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Abstract. Succinct non-interactive arguments (SNARGs) are highly ef-
ficient certificates of membership in non-deterministic languages. Con-
structions of SNARGs in the random oracle model are widely believed to
be post-quantum secure, provided the oracle is instantiated with a suit-
able post-quantum hash function. No formal evidence, however, supports
this belief.
In this work we provide the first such evidence by proving that the
SNARG construction of Micali is unconditionally secure in the quantum
random oracle model. We also prove that, analogously to the classical
case, the SNARG inherits the zero knowledge and proof of knowledge
properties of the PCP underlying the Micali construction. We thus ob-
tain the first zero knowledge SNARG of knowledge (zkSNARK) that is
secure in the quantum random oracle model.
Our main tool is a new lifting lemma that shows how, for a rich class
of oracle games, we can generically deduce security against quantum
attackers by bounding a natural classical property of these games. This
means that in order to prove our theorem we only need to establish
classical properties about the Micali construction. This approach not
only lets us prove post-quantum security but also enables us to prove
explicit bounds that are tight up to small factors.
We additionally use our techniques to prove that SNARGs based on
interactive oracle proofs (IOPs) with round-by-round soundness are un-
conditionally secure in the quantum random oracle model. This result
establishes the post-quantum security of many SNARGs of practical in-
terest.

Keywords: succinct arguments · quantum random oracle model · prob-
abilistically checkable proofs

1 Introduction

The design and analysis of cryptographic primitives that are plausibly secure
against quantum attackers is an increasingly important goal. The expected ad-
vent of quantum computers demands the cryptography community to be pre-
pared well in advance, so much so that the National Institute of Standards and
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Technology (NIST) is already in the process of selecting, from among many pro-
posals, a new set of cryptography standards that are “post-quantum” [50]. The
proposals involve schemes for key agreement, public-key encryption, and digital
signatures, and are intended to eventually replace existing standards based on
the hardness of factoring or discrete logarithms.

In this paper we study the post-quantum security of a cryptographic prim-
itive that has recently received much attention across theoretical and applied
communities: succinct arguments [33]. These are argument systems [19] for non-
deterministic languages where the communication complexity between the prover
and verifier is sublinear in the size of the non-deterministic witness.3 This notion
originates in seminal works of Kilian [43] and Micali [49], which construct suc-
cinct arguments for languages in NTIME(T (n)) where communication complexity
is poly(λ, log T (n)) and the time complexity of the verifier is poly(λ, n, log T (n));
here λ is the security parameter.

Researchers have studied many aspects of succinct arguments in the last
two decades, leading to numerous constructions with different tradeoffs [62],
efficient realizations in code [55, 18, 56, 24, 46, 57, 39], real-world deployments [29,
51], and standardization efforts [67]. A particularly useful feature is that many
succinct arguments can be made zero knowledge with minimal overhead. At
present, however, most approaches to obtain efficient succinct arguments are
“pre-quantum”, since they rely on the discrete logarithm problem (and more).

A notable exception is a class of succinct arguments obtained by combin-
ing two ingredients: (a) probabilistic proof systems, which are unconditionally
secure, and (b) cryptographic hash functions, for which we have post-quantum
candidates. This class includes the succinct interactive argument of Kilian [43],
which use probabilistically checkable proofs (PCPs) [7, 30, 5, 4] and collision-
resistant hash functions. It also includes the succinct non-interactive argument
(SNARG) of Micali [49], which uses PCPs and random oracles. More generally,
by using random oracles one can construct a SNARG from a multi-round gener-
alization of PCPs known as interactive oracle proofs (IOPs) [13, 54]. All of these
succinct arguments are widely believed to be post-quantum, provided the hash
function is suitably instantiated [11].4

There is, however, no formal evidence that supports the above widely-held
belief. Since succinct arguments are a fundamental cryptographic primitive with
both theoretical and real-world applications, it is important to prove guarantees
on their post-quantum security.

1.1 SNARGs with random oracles

In this paper we focus our attention on the SNARG construction of Micali [49],
which is unconditionally secure in the random oracle model [10, 53]. SNARGs in

3 Achieving communication complexity that is sublinear in the witness size is known to
require relaxing soundness from statistical to computational, provided one assumes
standard complexity conjectures [34, 35].

4 There is also a class of lattice-based succinct arguments that is plausibly post-
quantum; see Section 1.3.
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the random oracle model are not only plausibly post-quantum secure but also
enjoy other desirable features. Namely, the random oracle can be heuristically
instantiated via hash functions that avoid expensive public-key cryptographic
operations. Moreover, the SNARG uses a transparent (public-coin) setup, be-
cause the only public parameter needed to produce/verify proofs is the choice
of hash function.

We are thus interested in asking: can we establish formal evidence that the
SNARG construction of Micali is post-quantum secure? One way to establish
formal evidence is to prove security in a quantum analogue of the random or-
acle model, as we now explain. A quantum attacker can, among other things,
evaluate a hash function in superposition when given the hash function’s code.
This enables the attacker, for instance, to find pre-images [38] or collisions [20]
faster than a classical attacker. In light of this, Boneh et al. [15] have argued
that, in the quantum setting, the correct way to model a random oracle is to
allow the attacker to query the random oracle in superposition. The resulting
model is known as the quantum random oracle model (QROM), and a line of
work has established post-quantum security within this model for a variety of
cryptographic primitives; see, e.g., [15, 64, 65, 58, 28].

Our goal is to study the SNARG construction of Micali in the quantum
random oracle model. We also study the SNARG construction of BCS [13],
which yields SNARGs of practical interest.

1.2 Our results

The main result of this paper is establishing that the SNARG construction of
Micali [49] is unconditionally secure in the quantum random oracle model. This
is the first formal evidence that supports the widely-held belief that this con-
struction is post-quantum secure when the oracle is instantiated via a suitable
post-quantum hash function.

Theorem 1 (informal) The non-interactive argument of Micali, when based
on a PCP with soundness error ε, has soundness error O(t2ε + t3/2λ) against
quantum attackers that make t queries to a random oracle with output size λ.
This soundness error is tight up to small factors.

A key step in our proof, of independent interest, is a Lifting Lemma that
shows how, for a rich class of “oracle games”, we can generically deduce security
against quantum attackers by bounding a natural classical property of these
games, instability, that we introduce. This means that to prove Theorem 1 we
only need to bound the instability of the Micali construction. This approach not
only yields the theorem but also enables us to prove explicit bounds that are
tight up to small factors.

If we base the Micali construction on suitable PCPs, we obtain new state-
ments about the existence of post-quantum non-interactive arguments. First, if
the PCP achieves (honest-verifier) zero knowledge and proof of knowledge then
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through the Micali construction we obtain a zero knowledge non-interactive argu-
ment of knowledge that is unconditionally secure in the quantum random oracle
model. This strengthens a result of Unruh [59], which assumes the existence of
a post-quantum Σ-protocol for NP. Moreover, if the PCP has polylogarithmic
query complexity and verifier running time then we obtain the first construction
of a zero knowledge succinct non-interactive argument of knowledge (zkSNARK)
that is secure in the quantum random oracle model.

Theorem 2 (informal) There exists a zero knowledge non-interactive argu-
ment of knowledge for NP in the quantum random oracle model. Moreover, the
non-interactive argument is succinct, in the sense that arguments have size λc

and can be verified in time (λ · n)c, where λ is the random oracle’s security
parameter, n is instance size, and c > 0 is a universal constant.

The above theorem is stated for NP only for simplicity. Analogously to the
classical case, a more general statement holds for all non-deterministic time
languages by relying on suitable PCPs for non-deterministic time. For example,
the PCP in [7] achieves proof of knowledge, can be made (honest-verifier) zero
knowledge [27, 44], and supports non-deterministic time.

The BCS construction. We conclude with a result that demonstrates how
the tools in this paper can be used to study the post-quantum security of proto-
cols that are of practical interest. Since known PCP constructions are expensive,
efficient constructions of succinct arguments in the random oracle model are typ-
ically based on the BCS construction [13], which instead uses interactive oracle
proofs (IOPs) [13, 54], a multi-round extension of PCPs. This extension addi-
tionally captures IPs [6, 37] and IPCPs [41] as special cases.

