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Abstract. A delegation scheme allows a computationally weak client to
use a server’s resources to help it evaluate a complex circuit without leak-
ing any information about the input (other than its length) to the server.
In this paper, we consider delegation schemes for quantum circuits, where
we try to minimize the quantum operations needed by the client. We con-
struct a new scheme for delegating a large circuit family, which we call
“C+P circuits”. “C+P” circuits are the circuits composed of Toffoli gates
and diagonal gates. Our scheme is non-interactive, requires small amount
of quantum computation from the client (proportional to input length
but independent of the circuit size), and can be proved secure in the
quantum random oracle model, without relying on additional assump-
tions, such as the existence of fully homomorphic encryption. In practice
the random oracle can be replaced by an appropriate hash function or
block cipher, for example, SHA-3, AES.
This protocol allows a client to delegate the most expensive part of some
quantum algorithms, for example, Shor’s algorithm. The previous pro-
tocols that are powerful enough to delegate Shor’s algorithm require ei-
ther many client side quantum operations or the existence of FHE. The
protocol requires asymptotically fewer quantum gates on the client side
compared to running Shor’s algorithm locally.
To hide the inputs, our scheme uses an encoding that maps one input
qubit to multiple qubits. We then provide a novel generalization of clas-
sical garbled circuits (“reversible garbled circuits”) to allow the compu-
tation of Toffoli circuits on this encoding. We also give a technique that
can support the computation of phase gates on this encoding.
To prove the security of this protocol, we study key dependent mes-
sage(KDM) security in the quantum random oracle model. KDM security
was not previously studied in quantum settings.

Keywords: Quantum Computation Delegation· Quantum Cryptogra-
phy· Garbled Circuit· Quantum Random Oracle· KDM Security

1 Introduction

In computation delegation, there is a client holding secret data ϕ and the de-
scription of circuit C that it wants to apply, but it doesn’t have the ability to
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compute C(ϕ) itself. A delegation protocol allows the client to compute C(ϕ)
with the help from a more computationally powerful server. The delegation is
private if the server cannot learn anything about the input ϕ during the proto-
col. After some communications, the client can decrypt the response from the
server and get the computation result (see Figure 1.) This problem is important
in the quantum setting: it’s likely that quantum computers, when they are built,
will be expensive, and made available as a remote service. If a client wants to do
some quantum computation on secret data, a quantum computation delegation
protocol is needed.

description of circuit C
ϕ

Client
(Quantum)

Server

C(ϕ) Nothing about ϕ can
be retrieved (efficiently)

Fig. 1. Delegation of (quantum) computation

Delegation of computation is a central problem in modern cryptography, and
has been studied for a long time in classical settings. Related works include
multiparty computation, fully homomorphic encryption(FHE), etc. In the study
of delegation, there are two key aspects: privacy and authenticity. This paper
will focus on privacy.

We want the delegation protocol to be useful, efficient and secure. Previous
work falls into two classes: some protocols have information-theoretical security,
but they either can only support a small circuit class or require huge client side
quantum resources (including quantum memories, quantum gates and quantum
communications); other protocols rely on classical fully homomorphic encryp-
tion(FHE). This raises the following question:

Is it possible to delegate quantum computation for a large circuit family, with
small amount of quantum resources on the client side, without assuming

classical FHE?

In the classical world, Yao’s garbled circuit answers this question. Garbled circuit
is also a fundamental tool in many other cryptographic tasks, like multiparty
computation and functional encryption.

Note When designing quantum cryptographic protocols, one factor that we care
about is the “quantum resources” on the client side. The “quantum resources”
can be defined as the sum of the cost of the following: (1)the size of quantum
memory that the client needs; (2)the number of quantum gates that the client
needs to apply; (3)the quantum communication that the client needs to make.
Note that if the input (or computation, communication) is partly quantum and
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partly classical, we only consider the quantum part. Since the classical part is
usually much easier to implement than the quantum part, as long as the classical
part is polynomial, it’s reasonable to ignore it and only consider the complexity
of quantum resources. And we argue that it’s better to consider the “client
side quantum resources” instead of considering only the quantum memory size
or quantum gates: on the one hand, we do not know which type of quantum
computers will survive in the future, so it’s better to focus on the cost estimate
that is invariant to them; on the other hand, there may be some way to compose
the protocol with other protocols to reduce the memory size, or simplify the gate
set.

1.1 Our Contributions

In this paper we develop a non-interactive (1 round) quantum computation del-
egation scheme for “C+P circuits”, the circuits composed of Toffoli gates and
diagonal gates. We prove the following:

Theorem 1. It’s possible to delegate C+P circuits non-interactively and se-
curely in the quantum random oracle model, and the client requires O(ηNq+N2

q )
quantum CNOT gates as well as polynomial classical computation, where Nq is
the number of qubits in the input and η is the security parameter.

We will give a more formal statement in Section 6. The client’s quantum cir-
cuit size can in fact be bounded by O(κNq) where κ is the key length of the
cryptographic primitives we use. Our current proof of security requires setting
κ = η + 4Nq where η is the actual security parameter. However, we conjecture
the same protocol can be proven secure for κ = O(η), leading to the following
conjecture:

Conjecture 1. It’s possible to delegate C+P circuits non-interactively and se-
curely in the quantum random oracle model, using the same protocol as The-
orem 1, and the client side quantum resources are O(ηNq) CNOT gates, where
Nq is the number of qubits in the input and η is the security parameter.

We argue that our protocol is important for three reasons: (1)The client only
needs small quantum resources. Here we say “small” to mean the quantum re-
sources only depend on the key length and the input size, and are independent
of the circuit size. (2)Its security can be proven in the quantum random ora-
cle model, without assuming some trapdoor one-way function. Many protocols
before, for example, [11][15] are based on classical FHE and therefore rely on
some kinds of lattice cryptographic assumptions, for example, LWE assumption.
Our protocol is based on the quantum random oracle (therefore based on hash
functions in practice), and this provides an alternative, incomparable assump-
tion on which we can base the security of quantum delegation. (3)Our protocol
introduces some new ideas and different techniques, which may be useful in the
study of other problems.
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Our protocol can be applied to Shor’s algorithm. The hardest part of Shor’s
algorithm is the Toffoli part applied on quantum states, so the client can use
this protocol securely with the help of a remote quantum server.

Corollary 1. It’s possible to delegate Shor’s algorithm on input of length n
within one round of communication in the quantum random oracle model, where
the client requires O(ηn+ n2) CNOT gates plus Õ(n) quantum gates. Assuming
Conjecture 1, the number of CNOT gates is O(ηn).

If the client runs the factoring algorithm by itself, the quantum operations it
needed will be ω(n2), and the exact complexity depends on the multiplication
methods.

The security proof for our protocol heavily uses the concept of KDM security,
which was not previously studied in the quantum setting. We therefore also
initiate a systematic study of KDM security in the quantum random oracle
model. We point out that although there already exists classical KDM secure
encryption scheme in the random oracle model[4], the security in the quantum
random oracle model still needs an explicit proof. We complete its proof in this
paper. Furthermore, we generalize KDM security to quantum KDM security,
and construct a protocol for it in the quantum random oracle model.

1.2 Related Work

To delegate quantum computation, people raised the concepts of blind quantum
computation[6] and quantum homomorphic encryption(QHE)[7]. These two con-
cepts are a little different but closely related: in quantum homomorphic encryp-
tion, no interaction is allowed and the circuits to be evaluated are known by the
server. While in blind quantum computation, interactions are usually allowed
and the circuits are usually only known by the client.

The concept of blind quantum computation was first raised in [2]. And [6]
gave a universal blind quantum computation protocol, based on measurement-
based quantum computation(MBQC)[18]. What’s more, secure assisted quantum
computation based on quantum one-time pad(QOTP) technique was raised in
[9], with which we can easily apply Clifford gates securely but T gates are hard
to implement and require interactions.

Quantum homomorphic encryption is the homomorphic encryption for quan-
tum circuits. Based on QOTP and classical FHE, [7] studied the quantum ho-
momorphic encryption for circuits with low T gate complexity. Later [11] con-
structed a quantum homomorphic encryption scheme for polynomial size circuits.
But it still requires some quantum computing ability on the client side to pre-
pare the evaluation gadgets, and the size of gadgets is propotional to the number
of T gates. Recently Mahadev constructed a protocol[15], which achieves fully
quantum homomorphic encryption, and what makes this protocol amazing is
that the client can be purely classical, which hugely reduces the burden on the
client side.

Another viewpoint of these protocols is the computational assumptions needed.
With interactions, we can do blind quantum computation for universal quantum
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circuits information theoretically(IT-) securely. But for non-interactive proto-
cols, [24] gave a limit for IT-secure QHE, which implies IT-secure quantum FHE
is impossible. But it’s still possible to design protocols for some non-universal
circuit families.[14] gave a protocol for IQP circuits, and [23] gave a protocol for
circuit with logarithmic number of T gates.

