed with respect

to the ith FE candidate.

The template of our depth-proportional communication secure MPC con-
struction from an FE combiner satisfying this decomposability property is in
Figure 1.2. As an intermediate tool, we use a size-proportional communication
secure MPC protocol (henceforth, also referred to as a communication inefficient
protocol). By this, we mean that the communication complexity of the secure
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MPC protocol grows polynomially with the size of the circuit being securely
computed.

Our Approach

Goal: t-round depth-proportional communication secure MPC from t-round
size-proportional communication secure MPC using decomposable FE combin-
ers.

– Suppose the input of the ith party is xi and f is the function to be securely
computed. All the parties execute the t-round (communication-inefficient)
MPC protocol to obtain an encryption of (x1, . . . , xn) with respect to the
combined FE scheme.

– Simultaneously, the ith party computes the functional key of f with respect
to the ith candidate and sends it to everyone.

Fig. 2. Our approach to construct round-optimal depth-proportional communication
secure MPC from decomposable functional encryption combiners.

At the end of second round, every party has an encryption of (x1, . . . , xn)
with respect to the combined candidate and functional keys for f with respect
to every candidate. From the decomposability property, this is equivalent to
generating a functional key for f with respect to the combined candidate. Each
party can separately execute the FE combiner decryption algorithm to obtain
f(x1, . . . , xn), as desired. Here, we crucially rely on the fact that all the FE
candidates are correct. This completes the high level description of the template.

In the first bullet in Figure 1.2, we instantiate the secure MPC protocol
with size-proportional communication with [47,20,48]. The works of [47,20,48]
are two-round protocols in the plain model and by suitably instantiating the
FE combiners (described later), our approach yields a two-round MPC protocol
with depth-proportional communication.

To argue security of our MPC protocol, the idea is to start with the assump-
tion of a secure FE scheme and instantiate all the candidates using the same FE
scheme. If the adversary corrupts all but the jth party, this means that he can
obtain all the master secret keys of the FE scheme except the jth one. This is
effectively the same as all except the jth candidate being broken. At this point,
we can use the security of the jth FE scheme to argue the security of the MPC
protocol. This shows that the above template yields a secure two-round MPC
protocol assuming a secure FE scheme.

Note that we also assume a two-round (communication-inefficient) MPC pro-
tocol. Without showing that our protocol has depth-proportional communica-
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tion, the above protocol doesn’t achieve anything new. Indeed, it is unclear
why our protocol should have depth-proportional communication. There are two
sources of concern: (i) we are still using a communication inefficient MPC pro-
tocol and, (ii) the functional key of f could be proportional to the size of the
circuit computing f . Suppose we had a secure (magical) FE scheme satisfying
the following two properties: (1) the encryption complexity of this FE scheme
is proportional only to the depth of f , and (2) the functional key of f is of the
form (f, aux), where |aux| only depends on the depth of the circuit computing
f . We claim that this would immediately show that our protocol has commu-
nication complexity proportional only to the depth. Concern (i) is addressed
by the fact the communication-inefficient MPC protocol is used only to evalu-
ate the encryption circuit of the underlying FE scheme. Since the underlying
FE scheme is succinct, the size of the encryption circuit only depends on the
depth of the functionality f . Therefore, the communication complexity of the
communication-inefficient MPC protocol does not affect our construction. Con-
cern (ii) is handled by the fact that the parties only have to send the “aux” part
of the function keys to the other parties, which is only proportional to the depth
of f .

We next observe that the functional encryption scheme of Goldwasser et
al. [51] can be used to satisfy both properties (1) and (2). We recall the func-
tional encryption construction of Goldwasser et al.: the building blocks in this
construction are attribute based encryption (ABE) for circuits, fully homomor-
phic encryption (FHE), and garbling schemes.

– To encrypt a message x, first encrypt x using a (leveled) FHE scheme. Sup-
pose the maximum output length of the functions for which we generate
functional keys is Lout. Generate poly(Lout) ABE encryptions of the FHE
ciphertext, for some fixed polynomial poly, along with wire keys of a garbled
circuit. The garbled circuit is associated with the FHE decryption circuit.

– A functional key of f consists of poly(Lout) ABE keys associated with the
circuit that computes the FHE evaluation of f .

If we instantiate the ABE scheme with the scheme of Boneh et al. [27] and
the leveled FHE scheme with any of the schemes proposed in [49,31], we achieve
both properties (1) and (2) described above. The schemes of [27] and [49,31] have
encryption complexity proportional only to the depth of the circuit. In terms of
the structure of the functional key, we note that the ABE scheme of [27] satisfies
this nice property: you can express the ABE key of a function f as (f, aux),
where |aux| is a polynomial in depth and Lout. This can be used to argue that
the above FE scheme satisfies property (2).

Thus starting from an FE combiner, we have constructed a communication-
efficient two-round MPC. We note that the FE combiner is required to satisfy
simulation security in order to prove that the resulting MPC is simulation se-
cure. The security proof of the resulting MPC directly follows from the simula-
tion security of the FE combiner and the simulation security of the underlying
communication inefficient MPC.