We prove that the BCS construction is unconditionally secure in the quantum
random oracle model, if applied to public-coin IOPs that have round-by-round
soundness [21]. The resulting argument inherits proof of knowledge and zero
knowledge properties of the underlying IOP.

Theorem 3 (informal) The non-interactive argument of BCS, when based on
a public-coin IOP with round-by-round soundness error ε, has soundness error
O(t2ε + t3/2λ) against quantum attackers that make t queries to a random or-
acle with output size λ. Moreover, it is an argument of knowledge if the IOP
has round-by-round proof of knowledge, and it is a (statistical) zero knowledge
argument if the IOP is honest-verifier zero knowledge.

Round-by-round proof of knowledge is a natural notion that we introduce,
analogous to round-by-round soundness, and is satisfied by many natural proto-
cols. In particular, Theorem 3 enables us to deduce the post-quantum security of
succinct arguments based on well-known IPs such as the sumcheck protocol [48]
and the GKR protocol [36], as well as zkSNARKs based on recent IOPs such as
[11, 3, 12]. These protocols (among others) are of interest to practitioners, and
our result can be used to guide parameter choices in practice.
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1.3 Related work

Argument systems that use random oracles. Several works study the
post-quantum security of zero knowledge non-interactive arguments of knowl-
edge that use random oracles, most notably those obtained by applying the
Fiat–Shamir transformation [31] to a post-quantum Σ-protocol. Such arguments
are used to achieve post-quantum digital signatures [22, 42, 9], and underlie con-
structions submitted to the NIST call for post-quantum cryptography [50].

A security reduction for the Fiat–Shamir transformation in the quantum
random oracle model has been recently achieved [26, 47]. Obtaining a security
reduction had been elusive, as the classical approach of rewinding the adversary
to reduce to special soundness of the Σ-protocol does not work for quantum
adversaries.5 Before, researchers were only able to prove security if the underlying
Σ-protocol satisfies special properties [23, 60, 45], or resorted to proving security
for alternative, less efficient, constructions such as the Unruh transformation
[59].

The question that we study in this paper is complementary to these prior
works. On the one hand, prior works study the security of the Fiat–Shamir
transformation given that the underlying Σ-protocol is secure against efficient
quantum attackers. On the other hand, we study protocols such as the Micali
construction and BCS construction that can be viewed as applying the Fiat–
Shamir transformation to specific public-coin protocols that are known to be
unconditionally secure in the (classical) random oracle model. In particular,
we establish unconditional security in the quantum random oracle model via
an approach that considers the protocol as a whole (similarly to the classical
analysis of these protocols).

The foregoing differences are reflected in a technical analysis that departs
from prior works. Most of the effort in this paper is establishing classical security
properties of the Micali and BCS constructions, which we then use to generically
deduce their quantum security. This approach, besides being intuitive, yields
tight bounds that can be used to guide parameter choices in practice.

Succinct arguments based on lattices. Several lattice problems are pre-
sumed to remain hard even against quantum adversaries, and researchers have
relied on such problems to propose numerous cryptographic constructions that
are plausibly post-quantum. A handful of works have used lattices to achieve
various notions of succinct arguments that are plausibly post-quantum. Baum
et al. [8] rely on the short integer solution (SIS) problem to obtain an argument
system for arithmetic circuits where the communication complexity grows with
the square-root of circuit size; the argument system is constant-round, public-
coin, and honest-verifier zero knowledge. Boneh et al. [16, 17] and Gennaro et
al. [32] rely on lattice knowledge assumptions to construct designated-verifier

5 Rewinding quantum adversaries is a delicate matter [63] and, more importantly,
special soundness does not imply post-quantum soundness (relative to some oracle)
[2]. These difficulties have been circumvented by using new techniques that enable
reducing directly to the (post-quantum) soundness of the underlying Σ-protocol.
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SNARGs for boolean circuits, in the preprocessing model [14]. Whether one can
use lattices to obtain public-coin argument systems with polylogarithmic com-
munication complexity (as in the construction of Micali) remains an intriguing
open problem.

2 Techniques

We discuss the main ideas behind our results. In Section 2.1 we recall the con-
struction of Micali, and then in Section 2.2 we explain the challenges that arise
when trying to prove its security in the quantum random oracle model. In Sec-
tion 2.3 we outline our approach to obtain a proof of security for the Micali
construction (Theorem 1); we elaborate on our approach in Sections 2.4 to 2.7.
Finally, in Section 2.8 we discuss how to further establish zero knowledge and
proof of knowledge; we thus obtain the first zkSNARK secure in the quantum
random oracle model (Theorem 2).

We conclude in Section 2.9 by explaining how our techniques extend to estab-
lish post-quantum security for the BCS construction applied to many protocols
of practical interest (Theorem 3).

Many of the proofs/sections have been omitted from this version of the paper
due space limitations. We refer the reader to the full version of the paper for all
relevant details.

2.1 The construction of Micali

The construction of Micali is a transformation that maps any probabilistically
checkable proof (PCP) into a corresponding non-interactive argument in the
random oracle model. (See Section 3.4 for the definition of a PCP, and Section 3.3
for that of a non-interactive argument.) The resulting non-interactive argument
is succinct, i.e. a SNARG, provided the PCP has suitable parameters.

Let (P,V) be a PCP for a relation R with soundness error ε, proof length `
over alphabet Σ, and query complexity q. The honest prover P takes as input
an instance-witness pair (x,w) and outputs a proof string Π : [`] → Σ. The
honest verifier V takes as input the instance x, makes q probabilistic queries to
a (possibly malicious) proof string Π̃ : [`]→ Σ, and then accepts or rejects.

The PCP (P,V) forR is used to construct a SNARG (P,V) forR, as follows.
The SNARG prover P takes as input an instance x and witness w. First, P

uses the random oracle h to commit to the proof stringΠ := P(x,w) via a Merkle
tree, obtaining a corresponding root rt. Second, P applies the random oracle h
to the root rt in order to derive randomness r for the PCP verifier V. Third, P
simulates the PCP verifier V with the proof string Π, input x, and randomness
r, in order to deduce the queried locations of Π. Finally, P assembles a SNARG
proof π that contains the root rt, answers to the queries, and an authentication
path for each answer.

Observe that the SNARG proof π is succinct because it is small (it has size
|π| = O(q · (log |Σ| + λ log `)) = Oλ(q) for `, |Σ| = 2O(λ)) and it is cheap to
validate via the algorithm described next.
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The SNARG verifier V takes as input an instance x and a (possibly malicious)
SNARG proof π̃. First, V uses the random oracle h to check that each answer
in π̃ is certified by an authentication path relative to the claimed root r̃t. Next,
V applies the random oracle h to the root r̃t in order to derive randomness r̃.
Finally, V runs the PCP verifier V on the instance x and randomness r̃, answering
V’s queries using the claimed answers in π̃.

The intuition behind the construction is that the soundness guarantee of a
PCP holds only if the proof string Π̃ to be validated is fixed before the ran-
domness r̃ for the PCP verifier is known, and for this reason the SNARG prover
must derive r̃ by hashing a commitment r̃t to Π̃.

This construction is unconditionally secure in the random oracle model [49,
61, 13]:

Theorem 1. The SNARG (P,V) has soundness error O(tε + t2/2λ) against
(classical) attackers that make at most t queries to the random oracle. This
soundness error is tight up to small factors.

A SNARG obtained via the Micali construction also inherits zero knowledge
and proof of knowledge properties of the underlying PCP. We discuss these
additional properties and how we establish them in the quantum setting later
on in Section 2.8. We focus on soundness first.

2.2 Challenges in the quantum setting

Our goal is to show that the SNARG construction of Micali is unconditionally
secure in the quantum random oracle model. Suppose that P̃ is a t-query quan-
tum prover that convinces the SNARG verifier V with probability δ (over the
random oracle). We wish to construct a malicious PCP prover P̃ that, using P̃ as
a subroutine, outputs a proof string Π̃ : [`]→ Σ that convinces the PCP verifier
V with related probability ε(δ, t) (here the probability is over the randomness
of P̃ and V).

A natural approach to reduce the SNARG prover P̃ to the PCP prover P̃
would be to try to adapt to the quantum setting the reduction that is used for
the classical setting. Below we recall the classical reduction, and then explain
why adapting it to the quantum case is challenging.