On the other hand, [7][11][15] rely on classical FHE. The current construc-
tions of classical FHE are all based on various kinds of lattice-based cryptosys-
tems, and the most standard assumption is the Learning-With-Error(LWE) as-
sumption.

Table 1 compares different protocols for quantum computation delegation.

Protocol Circuit class Client’s quantum resources Assumption

QOTP[9] Clifford O(Nq) Pauli operations -

[6] All
O(L)

Rounds: Circuit Depth
-

[15] All O(Nq) Pauli operations FHE

[14] IQP O(Nq) -

[23]
Clifford+small
number of T gates

Exponential in the number of T gates -

This paper C+P
O(ηNq)(Conjectured)
O(ηNq +N2

q )(Proved)
CNOT operations

Quantum
ROM

Table 1. L is the number of gates in the circuits, Nq is the number of qubits in the
input, η is the security parameter.

1.3 Techniques

A different encoding for hiding quantum states with classical keys In
many previous protocols, the client hides a quantum state using “quantum one
time pad”: ρ→ XaZb(ρ), where a, b are two classical strings. After taking average
on a, b, the encrypted state becomes a completely mixed state. In our protocol,
we use the following mapping to hide quantum states, which maps one qubit in
the plaintext to κ qubits in the ciphertext:

Etk0,k1 : |0〉 → |k0〉 , |1〉 → |k1〉

where k0, k1 are chosen uniformly at random in {0, 1}κ and distinct.
We can prove for all possible input states, if we apply this operator on each

qubit, after taking average on all the possible keys, the final results will be
exponentially close to the completely mixed state.

Reversible garbled circuits The main ingredient in our construction is “re-
versible garbled circuit”. In the usual construction of Yao’s garbled table, the
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server can feed the input keys into the garbled table, and get the output keys;
then in the decoding phase, it uses an output mapping to map the keys to the
result. This well-studied classical construction does not work for quantum states.
Even if the original circuit is reversible, the evaluation of Yao’s garbled circuit
is not! To use it on quantum states, besides the original garbled table, we add
another table from the output keys to the input keys. This makes the whole
scheme reversible, which means we can use it on quantum states and the com-
putation result won’t be entangled with auxiliary qubits. For security, we remove
the output mappings. In the context of delegation, these are kept by the client.

|kin〉

kin Garbled Table kout

kin Backward Table kout

|kout〉

Fig. 2. Reversible garbled table

Note The proof of security of this scheme is subtle. The extra information in-
cluded to allow the reversible computation introduces encryption cycles among
the keys. We address the problem by studying key-dependent message security
in the quantum setting. We show that a KDM-secure encryption scheme exists
in the quantum random oracle model, and use this result to prove the security
of our reversible garbled circuit construction.

Phase gates The reversible garbled circuit allows evaluating Toffoli circuits. To
handle phase gates, instead of applying |kin〉 → |kout〉, we can make the garbled
table implement the following transformation(where m is chosen randomly):

|k0〉 → |k0〉 |m〉 , |k1〉 → |k1〉 |m+ 1〉 (1)

Then the server can apply a “qudit Z gate”
∑
i ω

i
n |i〉 〈i| (define ωn := eiπ/n)

on the second register, where i ∈ Zn goes through all the integers in Zn.(This
operation can be done efficiently.) This will give us:

|k0〉 → ωmn |k0〉 |m〉 , |k1〉 → ωm+1
n |k1〉 |m+ 1〉

Then it applies (1) again to erase the second register. After removing the global
phase the result is the same as the output of applying a phase gate RZ(πn ) =
|0〉 〈0|+ ωn |1〉 〈1|.

1.4 Organisation

This paper is organized as follows. Section 2 contains some background for this
paper. In Section 3 we discuss the encoding scheme. In Section 4 we give our
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construction of the quantum computation delegation protocol for C+P circuits.
In Section 5 we prove the security of classical KDM secure scheme in the quantum
random oracle model, as the preparation for the security proof of the main
protocol. Then in Section 6 we discuss the security of our protocol. Section 7.1
turns this delegation scheme to a fully blind protocol, and Section 7.2 shows how
to use our protocol on Shor’s algorithm. Section 8 generalizes KDM security to
quantum settings, constructs a quantum KDM secure protocol and proves its
security. Then we discuss the open questions and complete this paper.

2 Definitions and Preliminaries

2.1 Basics of Quantum Computation

In this section we give a simple introduction for quantum computing, and clarify
some notations in this paper. For more detailed explanations, we refer to [16].

In quantum computing, a pure state is described by a unit vector in a Hilbert
space. A qubit, or a quantum bit, in a pure state, can be described by a vector
|ϕ〉 ∈ C2. The symbols |·〉 and 〈·| are called Dirac symbols. A qudit is described
by a vector |ϕ〉 ∈ Cd.

But a quantum system isn’t necessarily in a pure state. When the quantum
system is open, we need to consider mixed states. To describe both pure and
mixed states, the state of a qubit is described by a density matrix in C2×2. A
density matrix is a trace-one positive semidefinite complex matrix. The density
matrix that corresponds to pure state |ϕ〉 is |ϕ〉 〈ϕ|, and we abbreviate it as ϕ.

For an n-qubit state, its density matrix is in C2n×2n . The space of density
operators in system S is denoted as D(S). Note that we use E for the notation
of the expectation value.

A quantum operation on pure states can be described by a unitary trans-
form |ϕ〉 → U |ϕ〉. And an operation on mixed states can be described by a
superoperator ρ→ E(ρ) = trR(U(ρ⊗|0〉 〈0|)U†)). We use calligraphic characters
like D, E to denote superoperators, and use the normal characters like U,D to
denote unitary transforms. We also use Sans-serif font like X,Z,Et to denote
quantum operations: When they are used as Et |ϕ〉 they mean unitary opera-
tions(applied on Dirac symbols without parentheses), and when used as Et(ρ)
they mean superoperators.

The quantum gates include X, Y, Z, CNOT, H, T, Toffoli and so on. What’s
more, denote RZ(θ) = |0〉 〈0|+ eiθ |1〉 〈1|, where i is the imaginary unit. Denote
ωn = eiπ/n, we can write RZ(kπ/n) = |0〉 〈0|+ωkn |1〉 〈1|. Since the i will be used
as the symbol for indexes and “inputs”, we avoid using eiπ/n in this paper, and
use ωn instead.

The trace distance of two quantum states is defined as ∆(ρ, σ) = 1
2 |ρ− σ|tr,

where | · |tr is the trace norm.

2.2 Encryption with Quantum Adversaries

A quantum symmetric key encryption scheme contains three mappings: KeyGen(1κ)→
sk, Encsk : D(M)→ D(C), Decsk : D(C)→ D(M).[17]
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In this paper, we need to use the symmetric key encryption scheme with key
tags, which contains four mappings: KeyGen, Enc, Dec, Ver. The scheme has a
key verification procedure Ver : K × D(C)→ {⊥, 1}.

A quantum symmetric key encryption scheme with key tags is correct if:

1. ∀ρ ∈ D(R⊗ S), Esk←KeyGen(1κ) |(I⊗ Decsk)((I⊗ Encsk)(ρ))− ρ|tr = negl(κ)
2. ∀ρ ∈ D(R⊗ S), Prsk←KeyGen(1κ)(Ver(sk, (I⊗ Encsk)(ρ)) =⊥) = negl(κ),

and Prsk←KeyGen(1κ),r←KeyGen(1κ)(Ver(r, (I⊗ Encsk)(ρ)) = 1) = negl(κ)

Here the encryption and decryption are all on system S, and R is the reference
system.

Sometimes we also need to encrypt the messages with multiple keys, and
require that (informally) an adversary can only get the message if it knows all
the keys. In symmetric multi-key encryption scheme with key tags, KeyGen(1κ)
is the same as the symmetric single-key scheme, Enck1,k2,···ki encrypts a message
under keys K = (k1, k2, · · · ki), Deck1,k2,···ki decrypts a ciphertext given all the
keys k1, k2, · · · ki, and Ver(k, i, c)→ {⊥, 1} verifies whether k is the i-th key used
in the encryption of c.

The next problem is to define “secure” formally. The concept of indistin-
guishability under chosen plaintext attack (IND-CPA) was introduced in [3][13].
Let’s first review the security definitions in the classical case.

Definition 1. For a symmetric key encryption scheme, consider the following
game, called “IND-CPA game”, between a challenger and an adversary A :

1. The challenger runs KeyGen(1κ)→ sk and samples b←r {0, 1}.
2. The adversary gets the following classical oracle, whose input space is M:

(a) The adversary chooses m ∈M, and sends it into the oracle.
(b) If b = 1, the oracle outputs Enc(m). If b = 0, it outputs Enc(0|m|).