From FE Combiners to Secure MPC and Back 11

Next, we show how to construct such an FE combiner.

Constructing the FE combiner: As in the works of [6,7], we view the FE can-
didates as analogous to parties in a secure MPC protocol. Suppose we want to
construct an FE combiner for n candidates. We start with a two-round (semi-
honest) secure n-party MPC protocol in the plain model. To encrypt a message
x, first additively secret share x into shares (x1, . . . , xn). Compute the first round
messages of all the parties, where the ith party’s input is xi. Finally, for every
i ∈ [n], encrypt the first round messages of all the parties along with the local
state of the ith party using ith FE candidate. All the n encryptions will form the
ciphertext corresponding to the FE combiner scheme.

To generate a functional key for f , we generate n functional keys with each
key associated with an FE candidate. The ith functional key computes the next
message function of the ith party. In this context, we define the next message
function to be a deterministic algorithm that takes as input the state of the
party along with the messages received so far and produces the next message.
Moreover, the MPC functionality associated with the next message function is
as follows: it takes as input n shares of x, reconstructs x, and computes f(x).
The functional key of f corresponding to the FE combiner is the collection of
all these n functional keys.

The decryption in the FE combiner scheme proceeds by recovering the first
and second round messages of all the parties. The reconstruction algorithm of the
secure MPC protocol is then executed to recover the output of the functionality.
An issue here is that the reconstruction part need not be publicly computable.
Meaning that it might not be possible to recover the output of the functionality
from the transcript of the protocol alone. This can be resolved by revealing the
local state of one of the parties to the FE evaluator who can then use this to
recover the output. We implement this by considering an (n + 1)-party MPC
protocol with the FE evaluator corresponding to one of the parties in the MPC
protocol.

Without restricting ourselves to a specific type of two-round secure MPC
protocols, the above template could be ill defined for two reasons:

– Function-Dependence: The first round messages of the MPC protocol we
start off with could depend on the functionality being securely computed.
This means that the FE encryptor needs to be aware of the function f
when it is encrypting the message x. Hence, we need to enforce a delayed
function-dependence property on the underlying MPC protocol. Roughly,
this property states that the first round messages of the MPC protocol are
independent of the functionality being securely computed.

– Reusability: Suppose we wish to construct a collusion-resistant FE combiner,
meaning that the FE combiner is secure even if the adversary obtains multi-
ple functional keys during the security experiment. Even if one of the candi-
dates is secure in the collusion-resistant setting, the above template doesn’t
necessarily yield a collusion-resistant FE combiner. This is because the first
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round MPC messages are “reused” across different FE evaluations. The se-
curity of MPC, as is, doesn’t necessarily guarantee any security if the first
round messages are reused for secure computation of multiple functionali-
ties. Hence, we need to enforce a corresponding reusability property on the
underlying MPC protocol to make it work in the collusion resistant setting.

Once we start with a delayed function-dependent and reusable secure MPC pro-
tocol, we can implement an FE combiner using the above template. We observe
that the schemes of [72,74,33] are both delayed function-dependent and reusable.
As a corollary, we obtain an FE combiner based on learning with errors.

We note that this would give an FE combiner that satisfies indistinguishabil-
ity security. This is inherent since collusion-resistant FE that is also simulation
secure was shown to be impossible [2]. Thus, for our application of commu-
nication efficient MPC, we construct a simulation secure FE combiner in the
single-key setting (i.e., the adversary can only submit one function query) start-
ing from a threshold fully homomorphic encryption scheme.

FE Combiner from Weaker Assumptions: The above constructions and previous
constructions of FE combiners [7] relied on the learning with errors assumption.
However, it would be interesting to try to construct an FE combiner from weaker
assumptions. Our first observation is that there is a simple construction of an
FE combiner for two FE candidates. In this case, one can simply “nest” the two
candidates. That is, if the candidates are denoted FE1 and FE2, we encrypt a
message x by first encrypting x under FE1 and then encrypting the resulting
ciphertext under FE2. To construct a function key for f , we first construct the
function key SK1 for f using FE1 and then construct the function key SK2 for
the decryption circuit of FE1, with SK1 hardcoded as the function key, using
FE2. SK2 is then the function key for f in the nested scheme. In fact, this nested
approach works to combine any constant d number of candidates. However, this
approach does not scale polynomially in the number of candidates, and therefore,
does not give us an FE combiner for a polynomial number of candidates.

Using the above observation, we note that we can evaluate circuits over a con-
stant number of inputs. In particular, we can evaluate constant-sized products.
If we could compute the sum of various constant-sized products, then we could
compute constant-degree polynomials, which would allow us to apply known
bootstrapping techniques to go from FE for constant degree polynomials to FE
for arbitrary functions via randomized encodings. Such randomized encodings
can be constructed assuming a PRG in NC1 [11]. But how do we go about com-
puting the sums of constant degree polynomials? To reason about this, we will
view this as an MPC problem, where each FE candidate is associated with a
party. Given an input x, we bitwise secret share x amongst all the parties. This
effectively gives us an MPC problem where each party/candidate has a secret
input (their share of x). For simplicity, let’s consider the case where each candi-
date is given a single bit (the ith candidate is given the bit xi). As an example,
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suppose we wished to evaluate the polynomial

x2
1 + x1x2 + x1x3 + x2x3.