The reduction for classical attackers. The reduction from a classical
SNARG prover P̃ to a PCP prover P̃ relies on a straightline extractor, as we
now explain.

While the SNARG prover P̃ outputs a short proof π that contains a Merkle
root and a few decommitted values, the PCP prover P̃ must output a “long”
proof string Π̃. How can P̃ obtain all this information from seeing only π? The
answer is that, when running P̃ as a subroutine, P̃ observes the queries that P̃
makes to the oracle, and these queries reveal the proof string Π̃.

This is only a caricature of how P̃ actually works, though. The reason is
that P̃ need not produce a query sequence from which P̃ can just read off a
proof string Π̃ consistent with the Merkle root in π. For example, P̃ could try
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to commit to many possible proof strings “in its head”, derive the correspond-
ing randomness from each commitment, and then select which commitment to
include in π. Even worse, P̃ could try to commit to a partial proof string Π̃ via
an incomplete Merkle tree and, because the PCP verifier inspects only a small
fraction of a proof string, hope that queries will land to leaves of the Merkle tree
that do exist.

The proof of Theorem 1 shows that, despite these complications, there is a
way for P̃ to observe all queries and answers of a single execution of the SNARG
prover P̃, and then run an algorithm on these to extract a suitable proof string
Π̃.

How to deal with quantum attackers?. If we now return to the case where
the SNARG prover P̃ is a quantum attacker, we are immediately confronted with
a severe problem. Since P̃ can query the random oracle in superposition, how
can P̃ “observe” queries and answers to the oracle? If P̃ were to just measure P̃’s
query register, P̃ may detect this and stop working. This basic problem has made
obtaining security reductions against quantum attackers that access random ora-
cles exceedingly difficult when compared to the case of classical attackers. Papers
that study the security of cryptographic primitives in the quantum random or-
acle model have had to develop clever techniques to somehow circumvent this
problem in various settings of interest.

Most relevant to this paper is a work of Zhandry [66] that introduces com-
pressed oracles, a set of notions and techniques that enables a quantum algo-
rithm to simulate access to a random oracle for a quantum attacker. This is
achieved by replacing a random oracle h : {0, 1}m → {0, 1}n with the action of
a specially-crafted unitary O that implicitly keeps track of queries. This is a
quantum analogue of when, in the classical setting, a simulator merely observes
the queries made by the attacker and maintains a database of the query-answer
pairs. Formally, the classical simulator keeps track of a database D, which is a
partial function D : {0, 1}m ⇀ {0, 1}n. The database represents the part of the
random oracle that has been “revealed” to the attacker by answering its queries.
In the quantum setting, the state space of the quantum attacker is augmented
with registers to store the database, which (loosely) keep track of the database
D in superposition, as it evolves from query to query. Thus, while the original
oracle h operates on the state |ψA〉 of the adversary, the unitary O operates on
a bipartite state |ψA, ψD〉. This extended state represents a purification of the
mixed state of the adversary induced by choosing the oracle h at random.

One may conjecture that compressed oracles, by virtue of “exposing” a quan-
tum attacker’s queries, make proving the quantum security of the Micali con-
struction, or indeed of any construction using random oracles, straightforward.
This is, unfortunately, not the case.

For example, compressed oracles allow us to argue that, given an adversary
that outputs a convincing SNARG proof π with high probability, if we measure
the database D after the adversary terminates, then with high probability one
can find a convincing SNARG proof π in the database D. This does not allow us
to reduce to soundness of the underlying PCP, however, because to do that we
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need to argue that one can extract a PCP proof Π from D (that is much longer
than the SNARG proof π) that convinces the PCP verifier with high probability.

Nevertheless, compressed oracles are a useful starting point for this work,
and indeed a basic lemma about compressed oracles plays the role of a hybrid
in our security proof.

2.3 Outline of our approach

The ideas that we use in this paper to analyze the Micali construction are almost
entirely generic, and can be used to analyze any oracle game. Informally, given a
“base game”G ⊆ Ak×Bk×C, an adversary with oracle access to a random oracle
h wins the oracle game for G if it outputs a tuple (a,b, c) ∈ G where h(ai) = bi
for each i ∈ [k]. Oracle games are a natural notion that captures many games of
interest, such as finding pre-images or finding collisions. Producing a valid proof
in the Micali construction can also be cast as an oracle game, and we shall view
the soundness property as stating that the value (maximum winning probability)
of this game is small.

Our proof of quantum security consists of two main parts. First, we generi-
cally reduce the value of any oracle game to the instability of the game, a purely
classical property of the game that we introduce. Second, we analyze the insta-
bility of the oracle game induced by the Micali construction. The instability of
this oracle game is not too difficult to analyze because it is a classical quantity,
and the “hard work” is crisply, and conveniently, encapsulated within our generic
reduction. We view bounding values of oracle games via instability as the main
technical contribution of this paper.

We now elaborate on our approach: in Section 2.4 we recast prior work in
the language of oracle games; in Section 2.5 we explain what is instability and
how we use it to bound game values; in Section 2.6 we introduce conditional
instability and use it to prove tighter bounds on oracle game values; and in
Section 2.7 we outline the analysis of instability for the Micali construction.

2.4 From oracle games to database games

We begin with a sequence of three games whose values are closely related. These
games play the role of hybrids in our analysis, and are all defined relative to the
given base game G ⊆ Ak ×Bk × C.

– Oracle game. This is the game defined earlier that is played in the real world,
using a random oracle h. The adversary wins if it outputs a tuple (a,b, c) ∈ G
with h(ai) = bi for each i ∈ [k].

– Simulated oracle game. The simulator of Zhandry [66] is used to run the
adversary and its final state is measured, leading to a tuple (a,b, c) and a
database D. The adversary wins if (a,b, c) ∈ G and D(ai) = bi for each
i ∈ [k]. (The oracle h : {0, 1}m → {0, 1}n is now replaced by the database
D : {0, 1}m ⇀ {0, 1}n stored by the simulator.)
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– Database game. Again the simulator of Zhandry is used to run the adversary,
leading to a tuple (a,b, c) and a database D. However, now we ignore (a,b, c)
and only consider D. The adversary wins if there exists (a′,b′, c′) ∈ G such
that D(ai) = bi for each i ∈ [k].

We let ω∗O(G, t), ω∗S(G, t), and ω∗D(G, t) denote the values of the oracle game,
simulated oracle game, and database game against quantum adversaries that
make at most t oracle queries.

A result of Zhandry [66, Lemma 5], when stated via the notions above, shows
that

√
ω∗O(G, t) ≤

√
ω∗S(G, t)+

√
k/2n. Moreover, ω∗S(G, t) ≤ ω∗D(G, t) holds triv-

ially, because winning the simulated oracle game implies winning the database
game, by taking (a′,b′, c′) := (a,b, c). In sum:

Lemma 1. For any base game G,√
ω∗O(G, t) ≤

√
ω∗D(G, t) +

√
k/2n .

The above lemma is a conceptualization of prior work, and is the starting
point for the technical contributions of this paper. In particular, the lemma
tells us that in order to bound the maximum winning probability of a quantum
adversary in an oracle game (played in the real world) it suffices to bound the
maximum winning probability of the adversary in the corresponding database
game.

See the full version of the paper for more details.

2.5 A basic lifting lemma for database games

We describe how we use a classical quantity I(PG, t) to bound ω∗D(G, t), the
maximum winning probability of any t-query quantum algorithm in the database
game of G. When combined with the hybrids in Section 2.4, this reduces the
quantum security of oracle games to studying I(PG, t).

Given a base game G, we let PG be the set of databases that win the database
game of G. In the classical setting, a natural way to bound the maximum win-
ning probability of the database game is to compute, for each possible database
D /∈ PG (a database that is currently losing the game), the maximum proba-
bility that adding a query-answer pair to D puts D in PG. Assuming that the
empty database is not in PG (for otherwise one can win trivially), this quantity
characterizes the probability that the adversary gets lucky and ends up with a
winning database D.