3. The adversary tries to guess b with some distinguisher D. Denote the guess-
ing result as b′.

The distinguishing advantage is defined by AdvIND−CPA(A , κ) = |Pr(b′ = 1|b =
1)− Pr(b′ = 1|b = 0)|.

And we call it an one-shot IND-CPA game if the adversary can only query
the oracle once. Similarly we can define the distinguishing advantage
AdvIND−CPA−oneshot(A , κ) = |Pr(b′ = 1|b = 1)− Pr(b′ = 1|b = 0)|

Definition 2. We say a protocol is IND-CPA secure against quantum adver-
saries if for any BQP adversary A which can run quantum circuits as the dis-
tinguisher but can only make classical encryption queries, there exists a negligible
function negl such that AdvIND−CPA(A , κ) = negl(κ). And we call it one-shot
IND-CPA secure against quantum adversaries if AdvIND−CPA−oneshot(A , κ) =
negl(κ).

Note that the “IND-CPA security against quantum adversaries” characterizes
the security of a protocol against an adversary who has the quantum computing
ability in the distinguishing phase but can only run the protocol classically.

For quantum cryptographic schemes, we use the formulation in [7].
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Definition 3. For a symmetric key encryption scheme, consider the following
game, called “qIND-CPA game”, between a challenger and an adversary A :

1. The challenger runs KeyGen(1κ)→ sk and samples b←r {0, 1}.
2. The adversary gets the following oracle, whose input space is D(M):

(a) The adversary chooses ρ ∈ D(M⊗R). The adversary sends system M
to the oracle, and keeps R as the reference system.

(b) If b = 1, the oracle applies Enc on M and sends it to the adversary. The
adversary will hold the state (Enc ⊗ I)(ρ). If b = 0, the oracle encrypts
0|m| and the adversary gets (Enc⊗ I)(0|m|⊗ ρR), where ρR is the density
operator of subsystem R.

3. The adversary tries to guess b with some distinguisher D. Denote the guess-
ing output as b′.

The distinguishing advantage is defined by AdvqIND−CPA(A , κ) = |Pr(b′ =
1|b = 1)− Pr(b′ = 1|b = 0)|.

And we call it an one-shot qIND-CPA game if the adversary can only query
the oracle once. Similarly we can define the distinguishing advantage
AdvqIND−CPA−oneshot(A , κ) = |Pr(b′ = 1|b = 1)− Pr(b′ = 1|b = 0)|.

Definition 4. A protocol is qIND-CPA secure if for any BQP adversary A ,
there exists a negligible function negl such that AdvqIND−CPA(A , κ) = negl(κ).

What’s more, we call it one-shot qIND-CPA secure if for any BQP adversary
A , there exists a negligible function negl such that AdvqIND−CPA−oneshot(A , κ) =
negl(κ).

In the definition of qIND-CPA security, the adversary can query the encryption
oracle with quantum states, and it can also run a quantum distinguisher.

Key Dependent Message security In the definitions above the plaintexts do
not depend on the secret keys. There is another type of security called “key-
dependent message (KDM) security”, where the adversary can get encryptions
of the secret keys themselves. We will need to study this type of security in the
proof of our main theorem, but we defer the definitions and further discussions
to Section 5.

2.3 Delegation of Quantum Computation, and Related Problems

There are three similar concepts: delegation of quantum computation, quantum
homomorphic encryption[7] and blind quantum computation[2][6].

The differences of these three concepts are whether the interaction is allowed,
and which party knows the circuit. The delegation of quantum computation and
blind quantum computation protocols are interactive. For quantum homomor-
phic encryption, the interaction is not allowed. If we focus on non-interactive
protocols, their difference is which party knows the circuit: in blind quantum
computation, the circuit is only known by the client but not the server; in ho-
momorphic encryption, the circuit is known by the server but not necessarily
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known by the client. In our paper, we use “delegation of quantum computation”
to mean that the circuit is known by both parties but the input is kept secret.

A non-interactive quantum computation delegation protocol BQC on circuit
family F = {Fn} contains 4 mappings:

BQC.KeyGen(1κ, 1N , 1L) → (sk): The key generation algorithm takes the key
length κ, input length N and circuit length L and returns the secret key.

BQC.EncCsk : D(M)→ D(C). Given the encryption key and the public circuit in
F = ∪{Fn}, this algorithm maps inputs to ciphertexts.

BQC.EvalC : D(C) → D(C′). This algorithm maps ciphertexts to some other
ciphertexts, following the instructions which may be contained in C.

BQC.Decsk : D(C′) → D(M′). This algorithm decrypts the ciphertexts and
stores the outputs in M.

Here we put N,L into the KeyGen algorithm, which are needed in our protocol.
We put C on the superscript to mean the circuit is known by both parties.

Definition 5. The security (IND-CPA, qIND-CPA, etc) of the non-interactive
delegation of computation protocol is defined to be the security of its encryption
scheme (KeyGen,Enc).

2.4 Quantum Random Oracle Model

A classical random oracle is an oracle of a random function H : {0, 1}κ → {0, 1}κ
which all parties can query with classical inputs. It returns independent random
value for different inputs, and returns fixed value for the same input. In practice,
a random oracle is usually replaced by a hash function.

A quantum random oracle allows the users to query it with quantum states:
the users can apply the map H : |a〉 |b〉 → |a〉 |H(a)⊕ b〉 on its state. The quan-
tum random oracle was raised in [5]. It becomes the security proof model for
many post-quantum cryptographic scheme[21]. On the other hand, the applica-
tion of the quantum random oracle in quantum cryptographic problems is not
very common, and as far as we know, our work is the first application of it in
the delegation-stype problems.

The security definitions in the quantum random oracle model are the same
as Definitions 2 and 4. Here we assume the adversary can only make polynomial
number of random oracle queries, but the queries can be quantum states. Then by
the “Random Oracle Methodology” we can conjecture the protocol is also secure
in the standard model, when the random oracle is replaced by a hash function in
practice. As with proofs in the classical random oracle model, interpreting these
security claims is subtle, since there exist protocols that are secure in the random
oracle model but insecure in any concrete initialization of hash function.[8]

This paper focuses on the quantum cryptographic protocols in the quan-
tum random oracle model. As far as we know, the assumption of a quantum
random oracle is incomparable to any trapdoor assumption. We do not know
any construction of public key encryption based on solely quantum random or-
acle. What’s more, in our proof, the random oracle doesn’t need to be “pro-
grammable”[12].
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2.5 Garbled Table

We make a simple introduction of Yao’s garbled table [22] here. The garbled
table construction will be the foundation of our protocol.

Garbled table is a powerful technique for the randomized encoding of func-
tions. When constructing the garbled circuit of some circuit C, the client picks
two keys for each wire, and denotes them as kwb , where b ∈ {0, 1}, and w is the
index of the wire.

The garbled table is based on a symmetric key encryption scheme with key
tags. For gate g, suppose its input wires are w1, w2, and the output wire is v.
The client constructs the following table:

Enckw1
0 ,k

w2
0

(kvg(0,0)) (2)

Enckw1
0 ,k

w2
1

(kvg(0,1)) (3)

Enckw1
1 ,k

w2
0

(kvg(1,0)) (4)

Enckw1
1 ,k

w2
1

(kvg(1,1)) (5)

And it picks a random permutation in S4 to shuffle them.
If the server is given the garbled table for some gate, and given a pair of

input keys, it can evaluate the output keys: it can try each row in the garbled
table and see whether the given keys pass the verification. If they pass, use them
to decrypt this row and get the output keys.

By providing the input keys and the garbled table for each gate in the circuit,
the server can evaluate the output keys for the whole circuit. And in the ran-
domized encoding problem the client also provides the mapping from the output
keys to the corresponding values on some wires: kwb → b, for some set of ws.
The server can know the output values on these revealed wires, but the values
on other wires are hidden. This construction has wide applications in classical
world, for example, it allows an NC0 client to delegate the evaluation of a circuit
to the server.

3 The Encoding For Hiding Quantum States With
Classical Keys

Let’s first discuss the encoding operator, Et, to “hide” the quantum states. For
each qubit in the input, the client picks two random different keys k0, k1 ∈ {0, 1}κ
and encodes the input qubit with the following operator:

Etk0,k1 : |0〉 → |k0〉 , |1〉 → |k1〉

The dimensions of two sides are not the same, but we can add some auxiliary
qubits on the left side. As long as k0, k1 are distinct, this operator is unitary.