Using the simple nested combiner for two candidates, we could evaluate each
monomial and then sum the resulting monomial evaluations to compute the
polynomial. However, this approach is flawed, since it will leak the values of
each of the monomials, whereas functional encryption requires only the value
of the polynomial to be computable and nothing else. We resolve this issue
by masking each of the monomial evaluations by secret shares of 0 such that
summing all these values gives the correct polynomial evaluation, but the in-
dividual computed monomial evaluations hide the true values of the monomi-
als. To illustrate this, for the above polynomial, candidate 1 has its secret in-
put in 3 monomials x2

1, x1x2, and x1x3. We secret share 0 across 3 shares. Let
Share1,1, Share1,2, Share1,3 denote these values, where

Share1,1 + Share1,2 + Share1,3 = 0.

Similarly, candidates 2 and 3 have their secret inputs in 2 monomials: x1x2, x2x3

for candidate 2 and x1x3, x2x3 for candidate 3. We secret share 0 across 2 shares
for each of these candidates. These shares are denoted Share2,1, Share2,2 for can-
didate 2 and Share3,1, Share3,2 for candidate 3. We then place a total ordering on
the monomials of the polynomial in order to assign the shares to the monomials.
Suppose our ordering was

x2
1 < x1x2 < x1x3 < x2x3.

Then, we would see that x2
1 was the first monomial containing x1 and assign

Share1,1 to this monomial. For x1x2, we see that it is the second monomial
containing x1 and the first monomial containing x2. Therefore, we assign the
shares Share1,2 and Share2,1 to the monomial x1x2. In a similar manner, we
assign the shares Share1,3, Share3,1 to x1x3 and the shares Share2,2, Share3,2 to
x2x3. When generating the function key to evaluate the monomial x2

1, we actually
give out a function key that evaluates x2

1 + Share1,1. Similarly, when generating
a function key to evaluate the monomial x1x2, we actually give out a function
key that evaluates x1x2 + Share1,2 + Share2,1.

By proceeding in this manner, we have made it so that each monomial evalu-
ation hides the actual monomial value, but the sum of the monomial evaluations
gives the polynomial value. However, this approach still raises several concerns:
(i) how can we ensure that our secret sharing procedure hides intermediate sums
of monomials, and (ii) how can we coordinate the randomness needed to gen-
erate the secret shares amongst the various monomials. To illustrate the first
issue, suppose that the polynomial to evaluate was x1 + x2. In this instance, we
would not add any secret shares, which would reveal x1 and x2. Fortunately,
the first issue is not an issue at all, since such problematic polynomials will not
occur. This is because we begin by secret sharing the bits of the input x amongst
the candidates. Therefore, every monomial will be broken into the sum of new
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monomials, such that each candidate contains a private bit in one of these new
monomials. Since one of the candidates is secure, the secret sharing amongst the
monomials with bits corresponding to the secure candidate ensures that nothing
except the actual polynomial evaluation can be learned. To solve issue (ii), we
utilize a PRF and generate a random PRF key for each candidate. This PRF
key is then used to generate the secret shares of 0 associated with that candidate.

Organization: We begin by defining the notion of functional encryption and se-
cure multi-party computation in Section 2. In Section 3, we define the notion of a
functional encryption combiner. In Section 4, we show how to build a decompos-
able FE combiner that will be used as a building block in the construction of our
round-optimal and communication efficient MPC protocol and how to instanti-
ate it from [51]. In Section 5, we give the construction of our round-optimal and
communication efficient MPC protocol. In Section 6, we show how to build an
FE combiner assuming the existence of a PRG in NC1. In Section 7, we demon-
strate how to convert a delayed function-dependent and reusable round-optimal
secure MPC protocol into an FE combiner. Finally, in Section 8, we show how
to convert an FE combiner into a robust FE combiner and build a universal
functional encryption scheme.

2 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to
denote the set {1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions
D0,D1 are computationally indistinguishable. We use negl(λ) to denote a func-
tion that is negligible in λ. We use x ← A to denote that x is the output of
a randomized algorithm A, where the randomness of A is sampled from the
uniform distribution.

2.1 Functional Encryption

We define the notion of a (secret key) functional encryption candidate and a
(secret key) functional encryption scheme. A functional encryption candidate is
associated with the correctness requirement, while a secure functional encryp-
tion scheme is associated with both correctness and security.

Syntax of a Functional Encryption Candidate/Scheme. A functional encryption
(FE) candidate/scheme FE for a class of circuits C = {Cλ}λ∈N consists of four
polynomial time algorithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ

be the input space of the circuit class Cλ and let Yλ be the output space of Cλ.
We refer to Xλ and Yλ as the input and output space of the candidate/scheme,
respectively.
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– Setup, MSK ← FE.Setup(1λ): It takes as input the security parameter λ
and outputs the master secret key MSK.

