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Abstract. Consider the representative task of designing a distributed
coin-tossing protocol for n processors such that the probability of heads
is X0 ∈ [0, 1]. This protocol should be robust to an adversary who
can reset one processor to change the distribution of the final outcome.
For X0 = 1/2, in the information-theoretic setting, no adversary can
deviate the probability of the outcome of the well-known Blum’s “majority
protocol” by more than 1√

2πn
, i.e., it is 1√

2πn
insecure.

In this paper, we study discrete-time martingales (X0, X1, . . . , Xn) such
that Xi ∈ [0, 1], for all i ∈ {0, . . . , n}, and Xn ∈ {0, 1}. These martingales
are commonplace in modeling stochastic processes like coin-tossing proto-
cols in the information-theoretic setting mentioned above. In particular,

for any X0 ∈ [0, 1], we construct martingales that yield 1
2

√
X0(1−X0)

n
inse-

cure coin-tossing protocols. For X0 = 1/2, our protocol requires only 40%
of the processors to achieve the same security as the majority protocol.
The technical heart of our paper is a new inductive technique that uses
geometric transformations to precisely account for the large gaps in these
martingales. For any X0 ∈ [0, 1], we show that there exists a stopping
time τ such that

E [|Xτ −Xτ−1|] >
2√

2n− 1
·X0(1−X0)

The inductive technique simultaneously constructs martingales that
demonstrate the optimality of our bound, i.e., a martingale where the gap
corresponding to any stopping time is small. In particular, we construct
optimal martingales such that any stopping time τ has

E [|Xτ −Xτ−1|] 6
1√
n
·
√
X0(1−X0)

Our lower-bound holds for all X0 ∈ [0, 1]; while the previous bound of
Cleve and Impagliazzo (1993) exists only for positive constant X0. Con-
ceptually, our approach only employs elementary techniques to analyze
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these martingales and entirely circumvents the complex probabilistic tools
inherent to the approaches of Cleve and Impagliazzo (1993) and Beimel,
Haitner, Makriyannis, and Omri (2018).
By appropriately restricting the set of possible stopping-times, we present
representative applications to constructing distributed coin-tossing/dice-
rolling protocols, discrete control processes, fail-stop attacking coin-
tossing/dice-rolling protocols, and black-box separations.

1 Introduction

A Representative Motivating Application. Consider a distributed protocol
for n processors to toss a coin, where processor i broadcasts her message in round
i. At the end of the protocol, all processors reconstruct the common outcome
from the public transcript. When all processors are honest, the probability of the
final outcome being 1 is X0 and the probability of the final outcome being 0 is
1−X0, i.e., the final outcome is a bias-X0 coin. Suppose there is an adversary
who can (adaptively) choose to restart one of the processors after seeing her
message (i.e., the strong adaptive corruptions model introduced by Goldwasser,
Kalai, and Park [20]); otherwise her presence is innocuous. Our objective is to
design bias-X0 coin-tossing protocols such that the adversary cannot change the
distribution of the final outcome significantly.

The Majority Protocol. Against computationally unbounded adversaries, (es-
sentially) the only known protocol is the well-known majority protocol [10,5,13]
for X0 = 1/2. The majority protocol requests one uniformly random bit from
each processor and the final outcome is the majority of these n bits. An adversary
can alter the probability of the final outcome being 1 by 1√

2πn
, i.e., the majority

protocol is 1√
2πn

insecure.

Our New Protocol. We shall prove a general martingale result in this paper
that yields the following result as a corollary. For any X0 ∈ [0, 1], there exists
an n-bit bias-X0 coin-tossing protocol in the information-theoretic setting that

is 1
2

√
X0(1−X0)

n insecure. In particular, for X0 = 1/2, our protocol uses only

625 processors to reduce the insecurity to, say, 1%; while the majority protocol
requires 1592 processors.

General Formal Framework: Martingales. Martingales are natural mod-
els for several stochastic processes. Intuitively, martingales correspond to a gradual
release of information about an event. A priori, we know that the probability of
the event is X0. For instance, in a distributed n-party coin-tossing protocol the
outcome being 1 is the event of interest.

A discrete-time martingale (X0, X1, . . . , Xn) represents the gradual release of
information about the event over n time-steps.1 For intuition, we can assume
that Xi represents the probability that the outcome of the coin-tossing protocol
is 1 after the first i parties have broadcast their messages. Martingales have the

1 For the introduction, we do not explicitly mention the underlying filtration for brevity.
The proofs, however, clearly mention the associated filtrations.



unique property that if one computes the expected value of Xj , for j > i, at
the end of time-step i, it is identical to the value of Xi. In this paper we shall
consider martingales where, at the end of time-step n, we know for sure whether
the event of interest has occurred or not. That is, we have Xn ∈ {0, 1}.

A stopping time τ represents a time step ∈ {1, 2, . . . , n} where we stop the
evolution of the martingale. The test of whether to stop the martingale at time-
step i is a function only of the information revealed so far. Furthermore, this
stopping time need not be a constant. That is, for example, different transcripts
of the coin-tossing protocol potentially have different stopping times.

Our Martingale Problem Statement. The inspiration of our approach is
best motivated using a two-player game between, namely, the martingale designer
and the adversary. Fix n and X0. The martingale designer presents a martingale
X = (X0, X1, . . . , Xn) to the adversary and the adversary finds a stopping time
τ that maximizes the following quantity.

E [|Xτ −Xτ−1|]

Intuitively, the adversary demonstrates the most severe susceptibility of the
martingale by presenting the corresponding stopping time τ as a witness. The
martingale designer’s objective is to design martingales that have less suscepti-
bility. Our paper uses a geometric approach to inductively provide tight bounds
on the least susceptibility of martingales for all n > 1 and X0 ∈ [0, 1], that is,
the following quantity.