For pure quantum state |ϕ〉 =
∑
αi1i2···iN |i1i2 · · · iN 〉, given key set K =

{kni }, where n ∈ [N ], i ∈ {0, 1}, if we apply this operator on each qubit, using
keys {kn0 , kn1 } for the n-th qubit, we get:

EtK |ϕ〉 =
∑

αi1i2···in |k
(1)
i1
k
(2)
i2
· · · k(N)

in
〉
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The following lemma shows that if the keys are long enough, chosen randomly
and kept secret, this encoding is statistically secure, in other words, the mixed
state after we take average on all the possible keys, is close to the completely
mixed state with exponentially small distance:

Lemma 1. Suppose ρ ∈ D(S ⊗ R), S = (C2)⊗N . Suppose we apply the Et
operation on system S with key length κ, after taking average on all the valid
keys, we get

σ =
1

(2κ(2κ − 1))N

∑
∀n∈[N ],kn0 ,k

n
1 ∈{0,1}κ,kn0 6=kn1

(EtS{kni } ⊗ I)(ρ)

then we have ∆(σ, ( 1
2κN

I)⊗ trS(ρ)) ≤ ( 1
2 )κ−4N

Thus such an encoding keeps the input secure against unbounded adversaries.
We put the detailed proof in the full version of this paper.

Since Et is a unitary mapping, given K and EtK(ρ), we can apply the inverse
of Et and get ρ: Et−1K (EtK(ρ)) = ρ. Note that when applying Et we enlarge the
space by appending auxiliary qubits, and when applying Et−1 we remove these
auxiliary qubits.

Fact 1 Et can be implemented with only CNOT operations.

Proof. First implement mapping |0〉 → |0κ〉 , |1〉 → |k0 ⊕ k1〉. This can be done
by CNOT the input into the places where k0 ⊕ k1 has bit value 1. Then apply X
gates on the places where k0 has bit value 1. This will xor k0 into these registers
and complete the mapping |0〉 → |k0〉 , |1〉 → |k1〉.

The quantum computation delegation protocol that we will discuss in the next
section will use this encoding.

4 A Quantum Computation Delegation Protocol for
C+P Circuits

In this section, we use Et encoding and a new technique called “reversible garbled
circuit” to design a quantum computation delegation protocol.

4.1 C+P Circuits and the Relation to Toffoli Depth

[20] defined “almost classical” circuits. Here we rename it to “C+P” circuits,
abbreviating “classical plus phase”.

Definition 6 ([20]). C+P is the family of quantum circuits which are composed
of Toffoli gates and diagonal gates.

We can prove it’s possible to decompose this type of circuits into simpler gates.
We put the proof in the full version of this paper.
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Proposition 1. Any C+P circuit can be decomposed to Toffoli gates and single
qubit phase gates. Furthermore, it can be approximated by Toffoli gates and single
qubit phase gates of the form RZ(πn ) = |0〉 〈0| + ωn |1〉 〈1| , n ∈ N+, where ωn is
the nth root of unity. To approximate a circuit of length L of Toffoli gates and
single qubit phase gates to precision ε, we only need Toffoli gates and phase gates
in the form of RZ( π

2d
), d ∈ [D], where D = Θ(log L

ε ).

We consider D as a fixed value in this paper. Since ε depends exponentially on
D, a small D in practice should be enough and it will at most add a logarithmic
term in the complexity.
{C+P, H} is a complete basis for quantum circuits. Our work implies a delega-

tion scheme whose round complexity equals the H-depth of a given circuit. Previ-
ous works on quantum computation delegation generally focused on {Clifford, T}
basis. (The exception is [14], which works for IQP circuits.) With the exception
of Mahadev’s FHE-based scheme[15], their complexity of client side quantum
gates increases with the circuit’s T-depth.

As far as we know, there is no general way to transform a Toffoli circuit into
the {Clifford, T} basis such that its T depth is smaller than the Toffoli depth
of the original ciruit, without blowing up the circuit width exponentially. We
formalize this statement as a conjecture:

Conjecture 2. For any polynomial time algorithm that transforms Toffoli circuits
into the {Clifford, T} basis, there exists a sequence of inputs with increasing
Toffoli depths for which the algorithm’s outputs have T depth Ω(d), where d
denotes the Toffoli depths of the original circuits.

Working with the {C+P, H} basis allows us to design efficient protocols for
delegating Shor’s algorithm (which has low H-depth). Previously, this was only
possible using FHE-based schemes.

4.2 Protocol Construction

We now describe our protocol that supports our main results. This protocol gets
a public description of a C+P circuit as well as a secret quantum state.

The idea comes from Yao’s Garbled Circuit construction. We have discussed
the construction in section 2.5. The garbled circuit construction is commonly
used for randomized encodings of classical circuits, but it’s not applicable to
quantum circuits. In this paper we will show how to do the reversible garbling
for C+P circuits. Let’s first discuss the ideas briefly.

One big difference of classical operations and quantum operations is in quan-
tum world, the operations have to be reversible. Firstly, we will consider the
garbling of Toffoli gates. In classical world, the garbled tables can contain non-
reversible gates, for example, AND gate, OR gate. But in quantum world, we
have to start with the Toffoli gate, which is reversible, and contains 3 input wires
and 3 output wires.

However, even if the underlying circuit is reversible, if we try to use the
classical garbled table construction on a quantum circuit, the garbled circuits
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is still not reversible, and it’s not possible to use it to implement the quantum
operations. Note that we need two levels of reversibility here: the circuit to be
garbled needs to be reversible, and the garbled circuit itself has to be reversible
too, even if it calls the random oracle as a black box.

Thus we propose a new garbling technique, which is a reversible garbling of
reversible circuits: when constructing the garbled tables, instead of just creating
one table for each gate, the client can construct two tables, in one table it
encrypts the output keys with the input keys, and in the other table it encrypts
the input keys with the output keys! This construction will make the garbled
circuit reversible: we will show, the garbled circuit evaluation mapping can be
applied on quantum states unitarily.

But another problem arises: If we simply replace the garbled circuit in the
randomized encoding problem with “reversible garbled circuit”, it’s not secure
any more. But it turns out, if we remove the output mapping, it becomes se-
cure again, under some reasonable assumptions. And that gives us a delegation
protocol.

The full protocol is specified in Protocol 1. Below we give more details.

Reversible garbling of Toffoli gates First recall that in the classical gar-
bled circuit, the evaluation operation on each garbled gate takes the input keys,
decrypts the table and computes the corresponding output keys:

kin → kout

This mapping is classical, and there is a standard way to transform a classi-
cal circuit to a quantum circuit, by introducing auxiliary output registers, and
keeping the input:

U : |kin〉 |c〉
garbled gate−−−−−−−−→ |kin〉 |kout ⊕ c〉 (6)

We use the second register as the output register, and c is its original value. This
mapping computes the output keys from the garbled table and xors them to the
second register.

This mapping is unitary, and we can also put superpositions on the left-hand
side of (6). However, when it is used directly on quantum states, the inputs and
outputs will be entangled together. Explicitly, for a specific Toffoli gate, we use
kw1
u , kw2

v , kw3
w to denote the keys of the input wires w1, w2, w3 which correspond

to the input (u, v, w); for the output part the keys are kv1u , k
v2
v , k

v3
w . If we apply

(6) directly, we get:

U : |kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |c1〉 |c2〉 |c3〉

→ |kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |kv1u ⊕ c1〉 |kv2v ⊕ c2〉 |kv3w⊕uv ⊕ c3〉

But what we need is the following mapping:

U : |kw1
u 〉 |kw2

v 〉 |kw3
w 〉 → |kv1u 〉 |kv2v 〉 |kv3w⊕uv〉 (7)
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Which means, we need to disentangle and erase the input registers from the
output registers. Note that, again, both sides should be understood as super-
positions of different keys. And recall that for each Toffoli gate there are eight
possible combinations of input keys, and this mapping should work for all the
eight combinations.

To erase the input from the output, we can use two mappings: |kin〉 |0〉 →
|kin〉 |kout〉 and |kin〉 |kout〉 → |0〉 |kout〉. Both operations have the same form as
equation (6). (For the second step, we could view the kout as the input, kin as c,
and get |kout〉 |kin ⊕ kin〉) So we can use two garbled tables for this “reversible
garbled table”!

Assume CL is some multiple key encryption scheme with key tags. The client
puts the encryption outputs CL.Enckin(kout) into a table(there are eight rows
in this table), and shuffles them randomly; this is the forward table. And it
puts the encryption outputs CL.Enckout(kin) into a table and shuffles to get the
backward table. This construction will allow the server to implement (7), even
on superpositions of input keys.

We note that we do not need to consider the detailed operations for decrypt-
ing each garbled table, and the existence of such operations comes from quantize
the classical mapping as (6).