– Encryption, CT ← FE.Enc(MSK,m): It takes as input the master secret
key MSK and a message m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, SKC ← FE.KeyGen (MSK, C): It takes as input the mas-
ter secret key MSK and a circuit C ∈ Cλ and outputs a function key SKC .

– Decryption, y ← FE.Dec (SKC ,CT): It takes as input a function secret key
SKC , a ciphertext CT and outputs a value y ∈ Yλ.

Throughout this work, we will only be concerned with uniform algorithms. That
is, (Setup,Enc,KeyGen,Dec) can be represented as Turing machines (or equiva-
lently uniform circuits).

We describe the properties associated with the above candidate.

Approximate Correctness.

Definition 1 (Approximate Correctness). A functional encryption candi-
date FE = (Setup,KeyGen,Enc,Dec) is said to be α-correct if it satisfies the
following property: for every C : Xλ → Yλ ∈ Cλ,m ∈ Xλ it holds that:

Pr









MSK← FE.Setup(1λ)
CT← FE.Enc(MSK,m)

SKC ← FE.KeyGen(MSK, C)
C(m)← FE.Dec(SKC ,CT)









≥ α,

where the probability is taken over the coins of the algorithms.
We refer to FE candidates that satisfy the above definition of correctness with

α = 1− negl(λ) for a negligible function negl(·) as (almost) correct candidates.

Except for Section 8, we will only deal with correct candidates. Unless explic-
itly stated otherwise, all FE candidates throughout this paper satisfy (almost)
correctness.

IND-Security. We recall indistinguishability-based selective security for FE. This
security notion is modeled as a game between a challenger C and an adversary A
where the adversary can request functional keys and ciphertexts from C. Specif-
ically, A can submit function queries C and C responds with the corresponding
functional keys. A can also submit message queries of the form (x0, x1) and re-
ceives an encryption of messages xb for some bit b ∈ {0, 1}. The adversary A
wins the game if she can guess b with probability significantly more than 1/2
and if for all function queries C and message queries (x0, x1), C(x0) = C(x1).
That is to say, any function evaluation that is computable by A gives the same
value regardless of b. It is required that the adversary must declare the challenge
messages at the beginning of the game.



16 Authors Suppressed Due to Excessive Length

Definition 2 (IND-secure FE). A secret-key FE scheme FE for a class of
circuits C = {Cλ}λ∈[N] and message space X = {Xλ}λ∈[N] is selectively secure if
for any PPT adversary A, there exists a negligible function µ(·) such that for all
sufficiently large λ ∈ N, the advantage of A is

AdvFEA =
∣

∣

∣
Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣

∣

∣
≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined
below:

1. Challenge message queries: A submits message queries,

{

(xi
0, x

i
1)
}

with xi
0, x

i
1 ∈ Xλ to the challenger C.

2. C computes MSK ← FE.Setup(1λ) and then computes CTi ← FE.Enc(MSK,
xi
b) for all i. The challenger C then sends {CTi} to the adversary A.

3. Function queries: The following is repeated an at most polynomial number
of times: A submits a function query C ∈ Cλ to C. The challenger C computes
SKC ← FE.KeyGen(MSK, C) and sends it to A.

4. If there exists a function query C and challenge message queries (xi
0, x

i
1)

such that C(xi
0) 6= C(xi

1), then the output of the experiment is set to ⊥.
Otherwise, the output of the experiment is set to b′, where b′ is the output of
A.

Adaptive Security. The above security notion is referred to as selective security
in the literature. One can consider a stronger notion of security, called adap-
tive security, where the adversary can interleave the challenge messages and the
function queries in any arbitrary order. Analogous to Definition 2, we can define
an adaptively secure FE scheme. In this paper, we only deal with selectively
secure FE schemes. However, the security of these schemes can be upgraded to
adaptive with no additional cost [3].

Simulation Security. We can also consider a different notion of security, called
(single-key) simulation security.

Definition 3. (SIM-Security) Let FE denote a functional encryption scheme for
a circuit class C. For every PPT adversary A = (A1,A2) and a PPT simulator
Sim, consider the following two experiments:

ExprealFE,A(1
λ) ExpidealFE,A,Sim(1

λ)

{FE.Setup(1λ)→ MSK} {FE.Setup(1λ)→ MSK}
A1 → (C, stateA1

) A1 → (C, stateA1
)

{SKC ← FE.KeyGen(MSK, C)} {SKC ← FE.KeyGen(MSK, C)}
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A2(stateA1
, SKC)→ (m, stateA2

) A2(stateA1
, SKC)→ (m, stateA2

)
FE.Enc(MSK,m)→ CT Sim(MSK, C, SKC , C(m))→ C̃T

Output (CT, stateA2
) Output (C̃T, stateA2

)

The scheme is said to be (single-key) SIM-secure if there exists a PPT simulator
Sim such that for all PPT adversaries (A1,A2), the outcomes of the two experi-
ments are computationally indistinguishable:

{ExprealFE,A(1
λ)}λ∈N ≈c {Exp

ideal
FE,A,Sim(1

λ)}λ∈N

Collusions. We can parameterize the FE candidate by the number of function
secret key queries that the adversary can make in the security experiment. If the
adversary can only submit an a priori upper bounded q secret key queries, we
say that the scheme is q-key or q-collusion secure. We say that the functional en-
cryption scheme unbounded-key or unbounded-collusion secure if the adversary
can make an unbounded (polynomial) number of function secret key queries.
In this work, unless otherwise stated, we will allow the adversary to make an
arbitrary polynomial number of function secret key queries.