Cn(X0) := inf
X

sup
τ

E [|Xτ −Xτ−1|]

This precise study of Cn(X0), for general X0 ∈ [0, 1], is motivated by natu-
ral applications in discrete process control as illustrated by the representative
motivating problem. This paper, for representative applications of our results,
considers n-processor distributed protocols and 2-party n-round protocols. The
stopping time witnessing the highest susceptibility shall translate into appropri-
ate adversarial strategies. These adversarial strategies shall imply hardness of
computation results.

1.1 Our Contributions

We prove the following general martingale theorem.

Theorem 1. Let (X0, X1, . . . , Xn) be a discrete-time martingale such that Xi ∈
[0, 1], for all i ∈ {1, . . . , n}, and Xn ∈ {0, 1}. Then, the following bound holds.

sup
stopping time τ

E [|Xτ −Xτ−1|] > Cn(X0),

where C1(X) = 2X(1−X), and, for n > 1, we obtain Cn from Cn−1 recursively
using the geometric transformation defined in Fig. 8.

Furthermore, for all n > 1 and X0 ∈ [0, 1], there exists a martingale
(X0, . . . , Xn) (w.r.t. to the coordinate exposure filtration for {0, 1}n) such that
for any stopping time τ , it has E [|Xτ −Xτ−1|] = Cn(X0).



Intuitively, given a martingale, an adversary can identify a stopping time where
the expected gap in the martingale is at least Cn(X0). Moreover, there exists a
martingale that realizes the lower-bound in the tightest manner, i.e., all stopping
times τ have identical susceptibility.

Next, we estimate the value of the function Cn(X).

Lemma 1. For n > 1 and X ∈ [0, 1], we have

2√
2n− 1

X(1−X) =: Ln(X) 6 Cn(X) 6 Un(X) :=
1√
n

√
X(1−X)

As a representative example, consider the case of n = 3 and X0 = 1/2. Fig. 1
presents the martingale corresponding to the 3-round majority protocol and
highlights the stopping time witnessing the susceptibility of 0.3750. Fig. 2 presents
the optimal 3-round coin-tossing protocol’s martingale that has susceptibility of
0.2407.
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Fig. 1. Majority Protocol Tree of depth three. The optimal score in the majority tree
of depth three is 0.3750 and the corresponding stopping time is highlighted in gray.

0.5

0.2593

0.0921

0 1

0.6884

0 1

0.7407

0.3116

0 1

0.9079

0 1

Fig. 2. Optimal depth-3 protocol tree for X0 = 1/2. The optimal score is 0.2407.
Observe that any stopping time achieves this score.



In the sequel, we highlight applications of Theorem 1 to protocol constructions
and hardness of computation results using these estimates.

Remark 1 (Protocol Constructions). The optimal martingales naturally translate
into n-bit distributed coin-tossing and multi-faceted dice rolling protocols.

1. Corollary 1: For all X0 ∈ [0, 1], there exists an n-bit distributed bias-X0 coin-
tossing protocol for n processors with the following security guarantee. Any
(computationally unbounded) adversary who follows the protocol honestly
and resets at most one of the processors during the execution of the protocol
can change the probability of an outcome by at most 1

2
√
n

√
X0(1−X0).

Remark 2 (Hardness of Computation Results). The lower-bound on the maximum
susceptibility helps demonstrate hardness of computation results. For X0 = 1/2,
Cleve and Impagliazzo [14] proved that one encounters |Xτ −Xτ−1| > 1

32
√
n

with

probability 1
5 . In other words, their bound guarantees that the expected gap in the

martingale is at least 1
160
√
n

, which is significantly smaller than our bound 1
2
√
2n

.

Hardness of computation results relying on [14] (and its extensions) work only
for constant 0 < X0 < 1.2 However, our lower-bound holds for all X0 ∈ [0, 1]; for
example, even when 1/poly(n) 6 X0 6 1− 1/poly(n). Consequently, we extend
existing hardness of computation results using our more general lower-bound.

1. Theorem 2 extends the fail-stop attack of [14] on 2-party bias-X0 coin-
tossing protocols (in the information-theoretic commitment hybrid). For
any X0 ∈ [0, 1], a fail-stop adversary can change the probability of the final

outcome of any 2-party bias-X0 coin-tossing protocol by >
√
2

12
√
n+1

X0(1−X0).

This result is useful to demonstrate black-box separations results.
2. Corollary 2 extends the black-box separation results of [15,23,16] separating

(appropriate restrictions of) 2-party bias-X0 coin tossing protocols from one-
way functions. We illustrate a representative new result that follows as a
consequence of Corollary 2. For constant X0 ∈ (0, 1), [15,23,16] rely on (the
extensions of) [14] to show that it is highly unlikely that there exist 2-party
bias-X0 coin tossing protocols using one-way functions in a black-box manner
achieving o(1/

√
n) unfairness [22]. Note that when X0 = 1/n, there are secure

2-party coin tossing protocols with 1/2n unfairness (based on Corollary 1)
even in the information-theoretic setting. Previous results cannot determine
the limits to the unfairness of 2-party bias-1/n fair coin-tossing protocols
that use one-way functions in a black-box manner. Our black-box separation
result (refer to Corollary 2) implies that it is highly unlikely to construct

bias-1/n coin using one-way functions in a black-box manner with <
√
2

12·n3/2

unfairness.
3. Corollary 3 and Corollary 4 extend Cleve and Impagliazzo’s [14] result on

influencing discrete control processes to arbitrary X0 ∈ [0, 1].
2 Cleve and Impagliazzo set their problem as an optimization problem that trades

off two conflicting objective functions. These objective functions have exponential
dependence on X0(1−X0). Consequently, if X0 = 1/poly(n) or X0 = 1− 1/poly(n),
then their lower bounds are extremely weak.