For the encoding of the inputs, recall that in the usual garble table construc-
tion, the client encrypts each bit in the inputs with the mapping:

0→ k0, 1→ k1 (8)

To make it quantum, instead of replacing the classical bits with the correspond-
ing keys, the client uses Et operator to hide the inputs. And we notice that (8)
is a special case of Et where the input is classical.

Phase gates Now the protocol works for Toffoli gates. But what if there are
phase gates?

From Proposition 1, we only need to consider the single qubit phase gates in
the form of RZ(πn ), n ∈ Z+. Suppose we want to implement such a gate on some
wire, where the keys are k0, k1, corresponding to values 0 and 1, as discussed in
the last subsection.

To implement RZ(πn ), the client first picks a random integer m ∈ Zn. What it
is going to do is to create a table of two rows, put CL.Enck0(m) and CL.Enck1(m+
1) into the table and shuffle it. When the server needs to evaluate RZ(πn ), it will
first decrypt the garbled table and write the output on an auxiliary register |0〉.
So it can implement the following transformation:

|k0〉 → |k0〉 |m〉 , |k1〉 → |k1〉 |m+ 1〉 (9)

This step is similar to implementing equation (6).
Then it applies a “qudit Z gate”

∑
i ω

i
n |i〉 〈i| on the second register, where

i ∈ Zn goes through all the integers in Zn.(This operation can be done efficiently.)
This will give us:

|k0〉 → ωmn |k0〉 |m〉 , |k1〉 → ωm+1
n |k1〉 |m+ 1〉
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Then it applies (9) again to erase the second register. After removing the global
phase the result is the same as the output of applying a phase gate RZ(πn ) =
|0〉 〈0|+ ωn |1〉 〈1|.

What’s more, since m is chosen randomly the garbled gate won’t reveal the
keys. (This fact is contained in the security proof.)

4.3 Protocol Design

In this section we formalize this garbled circuit based quantum computation
delegation protocol. Let’s call it GBC.

We index the wires in the circuit as follows: If two wires are separated by a
single qubit phase gate, we consider them as the same wire; otherwise (separated
by a Toffoli gate, or disjoint), they are different wires. Suppose we have already
transformed the circuit using Fact 1 so that there is no controlled phase gate.
For a circuit with N input bits and L gates, the number of wires is at most
N + 3L.

Protocol 1 The protocol GBC, with CL being the underlying classical encryption
scheme, for a circuit C which is composed of Toffoli gates and phase gates in
the form of RZ(πn ), is defined as:

Key Generation GBC.KeyGen(1κ, 1N , 1L): Sample keys K = (klb),
klb ← CL.KeyGen(1κ), b ∈ {0, 1}, l ∈ [N + 3L].

Encryption GBC.EncCK(ρ): Output (EtKin(ρ),TABCCL(K)). (Note that with the
reference system, the first part is (I⊗ EtKin)(ρRS).)

Evaluation GBC.EvalC(c), where c = (ρq, tabs): Output EvalTABCCL(ρq, tabs)
Decryption GBC.DecK(σ): Suppose the output keys in K are Kout. Apply the

map Et−1Kout(·) on σ and return the result.

TABCCL(K) and EvalTABCCL(ρq, tabs) appeared in this protocol are defined as fol-
lows:

Protocol 2 TABCCL(K), where K is the set of keys:
Suppose circuit C is composed of gates (gi)

L
i=1. This algorithm returns (tabgi)

L
i=1,

where tabg is defined as follows:

1. If g is a Toffoli gate: Suppose g has controlled input wires w1, w2 and tar-
get wire w3, and the corresponding output wires are v1, v2, v3. Suppose the
corresponding keys in K are {kwb }, w ∈ {w1, w2, w3, v1, v2, v3}, b ∈ {0, 1}:
Create table1 as follows: For each triple u, v, w ∈ {0, 1}3, add the following
as a row:

CL.Enckw1
u ,kw2

v ,kw3
w

(kv1u ||kv2v ||k
v3
w⊕uv)

and pick a random permutation in S8 to shuffle this table.
Create table2 as follows: For each triple u, v, w ∈ {0, 1}3, add the following
as a row:

CL.Enckv1u ,k
v2
v ,k

v3
w⊕uv

(kw1
u ||kw2

v ||kw3
w )

and pick another random permutation in S8 to shuffle this table.
Return (table1, table2)
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2. If g is a phase gate, Suppose g is a phase gate RZ(πn ) on wire w:
Sample m0 ←r Zn, m1 = m0 + 1. Create table1 as follows: For each u ∈
{0, 1}, add the following as a row:

CL.Enckwu (mu)

and pick a random permutation in S2 to shuffle this table.
Return table1.

Protocol 3 EvalTABCCL(ρ, tab):
Suppose circuit C is composed of gates (gi)

L
i=1. For each gate g in C, whose

corresponding garbled gate is tabg in tab:
If g is a Toffoli gate, with input wires w1, w2, w3, output wires v1, v2, v3:

Suppose tabg = (tab1, tab2), where tab1 is the table from input keys to output
keys, and tab2 is from output keys to input keys. Suppose ρ ∈ D(Sg ⊗S ′), where
Sg is the system that is currently storing the keys on the input wires of g, and
S ′ is the remaining systems:

1. Introduce three auxiliary registers and denote the system as S′g. Use tab1 to
apply the following mapping on Sg, as discussed in the section 4.2:

|kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |0〉 |0〉 |0〉 → |kw1

u 〉 |kw2
v 〉 |kw3

w 〉 |kv1u 〉 |kv2v 〉 |kv3w⊕uv〉

2. Use tab2 to apply the following mapping on Sg ⊗ S ′g, as discussed in the
section 4.2:

|kw1
u 〉 |kw2

v 〉 |kw3
w 〉 |kv1u 〉 |kv2v 〉 |kv3w⊕uv〉 → |0〉 |0〉 |0〉 |kv1u 〉 |kv2v 〉 |kv3w⊕uv〉

3. Remove system Sg, rename S ′g as Sg. Denote the final state as the new ρ.

If g is a phase gate on wire w in the form of RZ(πn ), : Suppose ρ ∈ D(Sg ⊗S ′),
where Sg is the system that stores the keys on the input wire of g, and S′ is the
remaining systems:

1. Use tabg to implement the mapping |kw〉 |0〉 → |kw〉 |m〉, where m is the
decrypted output.

2. Apply
∑
i ω

i
n |i〉 〈i| on the system of m.

3. Use tabg to implement the mapping |kw〉 |m〉 → |kw〉 |0〉.

The following two theorems summarize its correctness and efficiency:

Theorem 2. Protocol GBC is a correct non-interactive quantum computation
delegation protocol for C+P circuits.

Theorem 3. In GBC protocol, the quantum resources required on the client side
are O(κNq) CNOT gates, where κ stands for the key length used in the protocol,
Nq is the size of quantum states in the input, which are independent of the size
of the circuit.
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Here we use Nq instead of N because we want to consider the case where some
part of the input is classical and some part of it is quantum. To make the protocol
secure we may need to choose κ depending on Nq. This is discussed with more
details in Section 6.

This means the quantum resources of this protocol are independent of the cir-
cuit to be evaluated! In practice the size of the circuit may be a large polynomial
of the input size, and our protocol will not be affected by this.

4.4 Structure of the Security Proofs

The structure of the security proofs is as follows. First we study the key depen-
dent message security in the quantum world, and design a protocol which we
call the KDMP protocol. Note that this part is not about the garbling scheme.

Then for the garbling scheme, we first state Proposition 2, which is the IND-
CPA security of our garbling scheme. And we state a lemma about the security
of the garbling scheme, which is the Lemma 2. The proofs use a reduction to the
security of the KDMP protocol. And the proofs are in the full version.

Then we prove the security of our garbling scheme (Theorem 6) from Propo-
sition 2 and lemma 2. This part is given in the main content.

5 KDM Security of Classical Encryption against
Quantum Attack

As we can see, in GBC protocol there are encryption cycles. So to make the
protocol secure, for the underlying encryption scheme CL, the usual security
definition is not enough and we need at least KDM security. In this section, we
will first discuss the key dependent message security(KDM security) in quan-
tum world, and give an encryption scheme KDMP that is KDM-secure against
quantum adversaries. These results will be the foundation for the security proof
of the GBC protocol.

In classical world, KDM security was discussed in several papers, for example,
[4, 1]. [4] gave a classical KDM secure encryption scheme in the random oracle
model, and [1] constructed KDM secure protocols in the standard model, based
on some hard problems, for example, Learning-With-Error.

5.1 KDM Security in the Classical World

As a part of the preliminaries, we repeat the definition of the security game of
the classical KDM security[4][1].