Succinctness.

Definition 4 (Succinctness). A functional encryption candidate FE = (Setup,
Enc,KeyGen,Dec) for a circuit class C containing circuits that take inputs of
length ℓin, outputs strings of length ℓout bits and are of depth at most d is said
to be succinct if the following holds: For any circuit C ∈ C,

– Let MSK← FE.Setup(1λ). The size of the circuit FE.Enc(MSK, ·) < poly(λ, d,
ℓin, ℓout) for some polynomial poly.

– The function key SKC ← FE.KeyGen(MSK, C) is of the form (C, aux) where
|aux| ≤ poly(λ, d, ℓout) for some polynomial poly.

In general, an FE candidate/scheme need not satisfy succinctness. How-
ever, we will need to utilize succinct FE candidates when constructing depth-
proportional communication MPC (Section 4 and Section 5). In such cases, we
will explicitly state that the FE candidates are succinct.

FE Candidates vs. FE Schemes. As defined above, an FE scheme must satisfy
both correctness and security, while an FE candidate is simply the set of algo-
rithms. Unless otherwise specified, we will be dealing with FE candidates that
satisfy correctness. We will only refer to FE constructions as FE schemes if it is
known that the construction satisfies both correctness and security.
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2.2 Secure Multi-Party Computation

The syntax and security definitions for secure multi-party computation can be
found in the full version. Since we are dealing throughout this paper with the
efficiency of MPC protocols, we give the definition of a succinct MPC protocol
below.

Definition 5 (Succinct MPC protocol). Consider an n-party semi-honest
secure MPC protocol Π for a functionality f , represented by a polynomial-sized
circuit C. We define the communication complexity of Π to be the total length
of all the messages exchanged in the protocol.

We define Π to be succinct if the communication complexity of Π is poly(λ, d, n),
where λ is the security parameter and d is the depth of the circuit C.

2.3 Additional Preliminaries

In this work, we will also make occasional use of threshold leveled fully homo-
morphic encryption [12,72,26] and garbling schemes [79,18]. Formal definitions
of these primitives can be found in the full version.

3 FE Combiners: Definition

In this section, we give a formal definition of an FE combiner. Intuitively, an
FE combiner FEComb takes n FE candidates, FE1, . . . ,FEn and compiles them
into a new FE candidate with the property that FEComb is a secure FE scheme
provided that at least one of the n FE candidates is a secure FE scheme.

Syntax of a Functional Encryption Combiner. A functional encryption combiner
FEComb for a class of circuits C = {Cλ}λ∈N consists of four polynomial time al-
gorithms (Setup,Enc,KeyGen,Dec) defined as follows. Let Xλ be the input space
of the circuit class Cλ and let Yλ be the output space of Cλ. We refer to Xλ and
Yλ as the input and output space of the combiner, respectively. Furthermore, let
FE1, . . . ,FEn denote the descriptions of n FE candidates.

– Setup, FEComb.Setup(1λ, {FEi}i∈[n]): It takes as input the security param-
eter λ and the descriptions of n FE candidates {FEi}i∈[n] and outputs the
master secret key MSK.

– Encryption, FEComb.Enc(MSK, {FEi}i∈[n],m): It takes as input the mas-
ter secret key MSK, the descriptions of n FE candidates {FEi}i∈[n], and a
message m ∈ Xλ and outputs CT, an encryption of m.

– Key Generation, FEComb.Keygen
(

MSK, {FEi}i∈[n], C
)

: It takes as input
the master secret key MSK, the descriptions of n FE candidates {FEi}i∈[n],
and a circuit C ∈ Cλ and outputs a function key SKC .
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– Decryption, FEComb.Dec
(

{FEi}i∈[n], SKC ,CT
)

: It is a deterministic algo-
rithm that takes as input the descriptions of n FE candidates {FEi}i∈[n], a
function secret key SKC , and a ciphertext CT and outputs a value y ∈ Yλ.

Remark 1. In the formal definition above, we have included {FEi}i∈[n], the de-
scriptions of the FE candidates, as input to all the algorithms of FEComb. For
notational simplicity, we will often forgo these inputs and assume that they are
implicit.

We now define the properties associated with an FE combiner. The three
properties are correctness, polynomial slowdown, and security. Correctness is
analogous to that of an FE candidate, provided that the n input FE candidates
are all valid FE candidates. Polynomial slowdown says that the running times
of all the algorithms of FEComb are polynomial in λ and n. Finally, security
intuitively says that if at least one of the FE candidates is also secure, then
FEComb is a secure FE scheme. We provide the formal definitions below.

Correctness.