1.2 Prior Approaches to the General Martingale Problem

Azuma-Hoeffding inequality [6,25] states that if |Xi −Xi−1| = o(1/
√
n), for all

i ∈ {1, . . . , n}, then, essentially, |Xn−X0| = o(1) with probability 1. That is, the
final information Xn remains close to the a priori information X0. However, in our
problem statement, we have Xn ∈ {0, 1}. In particular, this constraint implies that
the final information Xn is significantly different from the a priori information X0.
So, the initial constraint “for all i ∈ {1, . . . , n} we have |Xi −Xi−1| = o(1/

√
n)”

must be violated. What is the probability of this violation?
For X0 = 1/2, Cleve and Impagliazzo [14] proved that there exists a round i

such that |Xi−Xi−1| > 1
32
√
n

with probability 1/5. We emphasize that the round

i is a random variable and not a constant. However, the definition of the “big
jump” and the “probability to encounter big jumps” both are exponentially small
function of X0. So, the approach of Cleve and Impagliazzo is only applicable
to constant X0 ∈ (0, 1). Recently, in an independent work, Beimel et al. [7]
demonstrate an identical bound for weak martingales (that have some additional
properties), which is used to model multi-party coin-tossing protocols.

For the upper-bound, on the other hand, Doob’s martingale corresponding to
the majority protocol is the only known martingale for X0 = 1/2 with a small
maximum susceptibility. In general, to achieve arbitrary X0 ∈ [0, 1], one considers
coin tossing protocols where the outcome is 1 if the total number of heads in n
uniformly random coins surpasses an appropriate threshold.

2 Preliminaries

We denote the arithmetic mean of two numbers x and y as A.M.(x, y) := (x+y)/2.
The geometric mean of these two numbers is denoted by G.M.(x, y) :=

√
x · y

and their harmonic mean is denoted by H.M.(x, y) :=
((
x−1 + y−1

)
/2
)−1

=
2xy/(x+ y).

Martingales and Related Definitions. The conditional expectation of a
random variable X with respect to an event E denoted by E [X|E ], is defined as
E
[
X · 1{E}

]
/P [E ]. For a discrete random variable Y , the conditional expectation

of X with respect to Y , denoted by E [X|Y ], is a random variable that takes
value E [X|Y = y] with probability P [Y = y], where E [X|Y = y] denotes the
conditional expectation of X with respect to the event {ω ∈ Ω|Y (ω) = y}.

Let Ω = Ω1 ×Ω2 ×· · · ×Ωn denote a sample space and (E1, E2, . . . , En) be
a joint distribution defined over Ω such that for each i ∈ {1, . . . , n}, Ei is a
random variable over Ωi. Let X = {Xi}ni=0 be a sequence of random variables
defined over Ω. We say that Xj is E1, . . . , Ej measurable if there exists a function
gj : Ω1×Ω2×· · · ×Ωj → R such that Xj = gj(E1, . . . , Ej). Let X = {Xi}ni=0 be
a discrete-time martingale sequence with respect to the sequence E = {Ei}ni=1.
This statement implies that for each i ∈ {0, 1, . . . , n}, we have

E [Xi+1|E1, E2, . . . , Ei] = Xi

Note that the definition of martingale implies Xi to be E1, . . . , Ei measur-
able for each i ∈ {1, . . . , n} and X0 to be constant. In the sequel, we shall



use {X = {Xi}ni=0, E = {Ei}ni=1} to denote a martingale sequence where for
each i = 1, . . . , n, Xi ∈ [0, 1], and Xn ∈ {0, 1}. However, for brevity, we use
(X0, X1, . . . , Xn) to denote a martingale. Given a function f : Ω1×Ω2×· · ·×Ωn →
R, if we define the random variable Zi := E [f(E1, . . . , En)|E1, . . . , Ei], for each
i ∈ {0, 1, . . . , n}, then the sequence Z = {Zi}ni=0 is a martingale with respect to
{Ei}ni=1. This martingale is called the Doob’s martingale.

The random variable τ : Ω → {0, 1, . . . , n} is called a stopping time if for each
k ∈ {1, 2, . . . , n}, the occurrence or non-occurrence of the event {τ 6 k} := {ω ∈
Ω|τ(ω) 6 k} depends only on the values of random variables E1, E2, . . . , Ek.
Equivalently, the random variable 1{τ6k} is E1, . . . , Ek measurable. Let S(X,E)
denote the set of all stopping time random variables over the martingale sequence
{X = {Xi}ni=0, E = {Ei}ni=1}. For ` ∈ {1, 2}, we define the score of a martingale
sequence (X,E) with respect to a stopping time τ in the L`-norm as the following
quantity.

score`(X,E, τ) := E
[
|Xτ −Xτ−1|`

]
We define the max stopping time as the stopping time that maximizes the score

τmax(X,E, `) := arg max
τ∈S(X,E)

score`(X,E, τ),

and the (corresponding) max-score as

max-score`(X,E) := E
[
|Xτmax −Xτmax−1 |`

]
Let An(x∗) denote the set of all discrete time martingales {X = {Xi}ni=0, E =

{Ei}ni=1} such that X0 = x∗ and Xn ∈ {0, 1}. We define optimal score as

optn(x∗, `) := inf
(X,E)∈An(x∗)

max-score`(X,E)

Representing a Martingale as a Tree. We interpret a discrete time
martingale sequence X = {Xi}ni=0 defined over a sample space Ω = Ω1×· · ·×Ωn
as a tree of depth n (see Fig. 3). For i = 0, . . . , n, any node at depth i has |Ωi+1|
children. In fact, for each i, the edge between a node at depth i and a child at
depth (i+ 1) corresponds to a possible outcome that Ei+1 can take from the set
Ωi+1 = {x(1), . . . , x(t)}.

Each node v at depth i is represented by a unique path from root to v like
(e1, e2, . . . , ei), which corresponds to the event {ω ∈ Ω|E1(ω) = e1, . . . , Ei(ω) =
ei}. Specifically, each path from root to a leaf in this tree, represents a unique
outcome in the sample space Ω.

Any subset of nodes in a tree that has the property that none of them is an
ancestor of any other, is called an anti-chain. If we use our tree-based notation
to represent a node v, i.e., the sequence of edges e1, . . . , ei corresponding to the
path from root to v, then any prefix-free subset of nodes is an anti-chain. Any
anti-chain that is not a proper subset of another anti-chain is called a maximal
anti-chain. A stopping time in a martingale corresponds to a unique maximal
anti-chain in the martingale tree.
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Fig. 3. Interpreting a general martingale as a tree.