Definition 7. The KDM-CPA game is defined similar to the IND-CPA game,
except that (1)in the first step the challenger runs KeyGen(1κ) for N times to
generate K = {ski}i∈[N ], N is less than a polynomial of the security parame-
ter.(2)the client is allowed to query the encryption oracle with a function f ∈ F ,
a message m, and an index i of the keys, and the encryption oracle returns
Encski(f(K,m)) or Encski(0

|f(K,m)|), depending on b. Note that the outputs of
functions in F should be fixed-length, otherwise |f(K,m)| is not well-defined.
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5.2 KDM Security in the Quantum World

The attack for the KDM security can be adaptive, which means, the adversary
can make encryption queries after it receives some ciphertexts. But in our work
we only need to consider the non-adaptive setting. What’s more, we only need to
consider the symmetric key case. To summarize, the game between the adversary
and the challenger can be defined as:

Definition 8 (naSymKDM Game).
The symmetric key non-adaptive KDM game naSymKDM for function family

F against a quantum adversary A in the quantum random oracle model with
parameters (κ, L, T, q) is defined as follows.

1. The challenger chooses bit b ←r {0, 1} and samples K = {ski}Li=1, ski ←
KeyGen(1κ).

2. The adversary and the challenger do the following T times, non-adaptively,
which means, the challenger will only send out the answers in step (b) after
it has received all the queries:
(a) The adversary picks index i, function f ∈ F and message msg ∈ {0, 1}∗,

and sends them to the challenger. The size of msg should be compatible
with f .

(b) If b = 1, the challenger gives c = Encski(f(K,msg)) to the adversary. If
b = 0, the challenger gives c = Encski(0

|f(K,msg)|).
3. The adversary tries to guess b using distinguisher D and outputs b′. Here
D is a quantum operation and can query the oracle with quantum states.
Suppose D will query the random oracle for at most q times.

f can also query the random oracle, and it only makes queries on classical states.
What’s more, the output of functions in F should have a fixed length, otherwise
|f(K,m)| will not be well-defined.

The guessing advantage is defined as AdvnaSymKDMF (A(L,T,q), κ) = |Pr(b′ =
1|b = 1)− Pr(b′ = 1|b = 0)|.

Definition 9. A symmetric key encryption scheme is nonadaptive KDM secure
for circuit family F against quantum adversaries in the quantum random oracle
model if for any BQP adversary,

AdvnaSymKDMF (A(L(κ),T (κ),q(κ)), κ) = negl(κ)

Where L(κ), T (κ), q(κ) are polynomial functions that may depend on the adver-
sary.

5.3 A KDM Secure Protocol in the Quantum Random Oracle
Model

In the quantum random oracle model, we can give a construction of the classical
KDM secure encryption scheme KDMP. Here “classical” means the encryption
and decryption are purely classical. But the distinguisher may query the quan-
tum random oracle in superposition.
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Protocol 4 We can construct a symmetric KDM secure encryption scheme
KDMP that has key tags in the quantum random oracle model, where we de-
note the random oracle as H:

KDMP.KeyGen(1κ): Output sk ←r {0, 1}κ
KDMP.Encsk(m): R1, R2 ←r {0, 1}κ, output ciphertext c = (R1,H(sk||R1)⊕m)

and key tag (R2,H(sk||R2))
KDMP.Decsk(c): Output H(sk||c1)⊕ c2, where c1 and c2 are from c = (c1, c2).
KDMP.Ver(k, tag): Suppose tag = (tag1, tag2), output 1 if H(k||tag1) = tag2,

and ⊥ otherwise.

Since the execution of this protocol is classical, the correctness can be proved
classically and is obvious. We refer to [4] here and write it out explicitly for
convenience.

Theorem 4 (Correctness). KDMP is a correct symmetric key encryption scheme
with key tags in the quantum random oracle model.

The security under classical random oracle model has been proven. But here we
study the quantum random oracle, so although the protocol is almost the same,
we still need a new proof.

Theorem 5 (Security). Define F [q′] as the set of classical functions that query
the random oracle at most q′ times. For any adversary which can query the
random oracle quantumly at most q times, we have

AdvnaSymKDMKDMP,F [q′] (A(L,T,q), κ) ≤ poly(q, q′, L, T )2−0.5κ

where poly is a fixed polynomial.

We put the proof in the full version of this paper.

6 Security of GBC Protocol

In this section we discuss the security of protocol GBC. First we need to construct
a classical encryption scheme CL as its underlying scheme. The construction is
very similar to the KDMP scheme, except that this is multi-key and the KDMP
scheme is single-key. We will use it as the underlying scheme of GBC.

6.1 Construction of the Underlying Classical Encryption Scheme

Protocol 5 The underlying multi-key encryption scheme CL is defined as:

CL.KeyGen(1κ): Output sk ←r {0, 1}κ
CL.Enck1,k2,k3(m): R1, R2, R3, R4, R5, R6 ←r {0, 1}κ, output

(R1, R2, R3,H(k1||R1)⊕H(k2||R2)⊕H(k3||R3)⊕m), (10)

((R4,H(k1||R4)), (R5,H(k2||R5)), (R6,H(k3||R6))) (11)

where H is the quantum random oracle.
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CL.Deck1,k2,k3(c): Suppose c = (R1, R2, R3, c4). Output (H(k1||R1)⊕H(k2||R2)⊕
H(k3||R3)⊕ c4).

CL.Ver(k, i, c): Suppose the ith key tag in c is tagi = (Ri, r). Output 1 if r =
H(k||Ri), and ⊥ otherwise.

We choose not to define and discuss the security of this scheme, but use it as
a “wrapper” of the KDMP scheme. In the security proof we will “unwrap” its
structure and base the proof on the security of KDMP scheme.

6.2 Security of GBC against Classical or Quantum Attack

In this subsection we give the security statements of GBC. First, we can show,
when used on classical inputs, GBCCL is secure:

Proposition 2. GBCCL, where CL is defined as Protocol 5, is one-shot IND-CPA
secure against quantum adversary (that is, secure when used to encrypt one clas-
sical input) in the quantum random oracle model. Explicitly, if the distinguisher
that the adversary uses makes at most q queries to the quantum random oracle,
the input size is N and the size of circuit C is L,

AdvIND−CPA−oneshot
GBCCCL

(A , κ) ≤ poly(q,N, L)2−0.5κ

Where poly is a fixed polynomial that does not depend on A or the parameters.

The detailed proof is in the full version of this paper.

But we meet some difficulty when we try to prove the qIND-CPA security
(that is, the security for quantum inputs). We leave it as a conjecture:

Conjecture 3. GBCCL is one-shot qIND-CPA secure in the quantum random or-
acle model.

But if we use a longer key, we can prove its security.

Theorem 6. For any BQP adversary A , there exists a negligible function negl
such that:

AdvqIND−CPA−oneshotGBCCL
(A , κ) = negl(κ− 4Nq)

where Nq is the size of quantum states in the input.

In other words, denote GBC′ as the protocol of taking κ = η + 4Nq as the key
length in the GBC protocol, we can prove GBC′ is one-shot qIND-CPA secure
with respect to security parameter η. So we prove:

Theorem 7. There exists a delegation protocol for C+P gate set that is one-shot
qIND-CPA secure in the quantum random oracle model, and the client requires
O(ηNq +N2

q ) quantum CNOT gates as well as polynomial classical computation,
where Nq is the number of qubits in the input and η is the security parameter.
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Although we don’t have a proof for Conjecture 3, we conjecture it is true, since
this protocol seems to be a very natural generalization from classical to quantum.
We leave it as an open problem. The main obstacle here is its security cannot be
reduced to the semantic security of classical garbled circuits easily: the adversary
gets many superpositions of keys. We have to prove it using different techniques,
which leads to Theorem 6.

From Theorem 6 we know when we take κ ≥ 4Nq and consider κ − 4Nq as
the security parameter the security has been proved. So when the circuit size
L = ω(N2

q ) the quantum resources for the client to run this protocol are smaller
than running the circuit itself anyway.

What’s more, although our proof requires the quantum random oracle model,
we conjecture that this protocol is still secure when we replace the random oracle
with practical hash functions or symmetric key encryption schemes:

Conjecture 4. When we replace the quantum random oracle in GBCCL with prac-
tical hash functions or symmetric key encryption schemes, such as versions of
SHA-3 or AES with appropriate input and output sizes, the security statements
still hold.

6.3 Security Proof

IND-CPA security of Protocol 1 The proof of Proposition 2 is postponed
into the full version of this paper. The proof is based on Theorem 5, which is
about KDM security of Protocol 4. The structure of our scheme, when used
classically, can be seen as a special case of the KDM function. But the definition
of IND-CPA security for protocol GBC is still different from the KDM game
security: in GBC we are trying to say the inputs of Et are hidden, but KDM
security is about the encrypted messages in the garbled table. So it doesn’t
follow from the security of KDMP protocol trivially.