Definition 6 (Correctness). Suppose {FEi}i∈[n] are correct FE candidates.
We say that an FE combiner is correct if for every circuit C : Xλ → Yλ ∈ Cλ,
and message m ∈ Xλ it holds that:

Pr









MSK← FEComb.Setup(1λ, {FEi}i∈[n])
CT← FEComb.Enc(MSK, {FEi}i∈[n],m)

SKC ← FEComb.Keygen(MSK, {FEi}i∈[n], C)
C(m)← FEComb.Dec({FEi}i∈[n], SKC ,CT)









≥ 1− negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is a
negligible function in λ.

Polynomial Slowdown.

Definition 7 (Polynomial Slowdown). An FE combiner FEComb satisfies
polynomial slowdown if on all inputs, the running times of FEComb.Setup,FEComb.Enc,
FEComb.Keygen, and FEComb.Dec are at most poly(λ, n), where n is the number
of FE candidates that are being combined.

IND-Security.

Definition 8 (IND-Secure FE Combiner). An FE combiner FEComb is se-
lectively secure if for any set {FEi}i∈[n] of correct FE candidates, it satisfies
Definition 2, where the descriptions of {FEi}i∈[n] are public and implicit in all
invocations of the algorithms of FEComb, if at least one of the FE candidates
FE1, . . . ,FEn also satisfies Definition 2.

Note that Definition 2 is the IND-security definition for FE. Unless other-
wise specified, when we say a secure FE combiner, we refer to one that satisfies
IND-security.
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Simulation Security. Similarly to FE candidates, we can also consider a different
notion of security called (single-key) simulation security.

Definition 9. An FE combiner FEComb is single-key simulation secure if for
any set {FEi}i∈[n] of correct FE candidates, it satisfies Definition 3, where the
descriptions of {FEi}i∈[n] are public and implicit in all invocations of the algo-
rithms of FEComb, if at least one of the FE candidates FE1, . . . ,FEn also satisfies
Definition 3.

Note that Definition 3 is the simulation security definition for FE.

Succinctness. Similarly to FE candidates, we can also define the notion of a
succinct FE combiner. An FE combiner is not required to satisfy succinctness,
but we will utilize a succinct FE combiner when construction low communication
MPC (Section 4 and Section 5).

Definition 10. An FE combiner FEComb = (Setup,Enc,KeyGen,Dec) for a cir-
cuit class C containing circuits that take inputs of length ℓin, outputs strings of
length ℓout bits and are of depth at most d is succinct if for every set of succinct
FE candidates FE1, . . . ,FEn, the following holds: For any circuit C ∈ C,

– Let MSK← FEComb.Setup(1λ, {FEi}i∈[n]). The size of the circuit FEComb.Enc(MSK, ·)
≤ poly(λ, d, ℓin, ℓout, n) for some polynomial poly.

– The function key SKC ← FEComb.KeyGen(MSK, C) is of the form (C, aux)
where |aux| ≤ poly(λ, d, ℓout, n) for some polynomial poly.

Robust FE Combiners and Universal FE.

Remark 2. We also define the notion of a robust FE combiner. An FE combiner
FEComb is robust if it is an FE combiner that satisfies the three properties (cor-
rectness, polynomial slowdown, and security) associated with an FE combiner
when given any set of FE candidates {FEi}i∈[n], provided that one is a correct
and secure FE candidate. No restriction is placed on the other FE candidates.
In particular, they need not satisfy correctness at all.

Robust FE combiners can be used to build a universal functional encryption
scheme defined below.

Definition 11 (T -Universal Functional Encryption). We say that an ex-
plicit Turing machine Πuniv = (Πuniv.Setup, Πuniv.Enc, Πuniv.KeyGen, Πuniv.Dec) is
a universal functional encryption scheme parametrized by T if Πuniv is a correct
and secure FE scheme assuming the existence a correct and secure FE scheme
with runtime < T .
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4 Succinct Single-Key Simulation Secure Decomposable

FE Combiner

In this section, we define and construct a succinct single-key simulation secure
decomposable FE combiner (DFEComb for short) that will be useful later for
our communication-efficient MPC result. This section can be found in the full
version.

5 Round Optimal MPC with Depth-Proportional

Communication from an FE Combiner

In this section, using any succinct single-key simulation secure decomposable
FE combiner (see Section 4), we show how to compile any two round semi-
honest secure MPC protocol into one where the communication complexity is
proportional only to the depth of the circuit being evaluated.

Let Comm.Compl(π) denote the communication complexity of any protocol
π. Let λ denote the security parameter, n denote the number of parties, and
ℓ denote the size of the input to each party. Formally, we show the following
theorem:

Theorem 5. Assuming the existence of

– A succinct single-key single-ciphertext simulation secure decomposable FE
combiner (AND)

– Succinct FE candidates (AND)
– A two round semi-honest MPC in the plain model (that may not be commu-

nication efficient) that is secure against up to all but one corruption,

there exists a two round semi-honest MPC protocol π in the plain model that
is secure against up to all but one corruption for any boolean circuit C, where
the communication complexity of the protocol π is independent of the size of the
circuit. That is, Comm.Compl(π) = poly(Depth(C), n, ℓ, λ).