Geometric Definitions and Relations. Consider curves C and D defined by
the zeroes of Y = f(X) and Y = g(X), respectively, where X ∈ [0, 1]. We restrict
to curves C and D such that each one of them have exactly one intersection with
X = x, for any x ∈ [0, 1]. Refer to Fig. 4 for intuition. Then, we say C is above
D, represented by C < D, if, for each x ∈ [0, 1], we have f(x) > g(x).

C

DX = x

Fig. 4. Intuition for a curve C being above another curve D, represented by C < D.

3 Large Gaps in Martingales: A Geometric Approach

This section presents a high-level overview of our proof strategy. In the sequel, we
shall assume that we are working with discrete-time martingales (X0, X1, . . . , Xn)
such that Xn ∈ {0, 1}.

Given a martingale (X0, . . . , Xn), its susceptibility is represented by the
following quantity

sup
stopping time τ

E [|Xτ −Xτ−1|]



Intuitively, if a martingale has high susceptibility, then it has a stopping time
such that the gap in the martingale while encountering the stopping time is
large. Our objective is to characterize the least susceptibility that a martingale
(X0, . . . , Xn) can achieve. More formally, given n and X0, characterize

Cn(X0) := inf
(X0,...,Xn)

sup
stopping time τ

E [|Xτ −Xτ−1|]

Our approach is to proceed by induction on n to exactly characterize the curve
Cn(X), and our argument naturally constructs the best martingale that achieves
Cn(X0).

1. We know that the base case is C1(X) = 2X(1 − X) (see Fig. 5 for this
argument).

2. Given the curve Cn−1(X), we identify a geometric transformation T (see Fig. 8)
that defines the curve Cn(X) from the curve Cn−1(X). Section 3.1 summa-
rizes the proof of this inductive step that crucially relies on the geometric
interpretation of the problem, which is one of our primary technical contri-
butions. Furthermore, for any n > 1, there exist martingales such that its
susceptibility is Cn(X0).

3. Finally, Appendix A proves that the curve Cn(X) lies above the curve
Ln(X) := 2√

2n−1X(1−X) and below the curve Un(X) := 1√
n

√
X(1−X).

3.1 Proof of Theorem 1

Our objective is the following.

1. Given an arbitrary martingale (X,E), find the maximum stopping time in
this martingale, i.e., the stopping time τmax(X,E, 1).

2. For any depth n and bias X0, construct a martingale that achieves the max-
score. We refer to this martingale as the optimal martingale. A priori, this
martingale need not be unique. However, we shall see that for each X0, it is
(essentially) a unique martingale.

We emphasize that even if we are only interested in the exact value of Cn(X0) for
X0 = 1/2, it is unavoidable to characterize Cn−1(X), for all values of X ∈ [0, 1].
Because, in a martingale (X0 = 1/2, X1, . . . , Xn), the value of X1 can be arbitrary.
So, without a precise characterization of the value Cn−1(X1), it is not evident
how to calculate the value of Cn(X0 = 1/2). Furthermore, understanding Cn(X0),
for all X0 ∈ [0, 1], yields entirely new applications for our result.

Base Case of n = 1. For a martingale (X0, X1) of depth n = 1, we have
X1 ∈ {0, 1}. Thus, without loss of generality, we assume that E1 takes only two
values (see Fig. 5). Then, it is easy to verify that the max-score is always equal to
2X0(1−X0). This score is witnessed by the stopping time τ = 1. So, we conclude
that opt1(X0, 1) = C1(X0) = 2X0(1−X0)

Inductive Step. n = 2 (For Intuition). For simplicity, let us consider
finite martingales, i.e., the sample space Ωi of the random variable Ei is finite.



X0

0 1

1−X0 X0

Fig. 5. Base Case for Theorem 1. Note C1(X0) = inf(X0,X1) supτ E [|Xτ −Xτ−1|]. The
optimal stopping time is shaded and its score is X0 · |1−X0|+ (1−X0) · |0−X0|.
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p(1)

. . . x(j)

p(j)

MSj

. . . x(t)
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Fig. 6. Inductive step for Theorem 1. MSj represents the max-score of the sub-tree of
depth n− 1 whose rooted at x(j). For simplicity, the subtree of x(j) is only shown here.

Suppose that the root X0 = x in the corresponding martingale tree has t children
with values x(1), x(2), . . . , x(t), and the probability of choosing the j-th child is
p(j), where j ∈ {1, . . . , t} (see Fig. 6).

Given a martingale (X0, X1, X2), the adversary’s objective is to find the
stopping time τ that maximizes the score E [|Xτ −Xτ−1|]. If the adversary
chooses to stop at τ = 0, then the score E [|Xτ −Xτ−1|] = 0, which is not a
good strategy. So, for each j, the adversary chooses whether to stop at the child
x(j), or continue to a stopping time in the sub-tree rooted at x(j). The adversary
chooses the stopping time based on which of these two strategies yield a better
score. If the adversary stops the martingale at child j, then the contribution of
this decision to the score is p(j)|x(j) − x|. On the other hand, if she does not
stop at child j, then the contribution from the sub-tree is guaranteed to be
p(j)C1(x(j)). Overall, from the j-th child, an adversary obtains a score that is at
least p(j) max

{
|x(j) − x|, C1(x(j))

}
.

Let h(j) := max
{
|x(j) − x|, C1(x(j))

}
. We represent the points Z(j) = (x(j), h(j))

in a two dimensional plane. Then, clearly all these points lie on the solid curve
defined by max {|X − x|, C1(X)}, see Fig. 7.