We define the instability of PG with query bound t, denoted I(PG, t), to be
the maximum probability that, for any database D containing less than t queries,
making one additional (classical) query changes whether or not D is in PG. The
foregoing argument explains that the classical value of the database game G is
bounded by t · I(PG, t). Intuitively this is because each query can increase the
probability that the database D is in PG by at most I(PG, t).

We prove that an analogous result holds for quantum adversaries as well.
We call this lemma a lifting lemma, because it enables us to use the classical
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quantity of instability to prove a bound on the maximum winning probability of
quantum adversaries. The version below is a “basic” version, because we shall
ultimately need a stronger statement, as we discuss in Section 2.6. The result
below extends an idea of Zhandry sketched in [66, Section 4.3].

Lemma 2 (Basic lifting lemma). For any base game G,

ω∗D(G, t) ≤ O
(
t2 · I(PG, t)

)
.

In particular, combining the above with Lemma 1, we get

ω∗O(G, t) ≤ O
(
t2 · I(PG, t) + k/2n

)
.

Even the above basic lifting lemma is a powerful tool. For example, suppose
that G is the collision game, where the adversary wins if it outputs an oracle
collision. Then I(PG, t) < t/2n, because if D is a database with no collisions
and less than t entries, then making one more query produces a collision with
probability less than t/2n, and if D has collisions then it is not possible to make
an additional query and remove collisions. Then (since k = 2 in the collision
game) the lifting lemma immediately tells us that ω∗O(G, t) ≤ O(t3/2n), which
shows that the probability that a t-query quantum oracle algorithm finds a
collision is bounded by O(t3/2n). This further simplifies the analysis of this fact
in [66] and matches the bound of [1] (which is tight [20]).

We now sketch the proof of the basic lifting lemma. The proof sketch differs
slightly from the actual proof, as in the actual proof we do a slightly more
complicated analysis that gives us smaller constants. The main ideas, however,
remain the same.

We let PG be the operator that projects onto databases that win the database
game G: for any basis state |D〉 in the database register, PG |D〉 = |D〉 if D ∈ PG,
and PG |D〉 = 0 if D 6∈ PG; PG acts as the identity on other registers. If |φ〉 is
the final joint state of the quantum adversary and database, then ‖PG |φ〉‖2 is
the probability that D ∈ PG after measurement. We will assume that ∅ /∈ PG,
i.e., that the empty database does not win the database game of G (or else the
adversary can win by doing nothing).

We can represent any simulated quantum adversary making at most t queries
as a sequence of unitary operators U = AtOAt−1O . . . A1O applied to an initial
state |φ0, ∅〉 := |φ0〉 ⊗ |∅〉, where O is the compressed oracle and |∅〉 is the
state of the empty database. Each Ai acts non-trivially only on the registers of
the adversary being simulated and PG acts non-trivially only on the database
registers, so PG and Ai commute. So, if PG and O were to also commute, then
we could simply conclude that PGU |φ0, ∅〉 = UPG |φ0, ∅〉 = 0, i.e., that the
adversary never wins. (Here we used the fact that ∅ /∈ PG.)

However, it is not the case that PG and O commute. This should be expected
because in general an adversary can win with some positive probability. However,
if we could show that they almost commute, then we could apply the previous
argument to show that PGU |φ0, ∅〉 ≈ UPG |φ0, ∅〉 = 0; i.e., the adversary wins
with small probability. The notion of “almost” commuting we use is that the
operator norm ‖[PG,O]‖ of the commutator [PG,O] := PGO −OPG is small.



12 A. Chiesa et al.

Unfortunately, for interesting games the operator norm ‖[PG,O]‖ may not
be small. For example, if G is the collision game and D is a database with a
pre-image of every y ∈ {0, 1}n but no collisions, then ‖[PG,O] |x, u,D〉‖ = 1.
Generally, this norm may be large if D has many entries.

Query-bounded adversaries, however, cannot produce nonzero amplitudes
on databases with more entries than the query bound. Hence, intuitively we
should not consider states that correspond to large databases when bounding
the operator norm of the aforementioned commutator. We follow this intuition
by introducing the notion of a projected oracle, which acts as the compressed
oracle except that it discards databases that do not belong to a certain subset.

Definition 1. Let P be the operator that projects onto databases that belong to
a given subset P of databases. A projected oracle is an operator of the form
POP.

We thus consider the projected oracle PtOPt, where Pt is operator that
projects onto databases containing at most t queries. For adversaries that make
at most t queries, replacing O with PtOPt has no effect because the adver-
sary cannot create a database that contains more than t entries. Moreover,
‖[PG, PtOPt] |D〉‖ = 0 if D contains more than t entries, so the operator norm of
[PG, PtOPt] accounts for the action of O only on databases containing at most
t entries.

In sum, projected oracles allow us to cleanly compute the operator norm only
over databases that are reachable by an adversary making a bounded number of
queries. By carefully analyzing the action of O, we show that

‖[PG, PtOPt]‖2 ≤ O
(
I(PG, t)

)
.

We additionally prove that ‖PGU |φ0, ∅〉−UPG |φ0, ∅〉‖ ≤ t‖[PG, PtOPt]‖. Com-
bining these two inequalities yields the lifting lemma.

See Section 4.1 for more details.

2.6 Stronger lifting via conditional instability

The lifting lemma implies that to prove soundness of the Micali construction, it
suffices to bound the instability of the Micali database game. Unfortunately, the
instability of the Micali database game is actually large, even given the query
bound. For example, suppose that D is a database containing Merkle trees for
many different proof strings, but each of these Merkle trees has (miraculously)
the same root due to collisions. Then, the probability that querying the root
yields a good randomness for the underlying PCP verifier is large, because the
answer to the query only needs to be a good random string for any one of the
many proofs that D contains.

This counterexample, however, should not be of concern because it relies on
the database having many collisions, and we have already argued that creating
even a single collision in the database is difficult. To deal with this issue, we
introduce the notion of conditional instability : I(P |Q, t). This is a refined notion
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of instability that allows us to condition on events, e.g., that the database has
no collisions. Our main technical contribution is the following stronger variant
of Lemma 2.

Definition 2. A database property P is a set of databases. The complement of
P is P̄.

Lemma 3 (Lifting lemma). For any base game G and database property Q,

ω∗D(G, t) ≤ O
(
t2 ·
(
I(PG | Q̄, t) + I(Q, t)

))
.

In particular, combining the above with Lemma 1, we get

ω∗O(G, t) ≤ O
(
t2 ·
(
I(PG | Q̄, t) + I(Q, t)

)
+ k/2n

)
.

The above statement is an “instability analogue” of the standard fact that
for any two events E1 and E2, Pr[E1] ≤ Pr[E1 ∪ E2] ≤ Pr

[
E1 | Ē2

]
+ Pr[E2].

The proof of Lemma 3 has three steps. First, we relax the database game
PG so that the adversary wins if the database is in PG ∪ Q. Clearly, winning
the relaxed game is only easier than the original database game. Lemma 2 then

implies that ω∗D(G, t) ≤ O
(
t2 · I(PG ∪ Q, t)

)
. Finally, we show that for any two

database properties P and Q it holds that I(P ∪ Q, t) ≤ I(P | Q̄, t) + I(Q, t),
which completes the proof.

We remark that Lemma 3 cannot be proved by simply arguing that I(P, t) ≤
I(P ∪Q, t) and then applying Lemma 2. This is because I(P, t) and I(P ∪Q, t)
are in general incomparable (see Proposition 5 for examples).

See Section 4.2 for more details.

2.7 Instability of the Micali oracle game

Armed with our lifting lemma, establishing the quantum security of the Micali
construction is now relatively straightforward. Let PMic be the database property
for the Micali game, and let P̄col be the no-collision property (the set of databases
that do not contain collisions). We show that, for a random oracle of the form
h : {0, 1}2λ → {0, 1}λ,

I(Pcol, t) < t/2λ and I(PMic | P̄col, t) < ε+O(t/2λ) .

Proving each of these inequalities is merely a classical argument.