We know how to construct a succinct single-key simulation secure decom-
posable FE combiner based on the learning with errors (LWE) assumption (see
Section 4). Further, in Section 4, we saw that the construction in [51] is a suc-
cinct FE candidate. Also, two round semi-honest MPC protocols secure against
up to all but one corruption can be based on the LWE assumption [48,20,75]7.
Instantiating the primitives in the above theorem, we get the following corollary:

Corollary 1. Assuming LWE, there exists a two round semi-honest MPC pro-
tocol π in the plain model that is secure against up to all but one corruption for
any boolean circuit C with Comm.Compl(π) = poly(Depth(C), n, ℓ, λ).

7 [48,20] showed how to construct two round semi-honest MPC in the plain model
from any two round semi-honest OT in the plain model and [75] show that the latter
can be constructed from LWE.
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Furthermore, if we allow our protocol to have a preprocessing phase, we can
obtain a two round semi-honest MPC protocol with depth-proportional commu-
nication complexity and with the computational complexity of each party in the
online phase independent of the size of the circuit, matching the result of [76].
By simply making steps 1− 3 in round 1 of our construction the preprocessing
phase, we arrive at the following corollary:

Corollary 2. Assuming LWE, there exists a two round semi-honest MPC pro-
tocol π in the plain model that is secure against up to all but one corruption for
any boolean circuit C with Comm.Compl(π) = poly(Depth(C), n, ℓ, λ) and with
the computational complexity of the online phase poly(Depth(C), n, ℓ, λ).

5.1 Construction

Notation:

– Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn, respectively, who wish
to evaluate a boolean circuit C on their joint inputs. Let λ denote the se-
curity parameter and without loss of generality, let’s assume |xi| = λ for
all i ∈ [n]. Also, let’s denote the randomness of each party Pi as ri =

(rSetupi , rEnci , rSHi , rKeyGeni ).
– Let DFEComb = (DFEComb.Setup,DFEComb.Enc,DFEComb.Keygen,

DFEComb.Dec,DFEComb.Partition) be a succinct single-key simulation se-
cure decomposable FE combiner (see Section 4) for n FE candidates FE1, . . . ,FEn.

– Let πSH be a two round semi-honest secure MPC protocol (not necessar-
ily communication efficient). Let (πSH.Round1, π

SH.Round2) denote the algo-
rithms used by any party to compute the messages in each of the two rounds
and πSH.Out denote the algorithm to compute the final output. Further, let
πSH.Sim = (πSH.Sim1, π

SH.Sim2) denote the simulator for this protocol - that
is, πSH.Simi is the simulator’s algorithm to compute the ith round’s messages.

Protocol. We now describe the construction of our protocol π with depth-
proportional communication complexity.

– Round 1: Each party Pi does the following:

1. Generate MSKi ← FEi.Setup(1
λ) using randomness rSetupi .

2. Compute (C1, . . . , Cn)← DFEComb.Partition(1λ, C).

3. Compute SKi = FEi.KeyGen(MSKi, Ci) using randomness rKeyGeni .

4. Participate in an execution of protocol πSH with the remaining (n − 1)
parties using input yi = (xi,MSKi, r

Enc
i ) and randomness rSHi to compute

the deterministic circuit CCT defined in Figure 3. That is, compute the
first round message msg1,i ← πSH.Round1(yi; r

SH
i ).
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5. Output (msg1,i, SKi).

– Round 2: Each party Pi does the following:
1. Let τ1 denote the transcript of protocol πSH after round 1.

2. Compute the second round message msg2,i ← πSH.Round2(yi, τ1; r
SH
i )

where yi = (xi,MSKi, r
Enc
i ).

3. Output (msg2,i).

– Output Computation: Each party Pi does the following:

1. Let τ2 denote the transcript of protocol πSH after round 2.

2. Compute the output of πSH as CT← πSH.Out(yi, τ2; r
SH
i ).

3. Let SKC = (SK1, . . . , SKn).

4. Output DFEComb.Dec(SKC ,CT).

Input: {(xi,MSKi, r
Enc
i )}ni=1

• Let MSK = (MSK1, . . . ,MSKn), x = (x1, . . . , xn) and r = (rEnc1 , . . . , rEncn ).
• Output DFEComb.Enc(MSK, x) using randomness r.

Fig. 3. Circuit CCT

Correctness and Efficiency: Correctness follows immediately from the construc-
tion. In particular, at the end of the protocol, each party possesses CT, an en-
cryption of x = (x1, . . . , xn) under the FE combiner, and SKC , the function key
for C. This ciphertext can then be decrypted using SKC to yield C(x), as desired.