Since (X,E) is a martingale, we have x =
∑t
j=1 p

(j)x(j) and the adversary’s

strategy for finding τmax gives us max-score1(X,E) =
∑t
j=1 p

(j)h(j). This ob-

servation implies that the coordinate (x,max-score1(X,E)) =
∑t
j=1 p

(j)Z(j).
So, the point in the plane giving the adversary the maximum score for a
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Fig. 7. Intuitive summary of the inductive step for n = 2.

tree of depth n = 2 with bias X0 = x lies in the intersection of the con-
vex hull of the points Z(1), . . . , Z(t), and the line X = x. Let us consider
the martingale defined in Fig. 7 as a concrete example. Here t = 4, and
the points Z(1), Z(2), Z(3), Z(4) lie on max {|X − x|, C1(X)}. The martingale
designer specifies the probabilities p(1), p(2), p(3), and p(4), such that p(1)x(1) +
· · ·+p(4)x(4) = x. These probabilities are not represented in Fig. 7. Note that the
point

(
p(1)x(1) + · · ·+ p(4)x(4), p(1)h(1) + · · ·+ p(4)h(4)

)
representing the score of

the adversary is the point p(1)Z(1)+· · ·+p(4)Z(4). This point lies inside the convex
hull of the points Z(1), . . . , Z(4) and on the line X = p(1)x(1) + · · ·+ p(4)x(4) = x.
The exact location depends on p(1), . . . , p(4).

The point Q′ is the point with minimum height. Observe that the height of
the point Q′ is at least the height of the point Q. So, in any martingale, the
adversary shall find a stopping time that scores more than (the height of) the
point Q.

On the other hand, the martingale designer’s objective is to reduce the score
that an adversary can achieve. So, the martingale designer chooses t = 2, and
the two points Z(1) = P1 and Z(2) = P2 to construct the optimum martingale.
We apply this method for each x ∈ [0, 1] to find the corresponding point Q. That
is, the locus of the point Q, for x ∈ [0, 1], yields the curve C2(X).

We claim that the height of the point Q is the harmonic-mean of the heights
of the points P1 and P2. This claim follows from elementary geometric facts. Let
h1 represent the height of the point P1, and h2 represent the height of the point
P2. Observe that the distance of x− xS(x) = h1 (because the line `1 has slope
π− π/4). Similarly, the distance of xL(x)− x = h2 (because the line `2 has slope



π/4). So, using properties of similar triangles, the height of Q turns out to be

h1 +
h1

h1 + h2
· (h2 − h1) =

2h1h2
h1 + h2

.

This property inspires the definition of the geometric transformation T ,
see Fig. 8. Applying T on the curve C1(X) yields the curve C2(X) for which we
have C2(x) = opt2(x, 1).

Given. A curve C defined by the zeroes of the equation Y = f(X), where X ∈ [0, 1].
Definition of the Transform. The transform of C, represented by T (C), is the
curve defined by the zeroes of the equation Y = g(X), where, for x ∈ [0, 1], the value
of g(x) is defined below.

1. Let xS(x) ∈ [0, 1] be a solution of the equation X + f(X) = x.
2. Let xL(x) ∈ [0, 1] be a solution of the equation X − f(X) = x.
3. Then g(x) := H.M.(y(1), y(2)), where y(1) = f(xS(x)), y(2) = f(xL(x)), and

H.M.(y(1), y(2)) represents the harmonic mean of y(1) and y(2).

X-axis

Y -axis

C

(x, 0)

`1

`2

•P1

•P2

•
Q

π/4 π/4

xS(x) xL(x)

Fig. 8. Definition of transform of a curve C, represented by T (C). The locus of the
point Q (in the right figure) defines the curve T (C).

General Inductive Step. Note that a similar approach works for general
n = d > 2. Fix X0 and n = d > 2. We assume that the adversary can compute
Cd−1(X1), for any X1 ∈ [0, 1].

Suppose the root in the corresponding martingale tree has t children with
values x(1), x(2), . . . , x(t), and the probability of choosing the j-th child is p(j)

(see Fig. 6). Let (X(j), E(j)) represent the martingale associated with the sub-tree
rooted at x(j).

For any j ∈ {1, . . . , t}, the adversary can choose to stop at the child j. This
decision will contribute |x(j)−x| to the score with weight p(j). On the other hand,
if she continues to the subtree rooted at x(j), she will get at least a contribution
of max-score1(X(j), E(j)) with weight p(j). Therefore, the adversary can obtain
the following contribution to her score

p(j) max
{
|x(j) − x|, Cd−1(x(j))

}
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◦Z(3)
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◦Z(5)

◦Z(6)
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⊗
Q′

Fig. 9. Intuitive Summary of the inductive argument. Our objective is to pick the set of
points {Z(1), Z(2) . . . } in the gray region to minimize the length of the intercept XQ′

of their (lower) convex hull on the line X = x. Clearly, the unique optimal solution
corresponds to including both P1 and P2 in the set.

Similar to the case of n = 2, we define the points Z(1), . . . , Z(t). For n > 2,
however, there is one difference from the n = 2 case. The point Z(j) need not
lie on the solid curve, but it can lie on or above it, i.e., they lie in the gray
area of Fig. 9. This phenomenon is attributable to a suboptimal martingale
designer producing martingales with suboptimal scores, i.e., strictly above the
solid curve. For n = 1, it happens to be the case that, there is (effectively) only
one martingale that the martingale designer can design (the optimal tree). The
adversary obtains a score that is at least the height of the point Q′, which is at
least the height of Q. On the other hand, the martingale designer can choose
t = 2, and Z(1) = P1 and Z(2) = P2 to define the optimum martingale. Again,
the locus of the point Q is defined by the curve T (Cd−1).

Conclusion. So, by induction, we have proved that Cn(X) = Tn−1(C1(X)).
Additionally, note that, during induction, in the optimum martingale, we always
have |x(0)−x| = Cn−1(x(0)) and |x(1)−x| = Cn−1(x(1)). Intuitively, the decision
to stop at x(j) or continue to the subtree rooted at x(j) has identical consequence.
So, by induction, all stopping times in the optimum martingale have score Cn(x).

Finally, Appendix A proves Lemma 1, which tightly estimates the curve Cn.