– I(Pcol, t): If D is a database containing less than t entries and has a collision,
then adding an entry to D cannot remove the collision, so the probability that
adding a new entry to D makes D have no collisions is 0. Let D be a database
containing less than t entries and no collisions. For any new query x, adding
the query-answer pair (x, y) to D for a random y will contain a collision with
probability less than t/2λ. Thus, I(Pcol, t) < t/2λ.
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– I(PMic | P̄col, t): It is impossible to go from a database D in PMic to a database
D not in PMic by adding entries. Let D be a database not in PMic containing
less than t entries that contains no collisions. There are two ways to make D
in PMic: either the new query is for the randomness of the PCP verifier in the
Micali construction, in which case this finds a good choice of randomness with
probability at most ε, or the new query extends one of the Merkle trees that
the adversary is constructing. To extend the Merkle tree the adversary must
find a pre-image, which happens with probability less than O(t/2λ). Hence,
I(PMic | P̄col, t) < ε+O(t/2λ), completing the proof.

Combining these bounds on instability with the lifting lemma completes the
proof of soundness, and completes a proof sketch for Theorem 1. See the full
version of the paper for more details.

2.8 zkSNARKs in the QROM

We have so far discussed how to establish soundness of the Micali construction
in the quantum setting. We now discuss how to further establish zero knowledge
and proof of knowledge, obtaining the first zkSNARKs secure in the quantum
random oracle model (and thereby proving Theorem 2).

Zero knowledge. In the classical setting, the Micali construction achieves
statistical zero knowledge provided the underlying PCP is (honest-verifier) sta-
tistical zero knowledge (and leaves in the Merkle tree are suitably salted to ensure
statistical hiding of unrevealed leaves) [40, 13]. In the quantum setting, an anal-
ogous statement is immediate simply because the zero knowledge property holds
against computationally unbounded verifiers that make an unbounded number of
queries to the random oracle, and any quantum verifier can be simulated by an
unbounded verifier.

Proof of knowledge. In the classical setting, the Micali construction achieves
proof of knowledge provided the underlying PCP is a proof of knowledge [61]. The
quantum analogue of this statement, however, does not immediately follow from
our soundness analysis. Recall that our strategy was to bound the instability of
the Micali property for x /∈ L, conditioned on no collisions. But when x ∈ L
this approach will not work, because the instability of the Micali property even
conditioned on the absence of collisions is 1 (as witnessed by the existence of the
honest prover).

Nevertheless, the tools that we develop in this work are flexible enough that
we can apply them to also establish proof of knowledge. We consider the following
natural extractor strategy: run the prover until completion, and measure the
database. Then, for each entry in the database, try to extract a PCP proof
rooted at that entry, and then run the PCP extractor on this proof.

Let P be the set of databases D where there exists a root rt such that D wins
the Micali game with a SNARG proof rooted at rt, but the PCP extractor does
not extract a valid witness from the PCP proof rooted at rt. If the prover wins
the Micali game but the extractor fails, then D must be in P. We then argue
that I(P | P̄col, t) is at most k + O(t/2λ), where k is the knowledge error of the
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underlying PCP. Intuitively, this is because if the PCP extractor fails to extract
a witness from the PCP proof Π rooted at rt, then Π convinces the verifier with
probability at most k, and hence the probability of finding good randomness for
Π is at most k. Combining this with Lemma 3 implies that the probability that
the prover wins the Micali game but the extractor fails is at most O(t2k+t3/2λ).
Hence, if µ is the probability that the prover wins the Micali game, then the
probability that the extractor succeeds is at least Ω(µ− t2k− t3/2λ).

See the full version of the paper for more details.

2.9 The BCS construction: succinct arguments beyond Micali

We apply our techniques to prove post-quantum security of the BCS construc-
tion [13], when the underlying public-coin IOP satisfies a notion of soundness
achieved by many protocols of practical interest. The notion is round-by-round
soundness, and was introduced for IPs in [21] for the purposes of facilitating
proofs of security of the Fiat–Shamir transformation for correlation-intractable
hash functions. The notion can be extended in a straightforward way to any IOP,
and this is the notion that we consider in this work. We further show that if the
underlying IOP is honest-verifier zero knowledge and/or has round-by-round
proof of knowledge, then the BCS argument inherits these properties. Round-
by-round proof of knowledge is a type of knowledge property that is analogous
to round-by-round soundness (and is also achieved by many protocols of practi-
cal interest). Below we sketch our analysis; see the full version of the paper for
details.

Soundness. An IOP has round-by-round soundness if, for any partial tran-
script tr of the protocol, one can tell if tr is “doomed”, i.e., that it is highly
unlikely to be accepted by the verifier when completed to a full transcript; a
doomed full transcript is never accepted by the verifier.

By the lifting lemma, in order to prove the post-quantum security of the
BCS construction it suffices to bound the conditional instability of the database
property P, where D ∈ P if D contains a partial transcript where the last
verifier message has flipped the transcript from “doomed” to “not doomed”. We
argue that I(P | P̄col, t) < ε+O(t/2λ), where ε is the round-by-round soundness
error of the IOP. The proof is similar to the proof for the Micali construction.
If D /∈ P, there are two ways to add an entry and make D ∈ P: either the
new query is for the randomness of the next verifier message in the IOP for
some doomed transcript tr, in which case we find a message that makes tr not
doomed with probability ε; or the new query extends one of the Merkle trees that
the adversary is constructing, which happens with probability less than O(t/2λ)
as this implies finding a pre-image. Hence, I(P | P̄col, t) < ε + O(t/2λ), which
completes the proof.

Zero knowledge. As in the case of Micali, zero knowledge is straightforward,
as the BCS construction classically achieves statistical zero knowledge when the
IOP is honest-verifier zero knowledge.
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Proof of knowledge. Analogously to our analysis of the Micali construction,
we define a property Q, where D ∈ Q if D contains a partial transcript that is
in P but the BCS extractor fails to extract a valid witness. We then argue that
I(Q | P̄col) < k +O(t/2λ), where k is the round-by-round knowledge error of the
IOP; the proof of this fact is similar to the proof of soundness. We conclude that
if the prover causes the verifier to accept with probability at least µ, then the
probability that the extractor succeeds is at least Ω(µ− t2k− t3/2λ).

3 Preliminaries

We denote by R a binary relation of instance-witness pairs (x,w), and by L(R)
its corresponding language, which is the set {x | ∃w s.t. (x,w) ∈ R}. We denote
by f : X → Y a function from a set X to a set Y ; similarly, we denote by f : X ⇀
Y a partial function from a set X to a set Y , i.e., a function f : X → Y ∪ {⊥},
where ⊥ /∈ Y is a special symbol indicating that f(x) is undefined.

3.1 Quantum notation

We briefly recall standard quantum notation. We let |φ〉 denote an arbitrary
quantum state, and let |x〉 denote an element of the standard (computational)
basis. The norm of a state |φ〉 is ‖|φ〉‖ :=

√
〈φ|φ〉. In general, the states that

we consider will have norm 1. The operator norm of an operator A is ‖A‖,
defined to be max|φ〉:‖|φ〉‖=1‖A |φ〉‖. Note that if A is unitary then ‖A‖ = 1. The
commutator of two operators A and B is [A,B] := AB − BA. The following
proposition relates operator norms and commutators.

Proposition 1. Let A,B,C be operators with ‖B‖, ‖C‖ ≤ 1. Then

‖[A,BC]‖ ≤ ‖[A,B]‖+ ‖[A,C]‖ .

Proof. By definition, [A,BC] = ABC−BCA = ABC−BAC+BAC−BCA =
[A,B]C +B[A,C]. Therefore, ‖[A,BC]‖ ≤ ‖[A,B]C‖+ ‖B[A,C]‖ ≤ ‖[A,B]‖+
‖[A,C]‖, as ‖B‖, ‖C‖ ≤ 1.

A projector P is an idempotent linear operator (i.e., P 2 = P ). Throughout,
we will only consider orthogonal projectors of the form PS :=

∑
x∈S |x〉〈x|, where

S is a set of binary strings. Measuring a state |φ〉 in the standard basis results
in an output that is in S with probability equal to ‖PS |φ〉‖2. Since all PS are
diagonal in the same basis, they commute with each other. Note that for any
non-zero orthogonal projector P it holds that ‖P‖ = 1. In particular, since
‖AB‖ ≤ ‖A‖‖B‖, we see that if A is the product of projectors and unitaries
then ‖A‖ ≤ 1.
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3.2 Oracle algorithms

Let f : {0, 1}m → {0, 1}n be a function. The standard way to model oracle
access to f in the quantum setting is via a unitary operator Of that acts as
|x, y〉 7→ |x, y ⊕ f(x)〉 for all x ∈ {0, 1}m and y ∈ {0, 1}n. We label the input and
output registers X and Y, respectively.