Now, let’s analyze the communication complexity of the protocol. First, ob-
serve that each circuit C that is of depth d and outputs a single bit is partitioned
into n circuits C1, . . . , Cn by running the DFEComb.Partition algorithm. The cir-
cuit Ci just computes a partial decryption of TFHE.Eval(C, ·). Now, even though
C is a boolean circuit, the output length of Ci might not be 1. However, this
is not an issue for us. Indeed, observe that from the compactness of the TFHE

scheme, the length of the partial decryption is just poly(λ, d) for some fixed poly-
nomial poly for all circuits C with depth d and output length 1. Thus, the size
of the output length of Ci for all i ∈ [n] is at most poly(λ, d) bits. Thus, from
Section 4, we know that |SKi| = poly(d, n, λ) and |CT| = poly(d, n, λ). Recall
that CT is the ciphertext that is the output of the protocol πSH (computed dur-
ing decryption). In fact, from Section 4, we also know that the size of the circuit
computing the ciphertext CT is also bounded by poly(d, n, λ). Then, for the pro-
tocol πSH recall that the input is yi = (xi,MSKi, r

Enc
i ) and so |yi| = poly(λ, d)
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for some polynomial. Therefore, for each party Pi, |msg1,i| = poly(d, n, λ) and
|msg2,i| = poly(d, n, λ).

Therefore, in our two round protocol π, in each round the size of the message
sent by any party is poly(n, d, λ). Thus, Comm.Compl(π) = poly(n, d, λ).

The above analysis was for circuits with boolean output. For circuits that
output multi-bit strings, the communication complexity of our MPC protocol π
is bounded by poly(n, d, λ) · ℓout, where ℓout is the output length of the circuit.
This follows immediately by viewing the multi-bit output circuit as ℓout different
boolean circuits and running in parallel.

5.2 Security Proof

The security proof can be found in the full version.

6 Construction of an FE Combiner from Weaker

Assumptions

In this section, we employ a tool extensively used in the secure multi-party com-
putation literature, namely, randomized encodings to construct an FE combiner.
Roughly speaking, a randomized encoding is a mechanism to “efficiently” encode
a function f and an input x such that the encoding reveals f(x) and nothing
more. A randomized encoding scheme is said to be low degree if the encoding al-
gorithm can be represented as a low degree polynomial. Low degree randomized
encodings have been used to achieve constant-round secure multi-party com-
putation [17]. We show how to use this tool to obtain functional encryption
combiners. The underlying assumption used to instantiate the low degree ran-
domized encoding is the existence of a PRG in NC1. Formally, we show the
following theorem.

Theorem 6. Assuming the existence of a PRG in NC1, there exists an unbounded-
key FE combiner for polynomial-sized circuits.

The rest of this section can be found in the full version.

7 From MPC to FE Combiners

In this section, we show how to build an FE combiner from any semi-honest
MPC protocol π that satisfies a property called delayed function-dependence.
This section can be found in the full version.

8 From an FE Combiner to a Robust FE Combiner

The FE combiners constructed previously are not robust. By this, we mean that
the constructions provide no guarantee of correctness or security if any of the
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underlying FE candidates do not satisfy correctness. However, determining the
correctness of FE candidates may be difficult since a candidate FEmay be correct
with overwhelming probability on certain message, circuit pairs (m,C) and not
others. With no worst-case guarantees, it can be challenging to reason about
the correctness of an FE candidate especially if the function space C is say all
poly-sized circuits, where sampling uniformly over the space is difficult.

We can mitigate this issue by making our FE combiners robust. A robust
FE combiner is an FE combiner that satisfies correctness and security provided
that at least one FE candidate, FEi, satisfies both correctness and security. No
restrictions are placed on the other FE candidates. In particular, they may satisfy
neither correctness nor security. In this section, we show how to transform any
FE combiner into a robust FE combiner. Formally, we show the following.

Theorem 7. If there exists an FE combiner, then there exists a robust FE com-
biner.

Combining Theorem 7 with Theorem 6, we obtain the following corollary.

Corollary 3. Assuming the existence of a PRG in NC1, there exists an unbounded-
key robust FE combiner.

This is done, at a high level, via the following steps.

1. Transform each FE candidate FEi into a new FE candidate FE′
i such that

(a) If FEi is correct and secure, then FE′
i is also correct and secure.

(b) If FE′
i is correct for any fixed message, circuit pair (m,C) with probability

α, then it is at least α′-correct for all other message, circuit pairs (m′, C′)
where α′ = α− negl(λ).

2. Fix a message m and a circuit C and test each candidate repeatedly on
(m,C) to determine if each candidate is α-correct for α ≥ 1 − 1

λ
. Discard

those that are not.

3. Using standard techniques of BPP correctness amplification, transform the
α-correct candidates into (almost) correct candidates.

4. Instantiate constructions of FE combiners from previous sections with these
(almost) correct candidates.

We defer the construction and proof of Theorem 7 to the full version.

Universal Functional Encryption: Robust FE combiners are closely related to
the notion of universal functional encryption. Universal functional encryption is
a construction of functional encryption satisfying the following simple guarantee.
If there exists a Turing Machine with running time bounded by some T (n) =
poly(n) that implements a correct and secure FE scheme, then the universal
functional encryption construction is itself a correct and secure FE scheme. Using
the existence of a robust FE combiner (Theorem 7) and the results of [6], we
observe the following.
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Theorem 8. Assuming the existence of a robust FE combiner, there exists a
universal functional encryption scheme.

Using the above theorem and Corollary 3, we arrive at the following corollary.

Corollary 4. Assuming the existence of a PRG in NC1, there exists a universal
unbounded-key functional encryption scheme.
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