4 Applications

This section discusses various consequences of Theorem 1 and other related
results.



4.1 Distributed Coin-Tossing Protocol

We consider constructing distributed n-processor coin-tossing protocols where
the i-th processor broadcasts her message in the i-th round. We shall study this
problem in the information-theoretic setting. Our objective is to design n-party
distributed coin-tossing protocols where an adversary cannot bias the distribution
of the final outcome significantly.

For X0 = 1/2, one can consider the incredibly elegant “majority proto-
col” [10,5,13]. The i-th processor broadcasts a uniformly random bit in round
i. The final outcome of the protocol is the majority of the n outcomes, and an
adversary can bias the final outcome by 1√

2πn
by restarting a processor once [13].

We construct distributed n-party bias-X0 coin-tossing protocols, for any
X0 ∈ [0, 1], and our new protocol for X0 = 1/2 is more robust to restarting
attacks than this majority protocol. Fix X0 ∈ [0, 1] and n > 1. Consider the
optimal martingale (X0, X1, . . . , Xn) guaranteed by Theorem 1. The susceptibility
corresponding to any stopping time is = Cn(X0) 6 Un(X0) = 1√

n

√
X0(1−X0).

Note that one can construct an n-party coin-tossing protocol where the i-th
processor broadcasts the i-th message, and the corresponding Doob’s martingale
is identical to this optimal martingale. An adversary who can restart a processor
once biases the outcome of this protocol by at most 1

2Cn(X0), this is discussed
in Section 4.3.

Corollary 1 (Distributed Coin-tossing Protocols). For every X0 ∈ [0, 1]
and n > 1 there exists an n-party bias-X0 coin-tossing protocol such that any
adversary who can restart a processor once causes the final outcome probability
to deviate by 6 1

2Cn(X0) 6 1
2Un(X0) = 1

2
√
n

√
X0(1−X0).

For X0 = 1/2, our new protocol’s outcome can be changed by 1
4
√
n

, which is

less than the 1√
2πn

deviation of the majority protocol. However, we do not know

whether there exists a computationally efficient algorithm implementing the
coin-tossing protocols corresponding to the optimal martingales.

4.2 Fail-stop Attacks on Coin-tossing/Dice-rolling Protocols

A two-party n-round bias-X0 coin-tossing protocol is an interactive protocol
between two parties who send messages in alternate rounds, and X0 is the
probability of the coin-tossing protocol’s outcome being heads. Fair computation
ensures that even if one of the parties aborts during the execution of the protocol,
the other party outputs a (randomized) heads/tails outcome. This requirement of
guaranteed output delivery is significantly stringent, and Cleve [13] demonstrated
a computationally efficient attack strategy that alters the output-distribution by
O(1/n), i.e., any protocol is O(1/n) unfair. Defining fairness and constructing
fair protocols for general functionalities has been a field of highly influential
research [21,22,8,4,2,29,3]. This interest stems primarily from the fact that fairness
is a desirable attribute for secure-computation protocols in real-world applications.
However, designing fair protocol even for simple functionalities like (bias-1/2)



coin-tossing is challenging both in the two-party and the multi-party setting.
In the multi-party setting, several works [5,9,1] explore fair coin-tossing where
the number of adversarial parties is a constant fraction of the total number of
parties. For a small number of parties, like the two-party and the three-party
setting, constructing such protocols have been extremely challenging even against
computationally bounded adversaries [30,24,12]. These constructions (roughly)
match Cleve’s O(1/n) lower-bound in the computational setting.

In the information-theoretic setting, Cleve and Impagliazzo [14] exhibited
that any two-party n-round bias-1/2 coin-tossing protocol are 1

2560
√
n

unfair.

In particular, their adversary is a fail-stop adversary who follows the protocol
honestly except aborting prematurely. In the information-theoretic commitment-
hybrid, there are two-party n-round bias-1/2 coin-tossing protocols that have
≈ 1/

√
n unfairness [10,5,13]. This bound matches the lower-bound of Ω(1/

√
n)

by Cleve and Impagliazzo [14]. It seems that it is necessary to rely on strong
computational hardness assumptions or use these primitives in a non-black box
manner to beat the 1/

√
n bound [15,23,16,7].

We generalize the result of Cleve and Impagliazzo [14] to all 2-party n-round
bias-X0 coin-tossing protocols (and improve the constants by two orders of
magnitude). For X0 = 1/2, our fail-stop adversary changes the final outcome
probability by > 1

24
√
2
· 1√

n+1
.

Theorem 2 (Fail-stop Attacks on Coin-tossing Protocols). For any two-
party n-round bias-X0 coin-tossing protocol, there exists a fail-stop adversary that
changes the final outcome probability of the honest party by at least 1

12C
′
n(X0) >

1
12L

′
n(X0) := 1

12

√
2

n+1X0(1 − X0), where C ′1(X) := X(1 − X) and C ′n(X) :=

Tn−1(C ′1(X)).

This theorem is not a direct consequence of Theorem 1. The proof relies on
an entirely new inductive argument; however, the geometric technique for this
recursion is similar to the proof strategy for Theorem 1. Interested readers can
refer to the full version of the paper [27] for details.

Black-box Separation Results Gordon and Katz [22] introduced the notion
of 1/p-unfair secure computation for a fine-grained study of fair computation of
functionalities. In this terminology, Theorem 2 states that c√

n+1
X0(1−X0)-unfair

computation of a bias-X0 coin is impossible for any positive constant c <
√
2

12
and X0 ∈ [0, 1].

Cleve and Impagliazzo’s result [14] states that c√
n

-unfair secure computation

of the bias-1/2 coin is impossible for any positive constant c < 1
2560 . This result

on the hardness of computation of fair coin-tossing was translated into black-box
separations results. These results [15,23,16], intuitively, indicate that it is unlikely
that c√

n
-unfair secure computation of the bias-1/2 coin exists, for c < 1

2560 ,

relying solely on the black-box use of one-way functions. We emphasize that
there are several restrictions imposed on the protocols that these works [15,23,16]
consider; detailing all of which is beyond the scope of this draft. Substituting the



result of [14] by Theorem 2, extends the results of [15,23,16] to general bias-X0

coin-tossing protocols.