A t-query quantum oracle algorithm A is specified via m,n ∈ N, t unitary
operators A1, . . . , At and an initial state |φ0〉 on four registers X,Y,S,T. The
register X is on m qubits and is for queries to the oracle; the register Y is on n
qubits and is for answers from the oracle; the register S is for the output of A;
and the register T is for scratch space of A. The initial state |φ0〉 and unitary
operators Ai need not be efficiently computable.

We write
∣∣Af〉 to denote AtOfAt−1Of · · ·A1Of |φ0〉, the final state of the

adversary before measurement. (We implicitly extend Of to act as the identity
on S,T.) We write Af to denote the random variable which is the outcome of
measuring the register S of

∣∣Af〉 in the computational basis. This is the output
of A when accessing the oracle f .

A random oracle is a function h : {0, 1}m → {0, 1}n sampled from U(m,n),
the uniform distribution over functions from {0, 1}m to {0, 1}n. We write h ←
U(m,n) to say that h is sampled from U(m,n). In the quantum random oracle
model [15], we study Ah for h← U(m,n).

3.3 Non-interactive arguments in the quantum random oracle
model

Let (P,V) be two polynomial-time (classical) algorithms, known as the prover
and verifier. We say that (P,V) is a non-interactive argument in the quantum
random oracle model (QROM) with soundness error ε for a relation R if it
satisfies the following properties.

– Completeness. For every (x,w) ∈ R and function h ∈ U(2λ, λ), Ph(x,w)
outputs a (classical) proof string π for which Vh(x, π) = 1.

– Soundness. For every x 6∈ L(R) and t-query quantum oracle algorithm P̃, the
probability over a function h← U(2λ, λ) and (classical) proof string π̃ ← P̃h
that Vh(x, π̃) = 1 is at most ε(t, λ).

We say that (P,V) has argument size s if a proof π output by Ph(x,w) consists
of s(|x|) bits.

We also consider non-interactive arguments that additionally achieve proof
of knowledge and zero knowledge. The first property will hold against query-
bounded adversaries (that are otherwise all-powerful), while the second property
will hold against unbounded adversaries (and in particular need not refer to
quantum algorithms). We define both of these properties below.

Knowledge. The non-interactive argument (P,V) is an argument of knowledge
with extraction probability κ if there exists a polynomial-time quantum extractor
E such that, for every instance x and t-query quantum oracle algorithm P̃, if,
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over a random oracle h← U(2λ, λ), for π := P̃h it holds that Vh(x, π) = 1 with

probability µ, the probability that E P̃(x, 1t, 1λ) outputs a valid witness for x

is at least κ(t, µ, λ). Here the notation E P̃ denotes that E has black-box access
to P̃ as defined by Unruh [60]. Informally, this means that if P̃ = (A1, . . . , At)
with initial state |φ0〉, then E is given an auxiliary register containing |φ0〉 and
may apply, in addition to any efficient quantum operation, any Ai to any of its
registers.

Zero knowledge. The non-interactive argument (P,V) has (statistical) zero
knowledge if there exists a probabilistic polynomial-time simulator S such that
for every instance-witness pair (x,w) ∈ R the distributions below are statistically
close (as a function of λ):{

(h, π)

∣∣∣∣ h← U(2λ, λ)
π ← Ph(x,w)

}
and

{
(h[µ], π)

∣∣∣∣ h← U(2λ, λ)
(µ, π)← Sh(x)

}
.

Above, h[µ] is the function that, on input x, equals µ(x) if µ is defined on x,
or h(x) otherwise. This definition uses explicitly-programmable random oracles
[10]. (Non-interactive zero knowledge with non-programmable random oracles is
impossible for non-trivial languages [52, 13].)

Succinctness for non-deterministic time. A zkSNARK for NTIME(T (n))
in the QROM is a non-interactive argument for NTIME(T (n)) in the QROM
such that: (a) it has (statistical) zero knowledge; (b) it has extraction probability
poly(µ, 1/t)−poly(µ, t)/2λ; (c) arguments have size poly(λ, log T (n)), the prover
runs in time poly(λ, n, T (n)), and the verifier runs in time poly(λ, n, log T (n)).

3.4 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) for a relation R with soundness error
ε, proof length `, and alphabet Σ is a pair of polynomial-time algorithms (P,V)
for which the following holds.

– Completeness. For every instance-witness pair (x,w) ∈ R, P(x,w) outputs
a proof string Π : [`]→ Σ such that Pr

[
VΠ(x) = 1

]
= 1.

– Soundness. For every instance x 6∈ L(R) and proof string Π : [`] → Σ,
Pr
[
VΠ(x) = 1

]
≤ ε.

The quantities ε, `,Σ can be functions of the instance size |x|. Probabilities are
taken over the randomness of V. The randomness complexity is the number of
random bits used by V, and the query complexity q is the number of locations
of Π read by V. (Both can be functions of |x|.)

We also consider PCPs that achieve proof of knowledge and (honest-verifier)
zero knowledge. We define both of these properties below.

Proof of knowledge. The PCP (P,V) has knowledge error k if there exists
a polynomial-time extractor E such that for every instance x and proof string
Π : [`]→ Σ if Pr[V(x, Π) = 1] > k then E(x, Π) outputs a valid witness for x.
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Zero knowledge. The PCP (P,V) is (perfect) honest-verifier zero knowledge
if there exists a probabilistic polynomial-time simulator S such that for every
instance-witness pair (x,w) ∈ R the view of V(x) when given access to a proof
string sampled as Π ← P(x,w) equals the view of V(x) when given access to
S(x). In the latter case, S(x) adaptively answers queries received from V(x).

3.5 Databases

A database mapping X to Y is a partial function D : X ⇀ Y . The support
of a database D is supp(D) := {x ∈ X : D(x) 6= ⊥} and its image im(D)
is {D(x) : x ∈ supp(D)}. The size of a database is the size of its support:
|D| := |supp(D)|. Given two databases D and D′, we write D ⊆ D′ if supp(D) ⊆
supp(D′) and D(x) = D′(x) for every x ∈ supp(D).

We define two operations on databases, corresponding to deletions and in-
sertions. Given a database D, input values x, x′ ∈ X, and output value y ∈ Y ,
we define the two databases

(D − x)(x′) :=

{
⊥ if x = x′

D(x′) if x 6= x′
and (D + [x 7→ y])(x′) :=

{
y if x = x′

D(x′) if x 6= x′
.

For D : {0, 1}m ⇀ {0, 1}n and t ∈ N with |D| ≤ t ≤ 2m, we define the pure
quantum state

|Dt〉 :=
∣∣x1, y1, . . . , x|D|, y|D|〉⊗ |⊥, 0n〉⊗(|D|−t)

where x1, . . . , x|D| is the lexicographic ordering of supp(D) and yi := D(xi) for
each i ∈ [|D|]. We will write |D〉 for |Dt〉 when the bound t is clear from context.

3.6 Compressed phase oracle

The standard method to encode a function h : {0, 1}m → {0, 1}n as a quantum
operation is the unitary matrix Oh defined in Section 3.2, which acts as |x, y〉 7→
|x, y ⊕ h(x)〉. Another method is to encode h in the phase of a quantum state, via
the unitary matrixO′h that acts as |x, u〉 7→ (−1)u·h(x) |x, u〉. These two encodings
are equivalent under an efficient change of basis: Oh = (Im ⊗ Hn)O′h(Im ⊗
Hn) where Im is the identity on the first m qubits and Hn is the Hadamard
transformation on the other n qubits. Thus, choosing between the standard oracle
Oh or the phase oracle O′h is a matter of convenience. For example, the Deutsch–
Josza algorithm [25] is easier to describe with a standard oracle, while Grover’s
algorithm [38] is easier with a phase oracle.