Discussions of the qIND-CPA security To prove Theorem 6, we use a
different security proof technique, which enables us to base the qIND-CPA ad-
vantage on the IND-CPA advantage and a classical “hard-to-compute” lemma.
This technique enables us to argue about the security of a quantum protocol
using only security results in the classical settings.

We need to prove the keys that are not “revealed” are “hard to compute”.
Then we expand the expression of the qIND-CPA advantage, write it as the sum
of exponential number of terms and we can observe that their forms are the
same as the probability of “computing the unrevealed keys”. We can prove these
terms are all exponentially small, thus we get a bound for the whole expression.

Lemma 2. For any C+P circuit C, |C| = L, any adversary that uses distin-
guisher D which can query the quantum random oracle q times (either with
classical or quantum inputs), given the reversible garbled table and input keys
corresponding to one input, it’s hard to compute the input keys corresponding to
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other input. Formally, for any i 6= j, |ϕi〉, we have

EK ER tr((EtK |j〉)†D(EtK(|i〉 〈i|)⊗ ϕi ⊗ TABCCL(K,R))(EtK |j〉))
≤ poly(q,N, L)2−0.5κ (12)

where poly is a fixed polynomial that does not depend on A or the parameters,
N is the size of inputs, and R denotes the randomness used in the computation
of TABCCL(K), including the random oracle outputs, the random paddings and
the random shuffling. And TABCCL(K,R) is the output of TABCCL(K) using ran-
domness R, and since R is given as a parameter there will be no randomness
inside.

Note that since we have already fixed all the randomness, TABCCL(K,R) is pure.
We also note that this can be seen as a classical lemma since |i〉, |j〉 are all in
computational basis. We postpone the proof into the full version.

Let’s prove Theorem 6 from Proposition 2 and Lemma 2. We will expand the
the expression of the input state and qIND-CPA advantage, and each term in
the cross terms can be bounded by (12).

Proof (of Theorem 6). First, suppose the state that the adversary uses is |ϕ〉 =∑
i ci |i〉 |ϕi〉, where i is in the input system, i ∈ I where I is the set of non-zero

term(ci 6= 0), |I| ≤ 2Nq and |ϕi〉 is in the reference system. Additionally assume
cis are all real numbers and | |i〉 |ϕi〉 | = 1. We can only consider pure states since
we can always write a mixed state as a probability ensemble of pure states.

Then we can assume the distinguisher D is a unitary operation D on the
output and auxiliary qubits, followed by a measurement on a specific output
qubit. So we can write D(ρ) = trR(D(ρ⊗|0〉 〈0|)D†), where |0〉 〈0| stands for big
enough auxiliary qubits. Let’s use Eproj(ρ) to denote the operation of projecting
ρ onto the computational basis. Denote the projection operator onto the |0〉 〈0|
space as P0, we have

AdvqIND−CPA−oneshotGBC (A , κ) (13)

=|Pr(D(EK GBC.EncK(ϕ)) = 1))− Pr(D(EK GBC.EncK(0N )) = 1)| (14)

≤|Pr(D(EK ER(ρ)) = 1))− Pr(D(EK ER(Eproj(ρ))) = 1)|+
|Pr(D(EK GBC.EncK(Eproj(ϕ))) = 1))− Pr(D(EK GBC.EncK(0N )) = 1)|

(15)

Here we write ρ := (EtK ⊗ I)(ϕ)⊗ TAB(K,R).

Let’s first compute the first term.

|Pr(D(EK ER(ρ)) = 1))− Pr(D(EK ER(Eproj(ρ))) = 1))| (16)

=| tr(P0(EK ERD(ρ⊗ |0〉 〈0|)D†))− tr(P0(EK ERD(Eproj(ρ)⊗ |0〉 〈0|)D†))|
(17)
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The first term inside can be expanded as

EK ERD(ρ⊗ |0〉 〈0|)D† (18)

=EK ERD((EtK ⊗ I)(ϕ)⊗ TAB(K,R)⊗ |0〉 〈0|)D† (19)

=EK ERD((EtK ⊗ I)((
∑
i

ci |i〉 |ϕi〉)(
∑
i

c†i 〈i| 〈ϕi|))

(EtK ⊗ I)† ⊗ TAB(K,R)⊗ |0〉 〈0|)D† (20)

Denote |xi〉 = EtK |i〉 ⊗ |ϕi〉, we can simplify the expression:

(20) =EK ERD(
∑
i

ci |xi〉
∑
i

c†i 〈xi| ⊗ TAB(K,R)⊗ |0〉 〈0|)D† (21)

=EK ERD(
∑
i

|ci|2 |xi〉 〈xi| ⊗ TAB(K,R)⊗ |0〉 〈0|)D†

+ EK ERD(
∑
i 6=j

cic
†
j |xi〉 〈xj | ⊗ TAB(K,R)⊗ |0〉 〈0|)D† (22)

=EK ERD(Eproj(ρ)⊗ |0〉 〈0|)D†

+ EK ERD(
∑
i 6=j

cic
†
j |xi〉 〈xj | ⊗ TAB(K,R)⊗ |0〉 〈0|)D† (23)

Substitute it into (17), we get

(17)

=|EK ER tr(P0D(
∑
i6=j

cic
†
j |xi〉 〈xj | ⊗ TAB(K,R)⊗ |0〉 〈0|)D†)| (24)

=|
∑
i 6=j

cic
†
j EK ER(〈xj | 〈TAB(K,R)| 〈0|D†P0D(|xi〉 |TAB(K,R)〉 |0〉)| (25)

≤
√∑

i 6=j

c2i c
†
j

2
√∑

i 6=j

|EK ER 〈0| 〈TAB(K,R)| 〈xj |D†P0D |xi〉 ⊗ |TAB(K,R)〉 |0〉 |2

(26)

≤
√∑

i 6=j

EK ER |(〈0| ⊗ 〈TAB(K,R)| 〈xj |)D†P0D(|xi〉 ⊗ |TAB(K,R)〉 |0〉)|2 (27)

The magic of this technique actually happens between (24) and (25): first we

move
∑
i6=j cic

†
j out by linearity, then after rotating terms inside the trace, an

expression which talks about applying D on some state becomes an expression
for the probability of applying {D†P0D,D

†P1D} on |xi〉 and getting |xj〉.
By Lemma 2, consider the operation E defined as follows: expand the space

and apply D, make a measurement with operators {P0, P1}, and apply D†. Let
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E0 = D†P0D(· ⊗ |0〉 〈0|)D†P0D, and E1 = D†P1D(· ⊗ |0〉 〈0|)D†P1D. We have:

EK ER(tr((EtK |j〉)†E0(EtK(i)⊗ ϕi ⊗ TAB(K,R))EtK |j〉)) (28)

+ tr((EtK |j〉)†E1(EtK(|i〉 〈i|)⊗ ϕi ⊗ TAB(K,R))EtK |j〉)) (29)

≤poly(q,N, L)2−0.5κ (30)

With this, we can bound the inner part of (27) further:

EK ER |(〈0| ⊗ 〈TAB(K,R)| 〈xj |)D†P0D(|xi〉 ⊗ |TAB(K,R)〉 |0〉)|2 (31)

=EK ER |(〈0| ⊗ 〈TAB(K,R)| ((EtK |j〉)⊗ |ϕj〉)†

D†P0D(EtK |i〉 ⊗ |ϕi〉)⊗ |TAB(K,R)〉 |0〉)|2 (32)

≤EK ER tr((EtK |j〉)†E0(EtK(|i〉 〈i|)⊗ ϕi ⊗ TAB(K,R)⊗ |0〉 〈0|)EtK |j〉) (33)

≤poly(q,N, L)2−0.5κ (34)

Substitute it back into (27), we will know

|Pr(D(EK ER(ρ)) = 1)− Pr(D(EK ER(Eproj(ρ))) = 1)| (35)

≤2Nqpoly(q,N, L)2−0.25κ (36)

The second term in (15) can be bounded by Proposition 2. Eproj(ρ) is a classical
state so we have

|Pr(D(EK GBC.EncK(Eproj(ϕ))) = 1)− Pr(D(EK GBC.EncK(0N )) = 1)|
≤poly(q,N, L)2−κ

Combining these two inequalities we have

AdvqIND−CPA−oneshotGBC (A , κ) ≤ poly(q,N, L)2−0.25(κ−4Nq)

6.4 Standard Model

In the last section we prove the security in the quantum random oracle model.
In practice, the random oracle can usually be replaced with hash functions, and
we claim that our protocol is not an exception (Conjecture 4). In our protocol,
it’s more natural to use a symmetric key encryption scheme directly: the usage
of the random oracle in our protocol is on the symmetric multi-key encryption
scheme with key tags, and the key verification can be replaced with the “point-
and-permute” technique from the classical garbled circuit.