Corollary 2 (Informal: Black-box Separation). For any X0 ∈ [0, 1] and

positive constant c <
√
2

12 , the existence of c√
n+1

X0(1−X0)-unfair computation

protocol for a bias-X0 coin is black-box separated from the existence of one-way
functions (restricted to the classes of protocols considered by [15,23,16]).

4.3 Influencing Discrete Control Processes

Lichtenstein et al. [28] considered the problem of an adversary influencing the
outcome of a stochastic process through mild interventions. For example, an
adversary attempts to bias the outcome of a distributed n-processor coin-tossing
protocol, where, in the i-th round, the processor i broadcasts her message. This
model is also used to characterize randomness sources that are adversarially
influenced, for example, [33,26,35,31,32,34,19,17,18,11].

Consider the sample space Ω = Ω1 ×Ω2 ×· · · ×Ωn and a joint distribution
(E1, . . . , En) over the sample space. We have a function f : Ω → {0, 1} such that
E [f(E1, . . . , En)] = X0. This function represents the protocol that determines the
final outcome from the public transcript. The filtration, at time-step i, reveals the
value of the random variable Ei to the adversary. We consider the corresponding
Doob’s martingale (X0, X1, . . . , Xn). Intuitively, Xi represents the probability
of f(E1, . . . , En) = 1 conditioned on the revealed values (E1 = e1, . . . , Ei = ei).
The adversary is allowed to intervene only once. She can choose to intervene
at time-step i, reject the current sample Ei = ei, and substitute it with a fresh
sample from Ei. This intervention is identical to restarting the i-th processor if
the adversary does not like her message. Note that this intervention changes the
final outcome by

(Xi−1|E1 = e1, . . . , Ei−1 = ei−1)− (Xi|E1 = e1, . . . , Ei = ei)

We shall use a stopping time τ to represent the time-step where an adversary
decides to intervene. However, for some (E1 = e1, . . . , En = en) the adversary
may not choose to intervene. Consequently, we consider stopping times τ : Ω →
{1, . . . , n,∞}, where the stopping time being ∞ corresponds to the event that
the adversary did not choose to intervene. In the Doob martingale discussed
above, as a direct consequence of Theorem 1, there exists a stopping time τ∗

with susceptibility > Cn(X0). Note that susceptibility measures the expected
(unsigned) magnitude of the deviation, if an adversary intervenes at τ∗. Some
of these contributions to susceptibility shall increase the probability of the
final outcome being 1, and the remaining shall decrease the probability of the
final outcome being 1. By an averaging argument, there exists a stopping time
τ : Ω → {1, . . . , n,∞} that biases the outcome of f by at least > 1

2Cn(X0),
whence the following corollary.

Corollary 3 (Influencing Discrete Control Processes). Let Ω1, . . . , Ωn be
arbitrary sets, and (E1, . . . , En) be a joint distribution over the set Ω := Ω1×· · ·×



Ωn. Let f : Ω → {0, 1} be a function such that P [f(E1, . . . , En) = 1] = X0. Then,
there exists an adversarial strategy of intervening once to bias the probability of
the outcome away from X0 by > 1

2Cn(X0) > 1
2Ln(X0) = 1√

2n−1X0(1−X0).

The previous result of [14] applies only to X0 = 1/2 and they ensure a deviation
of 1/320

√
n. For X0 = 1/2, our result ensures a deviation of (roughly) 1/4

√
2n ≈

1/5.66
√
n.

Influencing Multi-faceted Dice-rolls Corollary 3 generalizes to the setting
where f : Ω → {0, 1, . . . , ω − 1}, i.e., the function f outputs an arbitrary ω-
faceted dice roll. In fact, we quantify the deviation in the probability of any
subset S ⊆ {0, 1, . . . , ω−1} of outcomes caused by an adversary intervening once.

Corollary 4 (Influencing Multi-faceted Dice-Rolls). Let Ω1, . . . , Ωn be ar-
bitrary sets, and (E1, . . . , En) be a joint distribution over the set Ω := Ω1×· · ·×Ωn.
Let f : Ω → {0, 1, . . . , ω−1} be a function with ω > 2 outcomes, S ⊆ {0, 1, . . . , ω−
1} be any subset of outcomes, and P [f(E1, . . . , En) ∈ S] = X0. Then, there exists
an adversarial strategy of intervening once to bias the probability of the outcome
being in S away from X0 by > 1

2Cn(X0) > 1
2Ln(X0) = 1√

2n−1X0(1−X0).

Corollary 3 and Corollary 4 are equivalent to each other. Clearly Corollary 3 is
a special case of Corollary 4. Corollary 4, in turn, follows from Corollary 3 by
considering “f(E1, . . . , En) ∈ S” as the interesting event for the martingale. We
state these two results separately for conceptual clarity and ease of comparison
with the prior work.

4.4 L2 Gaps and their Tightness

Finally, to demonstrate the versatility of our geometric approach, we measure
large L2-norm gaps in martingales.

Theorem 3. Let (X0, X1, . . . , Xn) be a discrete-time martingale such that Xn ∈
{0, 1}. Then, the following bound holds.

sup
stopping time τ

E
[
(Xτ −Xτ−1)

2
]
> Dn(X0) :=

1

n
X0(1−X0)

Furthermore, for all n > 1 and X0 ∈ [0, 1], there exists a martingale (X0, . . . , Xn)

such that for any stopping time τ , it has E
[
(Xτ −Xτ−1)

2
]

= Dn(X0).

We provide a high-level overview of the proof in Appendix B.
Note that, for any martingale (X0, . . . , Xn) with Xn ∈ {0, 1}, we have

E
[∑n

i=1(Xi −Xi−1)2
]

= E
[
X2
n −X2

0

]
= X0(1−X0). Therefore, by an averaging

argument, there exists a round i such that E
[
(Xi −Xi−1)2

]
> 1

nX0(1 − X0).
Theorem 3 proves the existence of a martingale that achieves the lower-bound
even for non-constant stopping times.