In this paper it is more convenient to always work with phase oracles. All
quantum query algorithms will thus have an oracle phase register U instead of
the oracle answer register Y. Moreover, since h is sampled at random from the
set of all functions from m bits to n bits, we follow Zhandry [66] and extend the
adversary’s initial state with a random superposition of all functions h, which
represents a purification of the adversary’s mixed state relative to the random
oracle.
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In fact, instead of considering a superposition of functions h, we will consider
a superposition of databases D, according to the compressed oracle formalism
of [66]. Specifically, throughout this paper we will only deal with the compressed
phase oracle with m input bits and n output bits, which we denote by O. We
fix the database query bound of the compressed oracle to be t in advance. For
the purposes of this paper, we will only use the fact that O is a certain unitary
matrix, indistinguishable from a real random oracle, whose action is given by
the following lemma. We refer the reader to [66] for more details.

Lemma 4 ([66]). The compressed phase oracle O (with query bound t) acts
on a quantum state |x, u, z,D〉, where x ∈ {0, 1}m, u ∈ {0, 1}n, z ∈ {0, 1}∗, and
D : {0, 1}m ⇀ {0, 1}n is a database with |D| ≤ t, as follows.

– If |D| = t or u = 0n, then O |x, u, z,D〉 = (−1)u·D(x) |x, u, z,D〉, where u ·
⊥ := 0.

– If D(x) = ⊥, |D| < t, and u 6= 0n, then O |x, u, z,D〉 = |x, u, z〉 ⊗ |φ〉 where

|φ〉 :=
1√
2n

∑
y∈{0,1}n

(−1)u·y |D + [x 7→ y]〉 .

– If D(x) 6= ⊥, |D| < t, and u 6= 0n, then O |x, u, z,D〉 = |x, u, z〉 ⊗ |φ〉 where

|φ〉 := (−1)u·D(x) |D〉+
(−1)u·D(x)

√
2n

|D − x〉

+
1

2n

∑
y∈{0,1}n

(
1− (−1)u·y − (−1)u·D(x)

)
|D − x+ [x 7→ y]〉 .

Given a quantum algorithm A described by unitaries A1, . . . , At and ini-
tial state |φ0〉, we write |Sim∗(A)〉 to represent the final state of A before
measurement when simulated using O as the oracle. Formally, |Sim∗(A)〉 =
AtO · · ·A1O|φ0, ∅〉, where ∅ denotes that the D register holds the empty database
with t slots, and we implicitly extend each Ai to act as the identity on D.

The following lemma of [66] shows simulating A by using O as the oracle is
perfectly indistinguishable from running A with access to a random oracle.

Lemma 5 ([66, Lemma 4]). For any quantum oracle algorithm A making at
most t queries,

TrD(|Sim∗(A)〉〈Sim∗(A)|) =
1

(2n)2m
∑

h : {0,1}m→{0,1}n

∣∣Ah〉〈Ah∣∣ .
I.e., |Sim∗(A)〉 purifies the mixed state of A when interacting with a random
oracle h← U(m,n).

The notation TrD denotes the partial trace over the D (database) register, defined
as the unique linear operator such that TrD(|a〉〈a|Z ⊗ |b〉〈b|D) := 〈b|b〉 |a〉〈a|Z for
all vectors |a〉 , |b〉. Here Z denotes all the registers of the adversary.
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4 A lifting lemma for database games

In this section we show how to bound the value of a (classical or quantum)
database game via the instability of the game, a purely classical quantity that
we introduce in this paper. As we will see shortly, it is straightforward to argue
that for any base game G (Section 2.4), the value ωD(G, t) is at most t times the
instability of G. The goal of this section is to to prove that the (quantum) value
ω∗D(G, t) is at most t2 times the instability of G. In particular, we enable lifting
a bound on the (classical) instability of G to a bound on the (quantum) value
ω∗D(G, t). Combining the lifting lemma with the fact that oracle games can be
generically reduced to database games (Lemma 1), we are able to establish the
post-quantum security of the Micali construction solely by analyzing classical
properties of it.

4.1 Database properties and the basic lifting lemma

A database property is a more general notion of a database game.

Definition 3. A database property P is a set of databases D : X ⇀ Y . The
negation of P, denoted P̄, is the set (X ⇀ Y ) \ P.

Given a base game, we define a corresponding database property as follows.

Definition 4. The database property of a base game G ⊆ Ak ×Bk × C is

PG := {D : ∃ (a,b, c) ∈ G with D(ai) = bi ∀ i ∈ [k]} .

For a base game G, the database property PG is closely related to the
database game of G. This is because winning the database game is equivalent
to the database outputted by Sim∗(A) being in PG. In particular, the following
proposition holds.

Proposition 2. For every base game G ⊆ Ak×Bk×C and quantum algorithm
A,

Pr[A wins G∗D] = Pr
[
D ∈ PG

∣∣∣ ((a,b, c), D)← Sim∗(A)
]
.

We define the flip probability of a pair of database properties.

Definition 5. The flip probability flip(P → Q, t) from property P to property
Q is the quantity

flip(P → Q, t) := max
D : {0,1}m⇀{0,1}n
|D|<t ,D∈P

max
x/∈supp(D)

Pr
y

[
D + [x 7→ y] ∈ Q

]
,

and flip(∅ → Q, t) := 0.

Intuitively, this is the maximum probability over all databases D ∈ P with
less than t entries that making an additional query puts D ∈ Q. The following
properties can be obtained easily from the above definition.



22 A. Chiesa et al.

Proposition 3 (Properties of the flip probability). Let P,P ′,Q,Q′ be
database properties.

(i) If P ⊆ P ′ and Q ⊆ Q′ then flip(P → Q) ≤ flip(P ′ → Q′).
(ii) flip(P ∪ P ′ → Q) = max

(
flip(P → Q),flip(P ′ → Q)

)
.

(iii) flip(P → Q∪Q′) ≤ flip(P → Q) + flip(P → Q′).

The instability of a database property is the following classical quantity.

Definition 6. The instability I(P, t) of a database property P with query
bound t is the maximum probability that, for any database D containing less
than t queries, making one additional (classical) query changes whether or not
D has the property P. Formally, we let

I(P, t) := max{flip(P̄ → P, t),flip(P → P̄, t)} .

Note that instability is symmetric: I(P, t) = I(P̄, t). There is a direct ar-
gument that shows that ωD(G, t) is bounded by tI(PG, t).6 Similarly, our basic
lifting lemma shows that ω∗D(G, t) is bounded by the instability of the database
property PG. Thus, it lifts a classical notion to prove a bound on the quantum
value of a database game.

Lemma 6 (Basic lifting lemma). For any base game G,

ω∗D(G, t) ≤ t2 · 6I(PG, t) .

Before we proceed to the proof of Lemma 6, we first introduce some quantum
notation. Recall that we let |Sim∗(A)〉 denote the final quantum state of the
simulated adversary. Using the definition of measurement, we can express the
probability that the final measured database D is in a database property P in
terms of the state |Sim∗(A)〉.

Proposition 4. For every database property P and quantum adversary A,

Pr
[
D ∈ P

∣∣∣ ((a,b, c), D)← Sim∗(A)
]

= ‖P |Sim∗(A)〉‖2 ,

where P := I ⊗
∑
D∈P |D〉〈D| is the projector that maps all basis states of the

form |x, u, z〉 ⊗ |D〉 to 0 if D /∈ P, and is otherwise the identity.

We learn that in order to bound ω∗D(G, t) it suffices to bound ‖PG |Sim∗(A)〉‖
for every A ∈ C∗t .

Next, define Pt := I⊗
∑
D:|D|≤t |D〉〈D| to be the projector that maps all basis

states of the form |x, u, z〉 ⊗ |D〉 to 0 if |D| > t, and is otherwise the identity.
The proof of Lemma 6 follows from two lemmas. The first lemma shows that

‖P |Sim∗(A)〉‖ is bounded by t‖P(PtOPt)P̄‖. Intuitively, this is because if P and

6 Let A be a classical adversary, and let Ai be the adversary obtained by stopping
A immediately before its i-th query. Then |Pr[Ai+1 wins GD]− Pr[Ai wins GD]| ≤
I(P, t) holds for each i ∈ [t] by definition of instability, and Pr[A1 wins GD] = 0
since ∅ /∈ PG. Therefore, Pr[A wins GD] ≤ tI(P, t).
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PtOPt almost commute (i.e., P andO almost commute when acting on databases
with at most t entries) then each oracle query cannot change the probability that
the database is in P by too much. The second lemma shows that ‖P(PtOPt)P̄‖2
is bounded by I(P, t). Combining the two lemmas with Proposition 4 completes
the proof of Lemma 6.