When using symmetric key encryption instead of the random oracle, since in
our protocol we use affine functions in KDM game, we need at least that the sym-
metric key encryption is secure against quantum adversaries under KDM game
for affine functions. Although this is a strong assumption, it’s still reasonable in
practice.
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7 Applications

7.1 Blind Quantum Computation for C+P Circuits

Protocol 1 is a quantum computation delegation protocol. But since the circuit
can be put into inputs, we can turn it into a blind quantum computation protocol,
where the server doesn’t know either input state or the circuit to be applied.
If we only want to hide the type of gates in the circuit, our original protocol
actually already achieves it. But if we also want to hide the circuit topology, we
need to do more. The adversaries should only know the fact that the circuit is
a C+P circuit, the input size and an upper bound on the circuit size. In this
subsection we are going to construct a universal machine U such that for all the
C+P circuit C, C(ρ) = U(C, ρ). What’s more, we want U to be in C+P so that
we can use our protocol on U .

Suppose the size of input is N and the phase gates are all in the form of
RZ(π/2d), d ∈ [D]. Then there are N3 + ND possible choices for each gate.
Thus a log(N3+ND) bits description is enough for each gate. For the server-side
evaluation, a bad implementation may lead to N3 +ND extra cost, and we can
do a simple preprocessing on the circuit to reduce it: We can first introduce three
auxiliary wires, and convert C to a form that only contains three types of gates:
(1)RZ(π/2d) (2)a SWAP operation between a normal wire and an auxiliary wire
(3)a Toffoli gate on the auxiliary wires. After this transformation, the number
of choices of the gates is only 3N + 1 + ND. Thus we can describe each gate
by a string of length log(3N + 1 + ND). And given the description of g, the
operation of U is a series of multi-controlled gate operations, where the control
wires correspond to the gate description and the target wires are the wires in
the original circuit. And this multi-controlled multi-target operation is also in
C+P and it can be transformed to the standard form of Toffoli and phase gates.

Since U itself is a C+P circuit, we can delegate it by applying Protocol 1.
Then the original circuit will be indistinguishable from the identity circuit, which
means we know nothing beyond some information on its size.

7.2 Delegation of Shor’s Algorithm

Shor’s algorithm contains two parts: first we apply lots of Toffoli gates on |+〉⊗n⊗
|M〉, where M is, for example, the number to be factored, and n = logM ; then
measure, apply quantum Fourier transform and measure again. From [10][19] we
know the quantum Fourier transform is actually easy to implement: a quantum
Fourier transform on n qubits has time complexity Õ(n). The main burden of
Shor’s algorithm is the Toffoli part. ([19] contains resource estimates on the
elliptic curve version.) With this protocol we can let the server do the Toffoli
part of Shor’s algorithm without revealing the actual value of the input.

Explicitly, suppose the client wants to run Shor’s algorithm on M while also
wants to keep M secret, the client can use the following protocol:

Protocol 6 Protocol for delegation of Shor’s algorithm:
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Suppose ShorToff is the Toffoli gate part of Shor’s algorithm, and its length
is L.

1. The client samples K ← GBC.KeyGen(1κ, 12n, 1L). Then the client prepares

(ρ, tab)← GBC.EncShorToff
K (|+〉⊗n ⊗ |M〉) and sends it to the server.

2. The server evaluates GBCCL.EvalShorToff(ρ, tab) and sends it back to the client.

3. The client decrypts with GBC.DecK . Then it does quantum Fourier transform
itself and measures to get the final result.

So the quantum resources on the client side are only O(κn) CNOT gates plus
Õ(n) gates for quantum Fourier transform, and it can delegate Shor’s algorithm
to the server side securely.

Theorem 8. Protocol 6 can be used to delegate Shor’s algorithm securely and
non-interactively, in the quantum random oracle model(without assuming trap-
door one-way functions), and for n bit inputs, the amount of quantum resources
on the client side are quasi-linear quantum gates plus O(κn) CNOT gates (as-
suming Conjecture 3, κ = η, or under the current security proof, κ = η + 4n).

For comparison, if the client runs Shor’s algorithm locally, the client needs to
perform ω(n2 log n) Toffoli gates, and the exact form depends on the multipli-
cation method it uses. Schoolbook multiplication leads to O(n3) complexity; if
it uses fast multiplication method, the complexity is still ω(n2 log n) and it has
a big hidden constant.

8 Quantum KDM Security

As a natural generalization of our discussion of KDM-security, we formalize the
quantum KDM security and construct a protocol in this section. Previously when
we discuss the KDM security the function f and message m are classical; here
we further generalize them to include quantum states and operations.

Definition 10. A symmetric key non-adaptive quantum KDM game naSymQKDM
for function family F in the quantum random oracle model is defined as follows:

1. The challenger chooses bit b ←r {0, 1} and samples K = {ski}Ni=1, ski ←
KeyGen(1κ).

2. The adversary and the challenger repeat the following for L times,non-adaptively,
in other words, the challenger should only sends out the answers in step (b)
after it receives all the queries:

(a) The adversary picks index i, function f ∈ F and message ρ ∈ D(R⊗M),
and sends system M to the challenger.

(b) If b = 1, the challenger returns c = Encski(f(K, ρm)) to the adversary.
If b = 0, the challenger returns c = Encski(0

|f(K,ρm)|).

3. The adversary tries to guess b with some distinguisher D, and outputs b′.
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Note that F can be quantum operations and can query the random oracle with
quantum states. The output of functions in F should be fixed-lengthed, otherwise
|f(K,m)| will not be well-defined.

The guessing advantage is defined as AdvnaSymQKDM (A , κ) = |Pr(b′ =
1|b = 1)− Pr(b′ = 1|b = 0)|

Definition 11. A symmetric key quantum encryption scheme is nonadaptively
qKDM-CPA secure for function F if for any BQP adversary A ,

AdvnaSymQKDMF (A , κ) = negl(κ)

8.1 Protocol Design

Protocol 7 A Quantum KDM Secure Protocol in the Quantum Random Oracle
Model:

Key Generation QKDM.KeyGen(1κ): sk ← {0, 1}κ.
Encryption QKDM.Encsk(ρ): Sample a, b ∈r {0, 1}N , where N is the length of

inputs.
Output (XaZb(ρ),KDMP.Encsk(a, b)).

Decryption QKDM.Decsk((ρ, c)): First compute a, b ← KDMP.Decsk(c), then
output XaZb(ρ)

Theorem 9. Protocol 7 is nonadaptively qKDM-CPA secure for functions in
F [poly] in the quantum random oracle model, where F [poly] is the function family
that makes at most poly(κ) queries to the quantum random oracle.

We put its proof in the full version of this paper.

9 Open Problems

One obvious open problem in our paper is to prove Conjecture 3, the qIND-CPA
security without additional requirement on κ. We believe this is true, but we can
only prove the security when κ−4Nq = η. And another further research direction
is to base these protocols directly on the assumptions in the standard model, for
example, the existence of hash functions or symmetric key encryption schemes
that are exponentially KDM secure for affine functions against a quantum ad-
versary. We can also study how to optimize this protocol, and how efficient it is
compared to other protocols based on the quantum one-time pad. One obvious
route is to make use of the optimization techniques for classical garbled circuits.

Another open question is whether this protocol is useful in other prob-
lems than Shor’s algorithm. Lots of previous works studied quantum circuits
on {Clifford,T} gate set, and our work shows {C+P,H} is also important and
worth studying. There are not many works on converting quantum circuits into
layers of C+P gates and H gates, and it’s possible that some famous quantum
algorithms which require a lot of T gates, after converted into {C+P,H} gate set,
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can have small H depth. This problem is still quite open, and further research is
needed here.

What’s more, KDM security in quantum settings is an interesting problem.
This paper gives some initial study on it, but there are still a lot of open ques-
tions. Is it possible to construct quantum KDM secure protocol in the stan-
dard model? Could quantum cryptography help us design classical KDM secure
scheme?Again, further research is needed here.

This paper also gives some new ideas on constructing secure quantum encryp-
tion schemes without using trapdoor functions. Although there is some result[24]
on the limit of information-theoretically secure quantum homomorphic encryp-
tion, in our work we use the quantum random oracle and make the circuits
available to the client, the limit doesn’t hold any more. So here comes lots of
interesting problems on the possibility and impossibility of quantum computa-
tion delegation: What is the limit for non-interactive information-theoretically
secure delegation of quantum computation, where the circuit is public/private,
with/without quantum ROM? If we allow small amount of quantum/classical
communication, does it lead to something different?
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