This result provides an alternate technique to obtain the upper-bound to
Cn(X) in Lemma 1.
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A Proof of Lemma 1

In this appendix, we summarize a high-level argument proving Lemma 1. For a
complete proof, readers are encouraged to read the full version of this paper [27].

Recall that we defined Ln(X) = 2√
2n−1X(1−X) and Un(X) = 1√

n

√
X(1−X).

Our objective is to inductively prove that Un < Cn < Ln, for n > 1.
A crucial property of convex upwards curves that we use in our proof is the

following. Suppose we have C < D, where C and D are two convex upwards
curves above the axis Y = 0 defined in the domain X ∈ [0, 1] containing the
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points (0, 0) and (1, 0). Then, we have T (C) < T (D). This result is formalized in
Lemma 2 and Fig. 10 summarizes the intuition of its proof.

Lemma 2. Let C and D be concave downward curves in the domain X ∈ [0, 1],
and both curves C and D are above the axis Y = 0 and contain the points (0, 0)
and (1, 0). Let C and D be curves such that C < D in the domain X ∈ [0, 1],
then we have T (C) < T (D).

CD

`0

`1

π/4 π/4

•LC
•
LD

•RC

•
RD

•
QC

•
QD

Fig. 10. Summary of the intuition underlying the proof of Lemma 2.

Base Case of n = 1. Since, C1(X) = L1(X) = 2X(1−X), it is obvious that
C1 < L1. Moreover, we know that U1(X) =

√
X(1−X). It is easy to verify that

U1(X) > C1(X) for all X ∈ [0, 1] which is equivalent to U1 < C1.
Inductive Argument. Fig. 11 pictorially summarizes the intuition underly-

ing our inductive argument.

Ci Li<

T (Li)

T

Li+1

<

Proven in [27]

T (Ci)

T

Ci+1

=

Ui <

T (Ui)

T

Ui+1

<Proven in [27]

<
Lemma 2

<
Lemma 2

Fig. 11. The outline of the inductive proof demonstrating that if the curves Ui and Li
sandwich the curve Ci, then the curves Ui+1 and Li+1 sandwich the curve Ci+1. Recall
that the notation “A < B” implies that the curve A lies on-or-above the curve B.

Suppose we inductively have Un < Cn < Ln. Then, we have T (Un) <
T (Cn) < T (Ln) (by Lemma 2). Note that Cn+1 = T (Cn). In the full version of



the paper [27], we prove that T (Ln) < Ln+1, and Un+1 < T (Un). Consequently,
it follows that Un+1 < Cn+1 < Ln+1.

B Large L2-Gaps in Martingale: Proof of Theorem 3

In Section 3 we measured the gaps in martingales using the L1-norm. In this
section, we extend this analysis to gaps in martingales using the L2-norm. To
begin, let us fix X0 and n. We change the definition of susceptibility to

sup
stopping time τ

E
[
(Xτ −Xτ−1)

2
]

Our objective is to characterize the martingale that is least susceptible

Dn(X0) := inf
(X0,...,Xn)

sup
stopping time τ

E
[
(Xτ −Xτ−1)

2
]

We shall proceed by induction on n and prove that Dn(X0) = 1
nX0(1 − X0).

Furthermore, there are martingales such that any stopping time τ has Dn(X0)
susceptibility.

Base Case n = 1. Note that in this case (see Fig. 5) the optimal stopping
time is τ = 1.

opt1(X0, 2) = D1(X0) = (1−X0)X2
0 +X0(1−X0)2 = X0(1−X0)

General Inductive Step. Let us fix X0 = x and n = d > 2. We proceed
analogous to the argument in Section 3.1. The adversary can either decide to
stop at the child j (see Fig. 6 for reference) or continue to the subtree rooted at
it to find a better stopping time.

Overall, the adversary gets the following contribution from the j-th child

max
{

(x(j) − x)2, Dd−1(x(j))
}

The adversary obtains a score that is at least the height of Q in Fig. 12. Fur-
thermore, a martingale designer can choose t = 2, and Z(1) = P1 and Z(2) = P2

to define the optimal martingale. Similar to Theorem 1, the scores corresponding
to all possible stopping times in the optimal martingale are identical.

One can argue that the height of Q is the geometric-mean of the heights of P1

and P2. This observation defines the geometric transformation T ′ in Fig. 13. For
this transformation, we demonstrate that Dn(X0) = 1

nX0(1−X0) is the solution

to the recursion Dn = T ′
n−1

(D1).

Remark 3. It might seem curious that the upper-bound Un happens to be the
square-root of the curve Dn. This occurrence is not a coincidence. We can prove
that the curve

√
Dn is an upper-bound to the curve Cn (for details, refer to the

full version of the paper [27]).
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Fig. 12. Intuitive Summary of the inductive argument. Our objective is to pick the set
of points {Z(1), Z(2) . . . } in the gray region to minimize the length of the intercept XQ′

of their (lower) convex hull on the line X = x. Clearly, the unique optimal solution
corresponds to including both P1 and P2 in this set.

Given. A curve D defined by the zeroes of the equation Y = f(X), where X ∈ [0, 1].
Definition of the Transform. The transform of D, represented by T ′(D), is the
curve defined by the zeroes of the equation Y = g(X), where, for x ∈ [0, 1], the value
of g(x) is defined below.

1. Let xS(x), xL(x) ∈ [0, 1] be the two solutions of f(X) = (X − x)2.
2. Then g(x) := G.M.(y(1), y(2)), where y(1) = f(xS(x)), y(2) = f(xL(x)), and

G.M.(y(1), y(2)) represents the geometric mean of y(1) and y(2)
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•
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Fig. 13. Definition of transform of a curve D, represented by T ′(D). The locus of the
point Q (in the right figure) defines the curve T ′(D).
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