Lemma 7. Let P be a database property with ∅ /∈ P. For every A ∈ C∗t ,

‖P |Sim∗(A)〉‖ ≤ t · ‖P(PtOPt)P̄‖ .

Lemma 8. For any database property P,

‖P(PtOPt)P̄‖2 ≤ 6I(P, t) .

Lemmas 7 and 8 strengthen the proof sketch outlined in Section 2.5. This
is because for any operator A and projector P, [P,A] = PA − AP = (PAP +
PAP̄)− (PAP + P̄AP) = PAP̄ − P̄AP, and so ‖[P,A]‖2 = ‖PAP̄‖2 + ‖P̄AP‖2.
Hence, Lemma 7 implies that ‖P |Sim∗(A)〉‖ ≤ t · ‖[P, PtOPt]‖ and Lemma 8
implies that ‖[P, PtOPt]‖2 ≤ 12I(P, t).

We now prove Lemma 7; the proof of Lemma 8 can be found in the full
version of the paper.

Proof (Proof of Lemma 7). Recall that the quantum algorithm A is described
by some unitaries (A1, . . . , At) and initial state |φ0〉. We can thus describe the
quantum algorithm Sim∗(A) via the cumulative unitary U := AtOAt−1 · · · OA1O
acting on the initial state |φ0, ∅〉 where ∅ denotes the empty database. (We abuse
notation and implicitly extend Ai to act as the identity on the database register.)
The final state is |Sim∗(A)〉 := U |φ0, ∅〉.

Let U ′ := At(PtOPt)At−1 · · · (PtOPt)A1(PtOPt). We have that U ′|φ0, ∅〉 =
U |φ0, ∅〉, as applying each Pt has no effect, since the database can only have at
most t queries when Pt is applied.

For any operators C1, . . . , Ct and projector P, we have that

Ct · · ·C1 = P̄CtP̄Ct−1P̄ · · ·C1P̄ +

t∑
i=0

(Ct · · ·Ci+1) · P · (CiP̄ · · ·C1P̄) . (1)

To see this, we observe that

Ct · · ·C1 = (Ct · · ·C2)(C1P̄) + (Ct · · ·C1) · P ,

which implies Eq. (1) by induction.
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Let Ci = Ai(PtOPt). Then we have that

‖P |Sim∗(A)〉‖ = ‖PU ′|φ0, ∅〉‖

= ‖
(
PP̄CtP̄Ct−1P̄ · · ·C1P̄ +

t∑
i=0

P(Ct · · ·Ci+1) · P · (CiP̄ · · ·C1P̄)
)
|φ0, ∅〉‖

≤
t∑
i=0

‖P(Ct · · ·Ci+1) · P · (CiP̄ · · ·C1P̄)|φ0, ∅〉‖

≤ ‖P(Ct · · ·C1) · P|φ0, ∅〉‖+

t∑
i=1

‖P(Ct · · ·Ci+1)‖ · ‖P · (CiP̄ · · ·C1P̄)|φ0, ∅〉‖

≤ 0 +

t∑
i=1

‖PCiP̄‖ · ‖(CiP̄ · · ·C1P̄)|φ0, ∅〉‖

≤
t∑
i=1

‖PAi(PtOPt)P̄‖ ,

where we use the fact that the operator norm of a product of unitaries/projectors
is at most 1, and that ∅ /∈ P. Since P and Ai commute for every i, we get
that ‖PAi(PtOPt)P̄‖ = ‖AiP(PtOPt)P̄‖ ≤ ‖Ai‖‖P(PtOPt)P̄‖ = ‖P(PtOPt)P̄‖.
Hence, ‖P |Sim∗(A)〉‖ ≤ t‖P(PtOPt)P̄‖.

4.2 Conditional instability and the lifting lemma

Lemma 6 is not quite sufficient to analyze the database game that corresponds
to the Micali construction. In fact, the instability of this game is high because
we take a maximum over all bounded databases, including those which contain
collisions. If we were to only take the maximum over databases that do not
contain collisions, then the instability would be low. Moreover, the instability of
the “no collision” property is itself low.

In this section, we strengthen the results of the previous section by introduc-
ing the notion of conditional instability, which allows us to analyze the value
ω∗D(G, t) by splitting its database property PG into subproperties and analyz-
ing the subproperties separately, analogous to conditioning in probability. In
particular, we can then analyze the Micali game by analyzing the no collision
property and the instability of the Micali database property conditioned on the
no collision property.

For the entirety of this section we will let P andQ be database properties, and
we will analyze quantities about P conditioned on Q. These results strengthen
the results of Section 4.1, as the previous results can be recovered by setting Q
to be the database property containing all databases.

Definition 7. Let P and Q be two database properties, and let t be a query
bound. We define

flip(P | Q, t) := flip(P̄ ∩ Q → P ∩Q, t) .
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The conditional instability I(P | Q, t) is defined as

I(P | Q, t) := max{flip(P | Q, t), flip(P̄ | Q, t)} .

Before we state the lifting lemma, we observe the following properties of
instability.

Proposition 5. Let P and Q be two database properties. Then

1. I(P, t) and I(P ∪Q, t) are incomparable.
2. flip(P | Q, t) ≤ flip(P̄ → P, t), and therefore I(P | Q, t) ≤ I(P, t).
3. I(P ∪Q, t) ≤ I(P | Q̄, t) + I(Q, t).

Proof. To show Item 1, we give database properties P,Q such that I(P, t) >
I(P ∪Q, t) and properties P ′,Q′ such that I(P ′, t) < I(P ′ ∪Q′, t). Let P be the
property that D 6= ∅. Then clearly I(P, t) ≥ flip(P̄ → P, t) = 1. Let Q be the
property that D = ∅. Now P ∪Q is the set of all databases, so I(P ∪Q, t) = 0.

On the other hand, let P ′ = ∅ be the empty property, and let Q′ be the
property that D = ∅. Then, I(P ′, t) = 0, and I(P ′ ∪Q′, t) = I(Q′, t) = 1.

Item 2 holds since

flip(P | Q, t) = flip(P̄ ∩ Q → P ∩Q, t) ≤ flip(P̄ → P, t) .

Finally, for Item 3 we observe that

flip(P ∪Q → P ∪Q, t) = flip(P̄ ∩ Q̄ → P ∪Q, t)
≤ flip(P̄ ∩ Q̄ → P ∩ Q̄, t) + flip(P̄ ∩ Q̄ → Q, t)
≤ flip(P | Q̄, t) + flip(Q̄ → Q, t) .

On the other hand,

flip(P ∪Q → P ∪Q, t) = flip(P ∪Q → P̄ ∩ Q̄, t)
= max(flip(P ∩ Q̄ → P̄ ∩ Q̄, t),flip(Q → P̄ ∩ Q̄, t))
≤ max(flip(P̄ | Q̄, t),flip(Q → Q̄, t)) .

Therefore, we get that I(P ∪Q) ≤ I(P | Q̄, t) + I(Q, t).

We now state the lifting lemma.

Lemma 9 (Lifting lemma). Let G be a base game. Then for any database
property Q,

ω∗D(G, t) ≤ t2 · 6
(
I(PG | Q̄, t) + I(Q, t)

)
.

Proof. Let P and Q be two database properties. We show that for every A ∈ C∗t
it holds that

‖P |Sim∗(A)〉‖2 ≤ t2 · 6
(
I(P | Q̄, t) + I(Q, t)

)
.

Let R = P ∪Q. Then by Lemmas 7 and 8 we have that

‖P |Sim∗(A)〉‖2 ≤ ‖R |Sim∗(A)〉‖2 ≤ t2 · ‖[R,PtOPt]‖2 ≤ t2 · 6I(R, t) ,

where the first inequality holds since P ⊆ R. Finally, we use the fact that
I(R, t) = I(P ∪Q, t) ≤ I(P | Q̄, t) + I(Q, t), which completes the proof.
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